Download citation
Download citation
link to html
In catena-poly[copper(II)-di-[mu]-chlorido-[mu]-proline-[kappa]2O:O'], [CuCl2(C5H9NO2)]n, two symmetry-independent metal cations adopt distorted octa­hedral coordination, typical for d9 Jahn-Teller systems. Each chloride bridge is involved in both a short and a very long inter­action with a CuII centre. The centrosymmetric crystal structure contains homochiral chains of opposite handedness which extend along the shortest lattice parameter (i.e. a). The O:O'-bridging coor­dination mode of proline, although a common motif for such complexes in general, is remarkable for CuII; the vast majority of amino acid derivatives of this cation are characterized by N,O-chelation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961500426X/yf3081sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961500426X/yf3081Isup2.hkl
Contains datablock I

CCDC reference: 1051666

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009), TWINABS (Sheldrick, 2008a), CELLNOW (Sheldrick, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b).

catena-Poly[copper(II)-di-µ-chlorido-µ-proline-κ2O:O'] top
Crystal data top
[CuCl2(C5H9NO2)]V = 793.2 (3) Å3
Mr = 249.57Z = 4
Triclinic, P1F(000) = 500
a = 6.6312 (14) ÅDx = 2.090 Mg m3
b = 9.717 (2) ÅMo Kα radiation, λ = 0.71073 Å
c = 12.837 (3) ŵ = 3.37 mm1
α = 76.136 (4)°T = 100 K
β = 89.521 (4)°Block, green
γ = 81.162 (4)°0.14 × 0.12 × 0.06 mm
Data collection top
Bruker D8 goniometer with APEX CCD area-detector
diffractometer
4741 reflections with I > 2σ(I)
Radiation source: microsourceRint = 0.075
ω scansθmax = 26.6°, θmin = 2.2°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2008a)
h = 88
Tmin = 0.543, Tmax = 0.745k = 1112
15560 measured reflectionsl = 016
5870 independent reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.030P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5870 reflectionsΔρmax = 0.59 e Å3
212 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a two-component twin. Twin law (-1.00007 0.00032 0.00013) (-0.00080 -0.99983 -0.00028) (0.11315 -0.64541 0.99990).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.63285 (9)0.26131 (6)0.26660 (5)0.01074 (16)
Cu20.14015 (9)0.23439 (6)0.22150 (5)0.01029 (16)
Cl10.04344 (18)0.44332 (13)0.13756 (10)0.0132 (3)
Cl20.37357 (19)0.05382 (13)0.32052 (10)0.0139 (3)
Cl30.85224 (18)0.08294 (13)0.21268 (10)0.0118 (3)
Cl40.45927 (19)0.45694 (13)0.30974 (10)0.0151 (3)
O10.5214 (5)0.3353 (3)0.1187 (3)0.0118 (8)
O20.2757 (5)0.2164 (3)0.0846 (3)0.0118 (8)
C10.4245 (7)0.2798 (5)0.0587 (4)0.0082 (10)
C20.4901 (7)0.3065 (5)0.0574 (4)0.0099 (11)
H20.38590.38110.10340.012*
C30.5268 (7)0.1745 (5)0.1043 (4)0.0116 (11)
H3A0.43440.10540.07310.014*
H3B0.50660.20190.18330.014*
C40.7484 (7)0.1119 (5)0.0721 (4)0.0139 (11)
H4A0.76130.05730.00390.017*
H4B0.80610.04780.11800.017*
C50.8539 (7)0.2430 (5)0.0893 (4)0.0140 (11)
H5A0.97330.22510.03940.017*
H5B0.90010.26990.16400.017*
N10.6929 (6)0.3590 (5)0.0666 (3)0.0118 (9)
H1A0.730 (7)0.379 (5)0.004 (3)0.014*
H1B0.680 (7)0.438 (4)0.125 (3)0.014*
O30.0460 (5)0.2670 (4)0.3623 (3)0.0129 (8)
O40.2503 (5)0.1884 (4)0.4122 (3)0.0128 (8)
C60.0738 (8)0.2116 (5)0.4300 (4)0.0110 (11)
C70.0005 (7)0.1744 (5)0.5463 (4)0.0118 (11)
H70.05190.08640.58720.014*
C80.0645 (8)0.3004 (6)0.5998 (4)0.0203 (13)
H8A0.12090.38880.54570.024*
H8B0.16840.27700.65430.024*
C90.1325 (8)0.3189 (6)0.6521 (4)0.0195 (13)
H9A0.12840.41920.65740.023*
H9B0.15540.25440.72480.023*
C100.2963 (8)0.2794 (5)0.5779 (4)0.0156 (12)
H10A0.29870.35790.51270.019*
H10B0.43270.25520.61430.019*
N20.2300 (7)0.1508 (5)0.5519 (3)0.0119 (9)
H2A0.280 (7)0.073 (4)0.602 (3)0.014*
H2B0.282 (7)0.148 (5)0.488 (3)0.014*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0099 (3)0.0130 (3)0.0088 (3)0.0001 (3)0.0014 (3)0.0027 (3)
Cu20.0090 (3)0.0116 (3)0.0093 (3)0.0014 (3)0.0009 (3)0.0010 (3)
Cl10.0119 (6)0.0117 (6)0.0147 (6)0.0009 (5)0.0011 (5)0.0012 (5)
Cl20.0108 (6)0.0142 (6)0.0148 (6)0.0014 (5)0.0011 (5)0.0003 (5)
Cl30.0110 (6)0.0122 (6)0.0124 (6)0.0021 (5)0.0004 (5)0.0034 (5)
Cl40.0169 (7)0.0148 (7)0.0132 (6)0.0002 (5)0.0015 (5)0.0042 (5)
O10.0123 (18)0.0125 (18)0.0096 (18)0.0016 (15)0.0003 (15)0.0009 (15)
O20.0121 (19)0.0111 (18)0.0119 (19)0.0033 (15)0.0002 (15)0.0018 (15)
C10.005 (2)0.007 (2)0.012 (3)0.0016 (19)0.001 (2)0.001 (2)
C20.006 (2)0.012 (3)0.012 (3)0.002 (2)0.002 (2)0.002 (2)
C30.011 (3)0.015 (3)0.011 (3)0.002 (2)0.000 (2)0.007 (2)
C40.015 (3)0.012 (3)0.016 (3)0.001 (2)0.003 (2)0.006 (2)
C50.012 (3)0.015 (3)0.016 (3)0.000 (2)0.004 (2)0.006 (2)
N10.015 (2)0.011 (2)0.010 (2)0.0032 (19)0.0029 (18)0.0020 (18)
O30.0142 (19)0.0121 (19)0.0118 (19)0.0042 (15)0.0024 (15)0.0007 (15)
O40.0107 (19)0.017 (2)0.0110 (19)0.0027 (15)0.0022 (15)0.0027 (15)
C60.016 (3)0.006 (3)0.009 (3)0.006 (2)0.002 (2)0.004 (2)
C70.007 (3)0.017 (3)0.009 (3)0.002 (2)0.001 (2)0.001 (2)
C80.018 (3)0.030 (3)0.013 (3)0.006 (3)0.002 (2)0.012 (3)
C90.022 (3)0.023 (3)0.018 (3)0.004 (3)0.001 (2)0.011 (2)
C100.015 (3)0.013 (3)0.020 (3)0.006 (2)0.000 (2)0.003 (2)
N20.014 (2)0.012 (2)0.009 (2)0.0015 (19)0.0020 (18)0.0012 (19)
Geometric parameters (Å, º) top
Cu1—O11.968 (3)C5—N11.509 (6)
Cu1—O4i1.953 (3)C5—H5A0.9900
Cu1—Cl42.2510 (14)C5—H5B0.9900
Cu1—Cl32.3201 (14)N1—H1A0.92 (2)
Cu2—O31.988 (3)N1—H1B0.93 (2)
Cu2—O21.999 (3)O3—C61.254 (6)
Cu2—Cl12.2314 (14)O4—C61.258 (6)
Cu2—Cl22.2847 (14)O4—Cu1ii1.953 (3)
Cu2—Cl3ii2.6020 (14)C6—C71.516 (6)
Cu2—Cl43.6136 (15)C7—N21.504 (6)
Cl3—Cu2i2.6020 (14)C7—C81.547 (7)
O1—C11.269 (5)C7—H71.0000
O2—C11.244 (5)C8—C91.528 (7)
C1—C21.523 (7)C8—H8A0.9900
C2—N11.504 (6)C8—H8B0.9900
C2—C31.529 (6)C9—C101.504 (7)
C2—H21.0000C9—H9A0.9900
C3—C41.522 (6)C9—H9B0.9900
C3—H3A0.9900C10—N21.496 (6)
C3—H3B0.9900C10—H10A0.9900
C4—C51.516 (7)C10—H10B0.9900
C4—H4A0.9900N2—H2A0.89 (2)
C4—H4B0.9900N2—H2B0.90 (2)
O4i—Cu1—O1178.69 (14)N1—C5—H5A110.9
O4i—Cu1—Cl491.42 (11)C4—C5—H5A110.9
O1—Cu1—Cl489.11 (10)N1—C5—H5B110.9
O4i—Cu1—Cl389.29 (11)C4—C5—H5B110.9
O1—Cu1—Cl389.99 (10)H5A—C5—H5B108.9
Cl4—Cu1—Cl3170.66 (5)C2—N1—C5109.0 (4)
O3—Cu2—O2170.29 (14)C2—N1—H1A111 (3)
O3—Cu2—Cl190.19 (11)C5—N1—H1A108 (3)
O2—Cu2—Cl190.55 (10)C2—N1—H1B106 (3)
O3—Cu2—Cl285.29 (10)C5—N1—H1B109 (3)
O2—Cu2—Cl291.85 (10)H1A—N1—H1B114 (4)
Cl1—Cu2—Cl2166.68 (5)C6—O3—Cu2133.8 (3)
O3—Cu2—Cl3ii91.17 (10)C6—O4—Cu1ii118.1 (3)
O2—Cu2—Cl3ii98.41 (10)O3—C6—O4127.1 (5)
Cl1—Cu2—Cl3ii95.12 (5)O3—C6—C7115.9 (4)
Cl2—Cu2—Cl3ii97.48 (5)O4—C6—C7117.0 (4)
O3—Cu2—Cl470.85 (10)N2—C7—C6109.7 (4)
O2—Cu2—Cl499.60 (10)N2—C7—C8104.8 (4)
Cl1—Cu2—Cl484.23 (4)C6—C7—C8111.6 (4)
Cl2—Cu2—Cl482.45 (4)N2—C7—H7110.2
Cl3ii—Cu2—Cl4161.99 (4)C6—C7—H7110.2
Cu1—Cl3—Cu2i86.85 (5)C8—C7—H7110.2
Cu1—Cl4—Cu265.76 (4)C9—C8—C7104.3 (4)
C1—O1—Cu1131.9 (3)C9—C8—H8A110.9
C1—O2—Cu2117.8 (3)C7—C8—H8A110.9
O2—C1—O1126.0 (5)C9—C8—H8B110.9
O2—C1—C2118.7 (4)C7—C8—H8B110.9
O1—C1—C2115.0 (4)H8A—C8—H8B108.9
N1—C2—C1109.8 (4)C10—C9—C8104.1 (4)
N1—C2—C3103.7 (4)C10—C9—H9A110.9
C1—C2—C3115.7 (4)C8—C9—H9A110.9
N1—C2—H2109.1C10—C9—H9B110.9
C1—C2—H2109.1C8—C9—H9B110.9
C3—C2—H2109.1H9A—C9—H9B109.0
C4—C3—C2103.2 (4)N2—C10—C9101.6 (4)
C4—C3—H3A111.1N2—C10—H10A111.4
C2—C3—H3A111.1C9—C10—H10A111.4
C4—C3—H3B111.1N2—C10—H10B111.4
C2—C3—H3B111.1C9—C10—H10B111.4
H3A—C3—H3B109.1H10A—C10—H10B109.3
C5—C4—C3103.6 (4)C10—N2—C7107.9 (4)
C5—C4—H4A111.0C10—N2—H2A109 (3)
C3—C4—H4A111.0C7—N2—H2A112 (3)
C5—C4—H4B111.0C10—N2—H2B105 (3)
C3—C4—H4B111.0C7—N2—H2B111 (3)
H4A—C4—H4B109.0H2A—N2—H2B112 (4)
N1—C5—C4104.4 (4)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Selected geometric parameters in (1) (Å, °) top
Cu1—O11.968 (3)Cu2—O31.988 (3)
Cu1—O4i1.953 (3)Cu2—O21.999 (3)
Cu1—Cl42.2510 (14)Cu2—Cl12.2314 (14)
Cu1—Cl32.3201 (14)Cu2—Cl22.2847 (14)
Cu1—Cl22.8066 (16)Cu2—Cl3ii2.6020 (14)
Cu1—Cl1i3.1911 (16)Cu2—Cl43.6136 (15)
O1—Cu1—O4i178.69 (14)O2—Cu2—O3170.29 (14)
Cl2—Cu1—Cl384.83 (4)Cl1—Cu2—Cl2166.68 (5)
Cl3—Cu1—Cl4170.66 (5)Cl4—Cu2—O299.60 (10)
Cl2—Cu1—Cl4104.51 (5)Cl2—Cu2—Cl482.45 (4)
Cl2—Cu1—Cl1i159.81 (4)Cu1—Cl2—Cu282.60 (4)
Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z.
Selected hydrogen bonds in (1) (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.92 (4)2.61 (4)3.485 (4)160 (4)
N1—H1A···O10.92 (4)2.10 (4)2.603 (5)114 (4)
N1—H1B···Cl1iii0.93 (4)2.82 (5)3.228 (5)108 (3)
N1—H1B···Cl4iii0.93 (4)2.47 (4)3.284 (4)146 (4)
N1—H1B···O1iii0.93 (4)2.41 (4)3.010 (6)122 (3)
N2—H2A···Cl2iv0.89 (4)2.52 (4)3.233 (5)137 (4)
N2—H2A···Cl3iv0.89 (4)2.72 (4)3.414 (4)136 (4)
N2—H2B···Cl20.89 (4)2.57 (4)3.411 (4)159 (4)
N2—H2B···O30.89 (4)2.23 (4)2.645 (5)108 (4)
Symmetry codes: (i) x + 1, y, z; (iii) -x + 1, -y + 1, -z; (iv) -x + 1, -y, -z + 1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds