Download citation
Download citation
link to html
The mol­ecular structure of the anti-aging agent J147 [systematic name: (E)-N-(2,4-di­methyl­phen­yl)-2,2,2-tri­fluoro-N′-(3-meth­oxy­benzyl­idene)acetohydra­zide], C18H17F3N2O2, has been determined at 150 K. The crystal structure corresponds to the minimum-energy conformation in the gas phase calculated by density functional theory (DFT). 15 other conformations have been calculated and compared with the minimum, denoted 1111. NMR spectroscopic data have been obtained and compared with those from Gauge Independent Atomic Orbital (GIAO) calculations. DFT calculations allow the reduction of the 16 possible rotamers to the four most stable (i.e. 1111, 1112, 1121 and 1222); in addition, the calculated barriers connecting these minima are low enough to permit their inter­conversion. Comparison of the NMR spectroscopic results, both experimental and calculated, point to the 1121 isomer being present in chloro­form solution.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961900144X/yf3163sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961900144X/yf3163Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S205322961900144X/yf3163sup3.pdf
NMR spectra and Electronic energy and geometry of the J147 rotamers calculated at the B3LYP/6-311++G(d,p) computational level

CCDC reference: 1869097

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(E)-N-(2,4-Dimethylphenyl)-2,2,2-trifluoro-N'-(3-methoxybenzylidene)acetohydrazide top
Crystal data top
C18H17F3N2O2F(000) = 728
Mr = 350.33Dx = 1.376 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 15.0494 (3) ÅCell parameters from 8396 reflections
b = 14.2369 (3) Åθ = 6.4–73.4°
c = 7.9898 (2) ŵ = 0.97 mm1
β = 99.025 (2)°T = 150 K
V = 1690.68 (7) Å3Block, colourless
Z = 40.2 × 0.08 × 0.02 mm
Data collection top
Rigaku Oxford Diffraction SuperNova
diffractometer with a dual source (Cu at zero) equipped with an AtlasS2 CCD area detector
5945 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source4685 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 5.3046 pixels mm-1θmax = 73.5°, θmin = 3.0°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 1717
Tmin = 0.792, Tmax = 1.000l = 99
5945 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0644P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
5945 reflectionsΔρmax = 0.21 e Å3
230 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

The twin ratio is 75:25. The twin components are related by a rotation = 179.9993 deg around the following vectors: Reciprocal space (hkl): 0.9591 -0.0004 -0.2832 Direct space (uvw) : 1.0000 -0.0000 -0.0000

More twin information from Crysalis Pro is shown below HKLF 5 merged

RINT ANALYSIS FOR ALL HKLF5 REFLECTIONS Components measured unique redundancy F2/sig(F2) Rint Rsigma ——————————————————————– 1,2 40817 6202 6.58 13.10 0.037 0.049

RINT ANALYSIS FOR OVERLAPPED REFLECTIONS Components measured unique redundancy F2/sig(F2) Rint Rsigma ——————————————————————– 1,2 15535 2329 6.67 16.27 0.034 0.042

RINT ANALYSIS FOR ISOLATED REFLECTIONS Component measured unique redundancy F2/sig(F2) Rint Rsigma ——————————————————————– 1 12639 1940 6.51 15.24 0.035 0.042 2 12643 1933 6.54 7.05 0.061 0.103

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.79743 (10)0.55247 (11)0.5015 (2)0.0310 (3)
F1A0.80312 (7)0.52484 (8)0.66192 (12)0.0429 (2)
F1B0.86916 (6)0.52092 (7)0.44165 (14)0.0426 (3)
F1C0.80174 (6)0.64552 (7)0.50186 (15)0.0465 (3)
C20.70649 (9)0.52283 (11)0.39492 (18)0.0269 (3)
O20.65540 (7)0.58383 (8)0.33280 (15)0.0346 (3)
N30.68799 (8)0.42978 (9)0.38228 (16)0.0274 (3)
N40.75575 (8)0.36869 (9)0.45448 (16)0.0275 (3)
C50.74210 (9)0.28083 (11)0.43262 (19)0.0292 (3)
H50.6874290.2588760.3688830.035*
C60.81146 (9)0.21384 (10)0.50661 (19)0.0279 (3)
C70.88960 (10)0.24511 (11)0.61040 (18)0.0291 (3)
H70.8986220.3101950.6332330.035*
C80.95351 (10)0.18023 (11)0.6793 (2)0.0325 (3)
O81.03238 (8)0.20262 (9)0.77993 (18)0.0448 (3)
C90.94022 (11)0.08438 (12)0.6455 (2)0.0369 (4)
H90.9841030.0401190.6938680.044*
C100.86373 (11)0.05411 (12)0.5422 (2)0.0371 (4)
H100.8551360.0109890.5190150.045*
C110.79887 (10)0.11852 (11)0.4717 (2)0.0328 (3)
H110.7462360.0975210.3999950.039*
C120.59850 (9)0.40011 (10)0.30719 (19)0.0261 (3)
C130.53748 (9)0.37550 (10)0.41401 (19)0.0268 (3)
C13A0.56160 (11)0.37566 (12)0.6041 (2)0.0350 (3)
H13A0.6006290.3218940.6400110.052*
H13B0.5066180.3711510.6550180.052*
H13C0.5932780.4340260.6408960.052*
C140.45046 (9)0.35210 (11)0.3373 (2)0.0286 (3)
H140.4078170.3338060.4070570.034*
C150.42381 (9)0.35456 (10)0.1622 (2)0.0283 (3)
C15A0.32796 (10)0.33260 (12)0.0862 (2)0.0371 (4)
H15A0.3111250.2710720.1264300.056*
H15C0.3224980.3315940.0376650.056*
H15B0.2879380.3808410.1203050.056*
C160.48731 (10)0.37919 (11)0.0605 (2)0.0309 (3)
H160.4707080.3806280.0591500.037*
C170.57474 (10)0.40166 (11)0.1329 (2)0.0303 (3)
H170.6179610.4179930.0630910.036*
C181.05443 (11)0.29985 (13)0.7989 (3)0.0445 (4)
H18A1.0526270.3284450.6868690.067*
H18B1.1149640.3066290.8639090.067*
H18C1.0108470.3313090.8590570.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0286 (7)0.0266 (8)0.0363 (8)0.0010 (6)0.0004 (6)0.0005 (6)
F1A0.0474 (5)0.0470 (6)0.0305 (5)0.0026 (4)0.0060 (4)0.0000 (4)
F1B0.0270 (4)0.0430 (6)0.0587 (6)0.0025 (4)0.0091 (4)0.0025 (5)
F1C0.0396 (5)0.0269 (5)0.0667 (7)0.0045 (4)0.0115 (5)0.0011 (5)
C20.0259 (6)0.0274 (7)0.0269 (7)0.0006 (5)0.0027 (5)0.0003 (6)
O20.0336 (5)0.0257 (6)0.0411 (6)0.0028 (4)0.0044 (5)0.0037 (5)
N30.0234 (5)0.0240 (6)0.0326 (7)0.0016 (4)0.0020 (5)0.0027 (5)
N40.0237 (5)0.0266 (7)0.0311 (6)0.0039 (5)0.0005 (5)0.0027 (5)
C50.0274 (6)0.0283 (8)0.0305 (8)0.0017 (5)0.0001 (5)0.0008 (6)
C60.0287 (7)0.0263 (7)0.0289 (7)0.0024 (5)0.0051 (5)0.0002 (6)
C70.0292 (7)0.0235 (8)0.0345 (7)0.0016 (5)0.0042 (5)0.0001 (7)
C80.0272 (7)0.0309 (8)0.0382 (8)0.0014 (6)0.0016 (6)0.0025 (6)
O80.0332 (6)0.0319 (7)0.0627 (9)0.0019 (5)0.0129 (5)0.0040 (6)
C90.0361 (8)0.0273 (8)0.0465 (10)0.0080 (6)0.0036 (7)0.0063 (7)
C100.0409 (8)0.0245 (8)0.0449 (9)0.0020 (6)0.0035 (7)0.0000 (7)
C110.0333 (7)0.0284 (8)0.0355 (8)0.0001 (6)0.0019 (6)0.0023 (6)
C120.0247 (6)0.0218 (7)0.0302 (8)0.0017 (5)0.0006 (5)0.0007 (5)
C130.0293 (7)0.0218 (7)0.0281 (7)0.0025 (5)0.0009 (5)0.0017 (6)
C13A0.0350 (7)0.0391 (9)0.0294 (8)0.0005 (6)0.0005 (6)0.0035 (7)
C140.0273 (6)0.0249 (7)0.0333 (8)0.0005 (5)0.0037 (6)0.0028 (6)
C150.0277 (7)0.0209 (7)0.0346 (8)0.0015 (5)0.0003 (6)0.0014 (6)
C15A0.0293 (7)0.0371 (9)0.0422 (9)0.0019 (6)0.0030 (6)0.0052 (7)
C160.0326 (7)0.0314 (8)0.0269 (7)0.0011 (6)0.0010 (6)0.0005 (6)
C170.0296 (7)0.0310 (8)0.0300 (8)0.0003 (6)0.0036 (6)0.0027 (6)
C180.0346 (8)0.0351 (10)0.0592 (12)0.0045 (7)0.0067 (8)0.0017 (8)
Geometric parameters (Å, º) top
C1—F1A1.3303 (19)C11—H110.9500
C1—F1B1.3260 (18)C12—C131.393 (2)
C1—F1C1.3262 (18)C12—C171.382 (2)
C1—C21.5527 (19)C13—C13A1.505 (2)
C2—O21.2133 (18)C13—C141.396 (2)
C2—N31.354 (2)C13A—H13A0.9800
N3—N41.3944 (16)C13A—H13B0.9800
N3—C121.4487 (17)C13A—H13C0.9800
N4—C51.275 (2)C14—H140.9500
C5—H50.9500C14—C151.394 (2)
C5—C61.468 (2)C15—C15A1.5076 (19)
C6—C71.401 (2)C15—C161.393 (2)
C6—C111.392 (2)C15A—H15A0.9800
C7—H70.9500C15A—H15C0.9800
C7—C81.384 (2)C15A—H15B0.9800
C8—O81.3629 (19)C16—H160.9500
C8—C91.399 (2)C16—C171.389 (2)
O8—C181.426 (2)C17—H170.9500
C9—H90.9500C18—H18A0.9800
C9—C101.376 (2)C18—H18B0.9800
C10—H100.9500C18—H18C0.9800
C10—C111.393 (2)
F1A—C1—C2111.48 (12)C17—C12—N3119.30 (13)
F1B—C1—F1A108.32 (12)C17—C12—C13122.00 (13)
F1B—C1—F1C107.26 (12)C12—C13—C13A122.68 (13)
F1B—C1—C2114.04 (13)C12—C13—C14117.01 (13)
F1C—C1—F1A107.32 (13)C14—C13—C13A120.30 (14)
F1C—C1—C2108.13 (12)C13—C13A—H13A109.5
O2—C2—C1118.51 (13)C13—C13A—H13B109.5
O2—C2—N3124.06 (13)C13—C13A—H13C109.5
N3—C2—C1117.39 (12)H13A—C13A—H13B109.5
C2—N3—N4116.80 (11)H13A—C13A—H13C109.5
C2—N3—C12118.88 (11)H13B—C13A—H13C109.5
N4—N3—C12124.16 (12)C13—C14—H14118.8
C5—N4—N3117.62 (12)C15—C14—C13122.48 (13)
N4—C5—H5120.2C15—C14—H14118.8
N4—C5—C6119.54 (13)C14—C15—C15A120.39 (14)
C6—C5—H5120.2C16—C15—C14118.42 (13)
C7—C6—C5120.64 (13)C16—C15—C15A121.18 (14)
C11—C6—C5119.12 (13)C15—C15A—H15A109.5
C11—C6—C7120.24 (14)C15—C15A—H15C109.5
C6—C7—H7120.3C15—C15A—H15B109.5
C8—C7—C6119.33 (14)H15A—C15A—H15C109.5
C8—C7—H7120.3H15A—C15A—H15B109.5
C7—C8—C9120.31 (14)H15C—C15A—H15B109.5
O8—C8—C7124.41 (15)C15—C16—H16119.8
O8—C8—C9115.27 (14)C17—C16—C15120.46 (14)
C8—O8—C18117.16 (13)C17—C16—H16119.8
C8—C9—H9119.9C12—C17—C16119.62 (14)
C10—C9—C8120.13 (14)C12—C17—H17120.2
C10—C9—H9119.9C16—C17—H17120.2
C9—C10—H10119.9O8—C18—H18A109.5
C9—C10—C11120.25 (15)O8—C18—H18B109.5
C11—C10—H10119.9O8—C18—H18C109.5
C6—C11—C10119.74 (14)H18A—C18—H18B109.5
C6—C11—H11120.1H18A—C18—H18C109.5
C10—C11—H11120.1H18B—C18—H18C109.5
C13—C12—N3118.62 (13)
Calculated and experimental chemical shifts (δ, ppm) in CDCl3 (note that the NMR atom numbering is different from the crystallographic atom numbering) top
NMR atomsX-ray atoms1111111211211122Experimental
C1 (CO)C2155.8156.2156.0156.0157.3 (q), 2JF = 36 Hz
C2 (CF3)C1121.2121.1121.1121.1117.2 (q), 1JF = 287 Hz
C6 (CN)C5141.2140.8141.1141.1143.9
H8 (C6—H)H57.026.976.946.957.26 (under the solvent)
C1'C12132.1132.2132.6132.4129.6
C2'C13140.1140.1140.4140.2136.2
C3'C14131.5131.6131.6131.7132.6
C4'C15142.4142.3142.3142.4140.9
C5'C16127.6127.6127.5127.6128.7
C6'C17129.3129.5129.6129.5128.5
C1''C6136.1136.2135.8136.4134.7
C2''C7104.7115.0110.0120.4111.7
C3''C8161.4160.7160.4160.4159.9
C4''C9121.1109.7119.7108.6121.2
C5''C10128.6128.7129.8129.7129.8
C6''C11122.6122.1118.1117.7117.1
C9 (Me-2')C13a17.917.917.917.917.0
H10 (Me-2')H13a2.032.032.042.032.09
C11 (Me-4')C15a21.221.221.221.221.3
H12 (Me-4')H15a2.402.412.392.402.42
C14 (O—Me)C1853.052.652.252.555.2
H15 (O—Me)H183.783.693.543.633.83
H3'H147.217.207.247.227.24
H5'H167.177.187.177.197.21
H6'H176.966.976.986.987.03
H2''H77.607.986.136.577.27
H4''H96.996.566.966.517.12
H5''H107.097.127.277.277.29
H6''H116.526.497.997.936.95
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds