Download citation
Download citation
link to html
Two polyoxometallate-based compounds, tris­[1,1'-(butane-1,4-di­yl)bis­(1H-imidazol-3-ium)] bis­[tetra­cosa-[mu]2-oxido-do­deca­­oxido-[mu]12-phosphato-dodeca­molybdenum(VI)], (C10H16N4)3[PMo12O40]2, (I), and 1,1'-(butane-1,4-di­yl)bis­(1H-imid­azol-3-ium) 1-[4-(1H-imidazol-1-yl)but­yl]-1H-imidazol-3-ium tetra­cosa-[mu]2-oxido-dodeca­oxido-[mu]12-phosphato-dodeca­molyb­denum(VI) dihydrate, (C10H16N4)(C10H15N4)[PMo12O40]·2H2O, (II), were synthesized by hydro­thermal techniques at different pH values. The stoichiometric ratio between the polyoxometallate (POM) anions and organic cations is 2:3 in (I), with one of the cations lying on an inversion centre. The doubly protonated 1,1'-(butane-1,4-di­yl)di­imidazole (BIM) cations are linked to the [PMo12O40]3- anions by hydrogen bonds to form a three-dimensional supra­molecular network. The stoichiometric ratio of POM anions and organic cations is 1:2 in (II), and the anion is located about a centre of inversion. The partly protonated BIM cations and solvent water mol­ecules form hydrogen bonds with the [PMo12O40]3- anions, yielding a two-dimensional supra­molecular layer. The different lattice architectures of (I) and (II) may be governed by the ratio between the POM anions and organic cations, which, in turn, is determined by the pH value.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113011554/yf3031sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113011554/yf3031Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113011554/yf3031IIsup3.hkl
Contains datablock II

CCDC references: 950422; 950423

Comment top

The development of new inorganic–organic hybrids has emerged as a major research area for the rational design of new materials, due to their intriguing topological structures and their widespead applications (Chae et al., 2004; Seo et al., 2000; Kahn & Martinez, 1998) as catalysts, nonlinear optical materials etc. Polyoxometalalte (POM) clusters can be viewed as transferable building blocks, offering interesting and exciting perspectives for the design of new materials. Thus, POMs are often employed as important inorganic units for constructing inorganic–organic supramolecular hybrids with various organic molecules (Ishii et al., 2004; Peng, 2004; Zhao et al., 2007; Zheng et al., 2008). Studies of supramolecular hybrids are mainly focused on the understanding of intermolecular interactions with respect to crystal packing, and the utilization of such knowledge in the design of new solids with desired physical and chemical properties (Lehn, 1990).

There are many reports on the intermolecular interactions in POM-based supramolecular hybrids. Some are focused on the recognition and development of novel supramolecular synthons (Wintijes et al., 2008; Han et al., 2009), while others explore novel lattice architectures resulting from the different nature of the organic molecules (Long et al., 2003; Yan et al., 2010; Ritchie et al., 2009; Chullikkattil et al., 2010). In our ongoing studies of POM-based supramolecules, we have found that the lattice architectures are affected not only by supramolecular synthons and the nature of the organic molecules, but also by the degree of protonation of the organic molecules. In this work, two POM-based hybrids, namely tris[1,1'-(butane-1,4-diyl)bis(1H-imidazol-3-ium)] bis[tetracosa-µ2-oxido-dodecaoxido-µ12-phosphato-dodecamolybdenum(VI)], (I), and 1,1'-(butane-1,4-diyl)bis(1H-imidazol-3-ium) 1-[4-(1H-imidazol-1-yl)butyl]-1H-imidazol-3-ium tetracosa-µ2-oxido-dodecaoxido-µ12-phosphato-dodecamolybdenum(VI) dihydrate, (II), were synthesized at different pH values. In these two compounds, the organic molecules are protonated to different degrees and combine with the POM anions in different stoichiometric ratios to form different lattice architectures.

X-ray single-crystal diffraction studies reveal that (I) crystallizes in the triclinic system (space group P1). The asymmetric unit of (I) (Fig. 1) consists of one [PMo12O40] cluster and one-and-a-half doubly protonated 1,1'-(butane-1,4-diyl)diimidazole (BIM) molecules. The [PMo12O40]3- cluster shows a wellknown Keggin-type structure. It is formed by a central PO4 tetrahedron surrounded by four Mo3O13 triplets, in which three MoO6 octahedra share edges. One PO4 tetrahedron and 12 MoO6 octahedra from four Mo3O13 triplets share corners and make up the Keggin-type [PMo12O40] cluster. The P—O distances are in the range 1.526 (5)–1.544 (5) Å and the Mo—O distances can be grouped into three sets, viz. Mo—Ot = 1.670 (5)–1.687 (5) Å, Mo—Ob = 1.863 (5)–1.986 (5) Å and Mo—Oc = 2.409 (5)–2.456 (5) Å (c = central, b = bridging and t = terminal).

Bond-valence sum (BVS) analyses (Brown, 2002) using the parameters of Brese & O'Keeffe (1991) revealed minor deviations from the expected values of 6 valence units (v.u.) for all the Mo atoms of (I), 2 v.u. for all the O atoms and 5 v.u. for the P atom. Thus, the Keggin-type POM cluster adopts an oxidation state of -3. Because the ratio of POM to BIM is 2:3, the three imidazole rings from one and a half independent BIM molecules should all be protonated in order to maintain charge balance, i.e. the BIM molecules in (I) are doubly protonated.

It should be mentioned that the BIM cations in (I) exhibit two different conformations, one W-shaped (Fig. 2a) and the other Z-shaped (Fig. 2b). These two kinds of doubly protonated BIM cations link the POM cluster trianions to form a three-dimensional supramolecular network through N—H···O hydrogen bonds. As shown in Fig. 3(a), the protonated imidazole rings N1/N2 and N3/N4 from the W-shaped BIM cation form hydrogen bonds with two POM anions, with N1···O36i = 2.809 (10) Å and N3···O9 = 2.952 (10) Å [symmetry code: (i) x, y - 1, z + 1]. Each POM anion accepts hydrogen bonds from two W-shaped BIM cations using two bridging O atoms, to form a one-dimensional chain along the [011] direction. The N5/N6 imidazole ring from the the Z-shaped BIM cation forms trifurcated hydrogen bonds with two terminal O atoms (O2ii and O13) and one bridging O atom (O12iii) from three POM anions, with N5···O2ii = 3.079 (9) Å, N5···O13 = 3.076 (9) Å and N5···O12iii = 3.147 (9) Å [symmetry codes: (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y, z]. Thus, each Z-shaped BIM cation links six POM anions through weak hydrogen bonds, and each POM anion is connected to three such BIM cations to form a two-dimensional layer parallel to the [101] plane (Fig. 3b). As shown in Fig. 3(c), the one-dimensional chain along the [011] direction and the two-dimensional layer parallel to the [101] plane cross each other, to form a three-dimensional network with POM cluster anions as the junctions. Briefly, the POM cluster anions in (I) are linked by hydrogen bonds to five doubly protonated BIM cations (two W-shaped and three Z-shaped) using their five O atoms, and the two types of BIM cations link the POM anions to form a three-dimensional supramolecular network.

Compound (II) also crystallizes in the triclinic system, space group P1. The asymmetric unit consists of half a Keggin-type [PMo12O40]3- POM cluster anion, one BIM cation and one solvent water molecule (Fig. 4). In the POM anion, the central P atom is surrounded by a cube of eight half-occupied O atoms, which often appears in Keggin-type structures (Fender et al., 1998; Attanasio et al. 1990). The P—O [1.501 (13)–1.595 (14) Å] and Mo—O bond lengths [2.426 (14)–2.510 (13) Å for Mo—Oc, 1.853 (8)–1.963 (8) for Mo—Ob and 1.671 (7)–1.650 (7) Å for Mo—Ot] are similar to those of (I) and the reported Keggin-type POM (Han et al., 2009).

The BVS analysis of (II) reveals that the POM cluster also adopts an oxidation state of -3. The stoichiometric ratio between POM and BIM ions in (II) is 1:2, i.e. there are two BIM cations per anion. Thus, for charge balance, one BIM cation should be doubly protonated and the other should be singly protonated.

The BIM cations in (II) adopt an Ω conformation (Fig. 2c). As shown in Fig. 5(a), the protonated BIM cations form hydrogen bonds with the POM anions, yielding a one-dimensional supramolecular chain along the [110] direction. In the POM–BIM chain, the N2···O19i distance is 2.897 (12) Å and the N4···O9ii distance is 2.971 (10) Å [symmetry codes: (i) x + 1, y + 1, z; (ii) x - 1, y, z], and each POM anion accepts hydrogen bonds from four BIM cations using four bridging O atoms. The solvent water molecule also acts as a hydrogen-bond donor and is linked to two POM anions (Fig. 5b). Each POM anion, using two terminal and two bridging O atoms, is linked by hydrogen bonds to four solvent water molecules to form a one-dimensional POM–H2O supramolecular chain along the [100] direction. The POM–H2O and POM–BIM chains cross each other, to form a two-dimensional supramolecular layer with the POM clusters as the junctions. Briefly, for (II), POM cluster anions are linked by hydrogen bonds to four BIM cations using their eight O atoms, and to four solvent water molecules, to form a two-dimensional supramolecular layer (Fig. 5c).

In summary, two POM-based inorganic–organic hybride compounds, (I) and (II), have been synthesized. The three-dimensional supramolecular compound, (I), in which the BIM molecules are doubly protonated, was synthesized at a lower pH (pH = 1) and has a 2:3 stoichiometric ratio between POM and BIM. The two-dimensional supramolecular compound, (II), in which the BIM molecules are partially protonated, was obtained at a relatively high pH (pH = 5) and the ratio between POM and BIM is 1:2. It can thus be concluded that the degree of protonation of the organic molecules, affected by pH, defines the stoichiometric ratio between the POM anions and the BIM cations, which can further affect the lattice architecture.

Related literature top

For related literature, see: Attanasio et al. (1990); Brese & O'Keeffe (1991); Brown (2002); Chae et al. (2004); Chullikkattil et al. (2010); Fender et al. (1998); Han et al. (2009); Ishii et al. (2004); Kahn & Martinez (1998); Lehn (1990); Long et al. (2003); Peng (2004); Ritchie et al. (2009); Seo et al. (2000); Sheldrick (2008); Wintijes et al. (2008); Yan et al. (2010); Zhao et al. (2007); Zheng et al. (2008).

Experimental top

For the snthesis of (I) and (II), mixtures of (NH4)6Mo7O24.4H2O (0.2 g), Cu(OAc)2.2H2O (0.10 g), BIM (0.10 g) and H2O (10 ml) were stirred at room temperature, and the pH was adjusted to 1 [for (I)] or 5 [for (II)] using H3PO4 solution. The mixtures were then heated in 15 ml Teflon-lined reaction vessels at 453 K for 5 d. After the mixtures had been cooled at room temperature, black block-shaped crystals of (I) and (II) were isolated and washed with water.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms, with alkyl C—H = 0.97 Å, aryl C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.85 Å, and with Uiso(H) = 1.2Ueq(C,N, O). According to the BVS results for (II), the BIM ligands are partly protonated, and therefore the occupancy of atom H4 attached to atom N4 was fixed at 0.5. Because of the higher Ueq parameters of some atoms compared with their neighbours, the soft-restraint commands SIMU and DELU (SHELXL97; Sheldrick, 2008) were used intensively.

Computing details top

For both compounds, data collection: SMART (Bruker, 2002); cell refinement: SMART (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The conformations of the BIM cation in (I) and (II). (a) The W shape and (b) the Z shape in (I). (c) The Ω shape in (II). [Part (b) looks cropped - please send complete image]
[Figure 3] Fig. 3. For (I), the doubly protonated BIM ligands link the POM anions to form (a) a one-dimensional supramolecular chain along the [011] direction and (b) a two-dimensional layer parallel to the ac plane. (c) These layers and chains cross each other to form a three-dimensional supramolecular network. [Symmetry codes: (i) x, y - 1, z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y, z.] [There is also atom N5iv - please provide symop]
[Figure 4] Fig. 4. The structure of the asymmetric unit of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 5] Fig. 5. (a) For (II), the protonated BIM ligands link the POM anions to form a one-dimensional supramolecular chain along the [110] direction. (b) The solvent water molecules link the POM anions to form a one-dimensional supramolecular chain along the a direction. (c) These chains cross each other to form a two-dimensional supramolecular network. [Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y + 1, z; (iii) -x + 1, -y + 1, -z + 1.]
(I) Tris[1,1'-(butane-1,4-diyl)bis(1H-imidazol-3-ium)] bis[tetracosa-µ2-oxido-dodecaoxido-µ12-phosphato-dodecamolybdenum(VI)] top
Crystal data top
(C10H16N4)3[PMo12O40]2Z = 1
Mr = 4221.30F(000) = 1990
Triclinic, P1Dx = 3.114 Mg m3
a = 11.838 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.1071 (11) ÅCell parameters from 7806 reflections
c = 17.8029 (18) Åθ = 1.8–25.0°
α = 74.134 (2)°µ = 3.38 mm1
β = 71.044 (1)°T = 298 K
γ = 71.872 (1)°Block, black
V = 2250.9 (4) Å30.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7806 independent reflections
Radiation source: fine-focus sealed tube5770 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1314
Tmin = 0.552, Tmax = 0.729k = 1214
11740 measured reflectionsl = 1221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0358P)2 + 12.874P]
where P = (Fo2 + 2Fc2)/3
7806 reflections(Δ/σ)max = 0.001
667 parametersΔρmax = 1.71 e Å3
380 restraintsΔρmin = 1.38 e Å3
Crystal data top
(C10H16N4)3[PMo12O40]2γ = 71.872 (1)°
Mr = 4221.30V = 2250.9 (4) Å3
Triclinic, P1Z = 1
a = 11.838 (1) ÅMo Kα radiation
b = 12.1071 (11) ŵ = 3.38 mm1
c = 17.8029 (18) ÅT = 298 K
α = 74.134 (2)°0.20 × 0.10 × 0.10 mm
β = 71.044 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7806 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
5770 reflections with I > 2σ(I)
Tmin = 0.552, Tmax = 0.729Rint = 0.021
11740 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039380 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0358P)2 + 12.874P]
where P = (Fo2 + 2Fc2)/3
7806 reflectionsΔρmax = 1.71 e Å3
667 parametersΔρmin = 1.38 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.99424 (7)0.42510 (6)0.34239 (4)0.03161 (18)
Mo20.74375 (6)0.64312 (7)0.45053 (4)0.03106 (18)
Mo31.05567 (7)0.69686 (6)0.35901 (4)0.03089 (18)
Mo40.56804 (6)0.65669 (6)0.32704 (4)0.02652 (17)
Mo50.62298 (6)0.90948 (6)0.34163 (5)0.03151 (18)
Mo60.93257 (7)0.96349 (6)0.25275 (5)0.03079 (18)
Mo71.16548 (6)0.76336 (7)0.15366 (4)0.03072 (18)
Mo81.10781 (7)0.48781 (6)0.13666 (4)0.03321 (19)
Mo90.82205 (6)0.43561 (6)0.21860 (5)0.03061 (18)
Mo100.74417 (8)0.98154 (6)0.11731 (5)0.0373 (2)
Mo110.68863 (6)0.72772 (6)0.10527 (4)0.02799 (17)
Mo120.97741 (7)0.77721 (7)0.02113 (4)0.03281 (18)
P10.86781 (16)0.70541 (15)0.23596 (10)0.0149 (4)
O11.0496 (6)0.3056 (5)0.4063 (3)0.0419 (15)
O20.7157 (5)0.5948 (5)0.5516 (3)0.0409 (15)
O31.1316 (5)0.6669 (5)0.4298 (3)0.0403 (15)
O40.8485 (5)0.5011 (4)0.4099 (3)0.0271 (12)
O50.8912 (5)0.6906 (4)0.4230 (3)0.0267 (12)
O61.0691 (5)0.5392 (4)0.3461 (3)0.0286 (12)
O71.1179 (4)0.3966 (4)0.2410 (3)0.0281 (12)
O80.8959 (5)0.3584 (4)0.3044 (3)0.0269 (12)
O90.6108 (5)0.6035 (5)0.4286 (3)0.0281 (12)
O100.6507 (5)0.8014 (4)0.4424 (3)0.0278 (12)
O111.0046 (5)0.8644 (5)0.3407 (3)0.0279 (12)
O121.1867 (5)0.7076 (5)0.2621 (3)0.0291 (12)
O130.4329 (5)0.6182 (5)0.3540 (3)0.0382 (14)
O140.5197 (5)1.0261 (5)0.3787 (4)0.0406 (15)
O150.9345 (5)1.0963 (5)0.2628 (4)0.0386 (14)
O161.3084 (5)0.7744 (5)0.1012 (3)0.0397 (15)
O171.2303 (5)0.4102 (5)0.0776 (4)0.0431 (16)
O180.7650 (5)0.3316 (5)0.2090 (4)0.0376 (14)
O190.5142 (5)0.8143 (4)0.3482 (3)0.0284 (12)
O200.7745 (5)0.9451 (4)0.3254 (3)0.0277 (12)
O211.0921 (5)0.9171 (4)0.1821 (3)0.0280 (12)
O221.1733 (4)0.6031 (4)0.1520 (3)0.0275 (12)
O230.9823 (5)0.4118 (4)0.1450 (3)0.0270 (12)
O240.6823 (5)0.5198 (4)0.2914 (3)0.0263 (12)
O250.7518 (4)0.7213 (4)0.3077 (3)0.0204 (11)
O260.9628 (4)0.7576 (4)0.2464 (3)0.0214 (11)
O270.9224 (4)0.5739 (4)0.2342 (3)0.0190 (11)
O280.8332 (4)0.7691 (4)0.1564 (3)0.0209 (11)
O290.5878 (5)0.7231 (4)0.2138 (3)0.0265 (12)
O300.6407 (5)0.9587 (4)0.2306 (3)0.0290 (12)
O310.8572 (5)0.9953 (4)0.1699 (3)0.0297 (12)
O321.0799 (5)0.8073 (4)0.0729 (3)0.0284 (12)
O331.0393 (5)0.6159 (5)0.0595 (3)0.0291 (12)
O340.7649 (4)0.5693 (4)0.1366 (3)0.0249 (12)
O350.6516 (5)0.9002 (5)0.0926 (3)0.0300 (12)
O360.8311 (5)0.7477 (4)0.0148 (3)0.0266 (12)
O370.8755 (5)0.9390 (4)0.0286 (3)0.0310 (13)
O380.6810 (6)1.1233 (5)0.0829 (4)0.0503 (17)
O390.5914 (5)0.7204 (5)0.0570 (3)0.0358 (14)
O401.0544 (6)0.7971 (5)0.0765 (3)0.0417 (15)
C10.7966 (11)0.1365 (10)0.8169 (7)0.0649 (8)
H10.86550.19870.80610.078*
C20.6440 (11)0.0096 (10)0.8797 (7)0.0652 (8)
H20.59230.03110.92050.078*
C30.6361 (11)0.0099 (10)0.8046 (7)0.0649 (8)
H30.57510.06550.78260.078*
C40.7471 (11)0.0891 (10)0.6875 (6)0.0650 (8)
H4A0.80900.16250.68010.078*
H4B0.66990.09950.68610.078*
C50.7814 (11)0.0014 (10)0.6233 (6)0.0647 (8)
H5A0.85540.01560.62720.078*
H5B0.71670.07360.62890.078*
C60.8064 (11)0.0268 (10)0.5353 (6)0.0642 (8)
H6A0.86790.10100.53010.077*
H6B0.73110.03500.52920.077*
C70.8503 (10)0.0701 (9)0.4704 (7)0.0640 (8)
H7A0.90920.09460.48560.077*
H7B0.89200.04050.42050.077*
C80.7293 (11)0.2737 (10)0.4762 (7)0.0634 (8)
H80.77380.29090.50420.076*
N30.6394 (8)0.3464 (8)0.4511 (5)0.0633 (8)
H90.61200.41910.45690.076*
C100.6643 (10)0.1830 (10)0.4169 (7)0.0634 (8)
H100.65680.12440.39550.076*
C110.4566 (8)0.5044 (8)0.1934 (5)0.0408 (8)
H110.46430.58210.17530.049*
C120.3953 (8)0.3489 (8)0.2687 (5)0.0411 (8)
H120.35280.30020.31100.049*
C130.4806 (8)0.3160 (8)0.2017 (5)0.0410 (8)
H130.50930.24030.18980.049*
C140.6056 (8)0.4231 (8)0.0738 (5)0.0408 (8)
H14A0.67110.35110.07320.049*
H14B0.64220.48880.06420.049*
C150.5464 (8)0.4399 (8)0.0063 (5)0.0403 (8)
H15A0.50460.37730.01830.048*
H15B0.61060.43220.04370.048*
N10.7436 (8)0.1015 (8)0.8841 (6)0.0652 (8)
H1A0.76840.13290.92730.078*
N20.7331 (9)0.0660 (8)0.7660 (6)0.0649 (8)
C90.5931 (11)0.2943 (10)0.4142 (7)0.0634 (8)
H3A0.52640.32780.39180.076*
N40.7497 (9)0.1715 (8)0.4570 (5)0.0634 (8)
N50.3835 (7)0.4630 (6)0.2631 (4)0.0410 (8)
H50.33580.50410.29900.049*
N60.5164 (7)0.4159 (6)0.1545 (4)0.0405 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0437 (4)0.0206 (4)0.0280 (4)0.0012 (3)0.0149 (3)0.0046 (3)
Mo20.0264 (4)0.0439 (4)0.0179 (4)0.0038 (3)0.0045 (3)0.0053 (3)
Mo30.0341 (4)0.0364 (4)0.0290 (4)0.0130 (3)0.0163 (3)0.0021 (3)
Mo40.0233 (4)0.0320 (4)0.0263 (4)0.0106 (3)0.0008 (3)0.0114 (3)
Mo50.0286 (4)0.0239 (4)0.0392 (4)0.0023 (3)0.0013 (3)0.0155 (3)
Mo60.0337 (4)0.0215 (4)0.0431 (4)0.0074 (3)0.0125 (3)0.0118 (3)
Mo70.0237 (4)0.0417 (4)0.0315 (4)0.0134 (3)0.0009 (3)0.0159 (3)
Mo80.0324 (4)0.0239 (4)0.0336 (4)0.0061 (3)0.0094 (3)0.0126 (3)
Mo90.0289 (4)0.0218 (4)0.0463 (5)0.0047 (3)0.0115 (3)0.0144 (3)
Mo100.0632 (5)0.0181 (4)0.0352 (4)0.0017 (3)0.0270 (4)0.0048 (3)
Mo110.0322 (4)0.0337 (4)0.0238 (4)0.0144 (3)0.0123 (3)0.0013 (3)
Mo120.0307 (4)0.0466 (5)0.0194 (4)0.0145 (3)0.0043 (3)0.0006 (3)
P10.0168 (9)0.0129 (9)0.0147 (9)0.0028 (7)0.0040 (7)0.0034 (7)
O10.059 (4)0.025 (3)0.035 (3)0.008 (3)0.022 (3)0.005 (3)
O20.040 (4)0.055 (4)0.023 (3)0.008 (3)0.008 (3)0.004 (3)
O30.040 (3)0.053 (4)0.037 (3)0.012 (3)0.024 (3)0.006 (3)
O40.035 (3)0.025 (3)0.022 (3)0.006 (2)0.007 (2)0.006 (2)
O50.033 (3)0.028 (3)0.021 (3)0.006 (2)0.008 (2)0.008 (2)
O60.031 (3)0.024 (3)0.031 (3)0.002 (2)0.013 (2)0.005 (2)
O70.021 (3)0.026 (3)0.035 (3)0.002 (2)0.007 (2)0.012 (2)
O80.036 (3)0.018 (3)0.026 (3)0.007 (2)0.006 (2)0.004 (2)
O90.031 (3)0.031 (3)0.019 (3)0.009 (2)0.002 (2)0.005 (2)
O100.028 (3)0.029 (3)0.025 (3)0.001 (2)0.005 (2)0.012 (2)
O110.030 (3)0.035 (3)0.025 (3)0.011 (2)0.008 (2)0.011 (2)
O120.026 (3)0.033 (3)0.031 (3)0.005 (2)0.011 (2)0.009 (3)
O130.030 (3)0.052 (4)0.040 (3)0.017 (3)0.000 (3)0.022 (3)
O140.037 (3)0.032 (3)0.052 (4)0.002 (3)0.007 (3)0.021 (3)
O150.040 (3)0.026 (3)0.058 (4)0.009 (3)0.013 (3)0.018 (3)
O160.029 (3)0.056 (4)0.040 (3)0.019 (3)0.001 (3)0.019 (3)
O170.036 (3)0.037 (3)0.047 (4)0.011 (3)0.015 (3)0.023 (3)
O180.040 (3)0.028 (3)0.048 (4)0.013 (3)0.008 (3)0.011 (3)
O190.025 (3)0.029 (3)0.033 (3)0.004 (2)0.005 (2)0.014 (3)
O200.029 (3)0.027 (3)0.030 (3)0.006 (2)0.005 (2)0.015 (2)
O210.033 (3)0.028 (3)0.025 (3)0.012 (2)0.002 (2)0.010 (2)
O220.024 (3)0.027 (3)0.033 (3)0.007 (2)0.003 (2)0.012 (2)
O230.029 (3)0.024 (3)0.028 (3)0.005 (2)0.001 (2)0.013 (2)
O240.030 (3)0.025 (3)0.024 (3)0.009 (2)0.001 (2)0.009 (2)
O250.023 (3)0.022 (3)0.016 (3)0.003 (2)0.005 (2)0.006 (2)
O260.022 (3)0.017 (3)0.026 (3)0.004 (2)0.007 (2)0.006 (2)
O270.021 (3)0.017 (2)0.020 (3)0.007 (2)0.004 (2)0.003 (2)
O280.027 (3)0.018 (3)0.019 (3)0.005 (2)0.008 (2)0.004 (2)
O290.028 (3)0.031 (3)0.024 (3)0.005 (2)0.009 (2)0.010 (2)
O300.030 (3)0.028 (3)0.032 (3)0.004 (2)0.012 (2)0.009 (2)
O310.039 (3)0.027 (3)0.024 (3)0.009 (2)0.008 (2)0.004 (2)
O320.032 (3)0.028 (3)0.026 (3)0.011 (2)0.003 (2)0.008 (2)
O330.032 (3)0.031 (3)0.026 (3)0.010 (2)0.005 (2)0.011 (2)
O340.028 (3)0.029 (3)0.021 (3)0.009 (2)0.003 (2)0.009 (2)
O350.035 (3)0.028 (3)0.031 (3)0.003 (2)0.020 (3)0.003 (2)
O360.035 (3)0.032 (3)0.017 (3)0.012 (2)0.007 (2)0.006 (2)
O370.043 (3)0.022 (3)0.028 (3)0.009 (2)0.011 (3)0.000 (2)
O380.081 (5)0.025 (3)0.045 (4)0.001 (3)0.033 (4)0.002 (3)
O390.037 (3)0.047 (4)0.030 (3)0.016 (3)0.014 (3)0.007 (3)
O400.048 (4)0.050 (4)0.025 (3)0.023 (3)0.001 (3)0.001 (3)
C10.0721 (19)0.0580 (17)0.0616 (17)0.0053 (14)0.0288 (15)0.0052 (15)
C20.0722 (19)0.0583 (17)0.0617 (17)0.0053 (14)0.0286 (15)0.0050 (15)
C30.0721 (19)0.0581 (17)0.0615 (17)0.0053 (14)0.0288 (15)0.0053 (15)
C40.0723 (18)0.0580 (17)0.0616 (17)0.0052 (14)0.0285 (15)0.0054 (14)
C50.0721 (18)0.0577 (17)0.0613 (17)0.0053 (14)0.0284 (15)0.0057 (14)
C60.0719 (18)0.0574 (17)0.0610 (17)0.0055 (14)0.0286 (15)0.0061 (14)
C70.0718 (18)0.0573 (17)0.0608 (17)0.0055 (14)0.0286 (15)0.0063 (14)
C80.0715 (18)0.0570 (17)0.0605 (17)0.0060 (14)0.0288 (15)0.0066 (14)
N30.0716 (19)0.0567 (17)0.0604 (17)0.0059 (14)0.0286 (15)0.0068 (15)
C100.0716 (19)0.0569 (17)0.0606 (17)0.0060 (14)0.0289 (15)0.0068 (15)
C110.0417 (18)0.0452 (19)0.0365 (18)0.0119 (15)0.0041 (15)0.0157 (15)
C120.0418 (19)0.0454 (19)0.0367 (18)0.0119 (15)0.0038 (15)0.0154 (16)
C130.0418 (18)0.0453 (19)0.0367 (18)0.0119 (15)0.0038 (15)0.0155 (15)
C140.0416 (18)0.0452 (19)0.0365 (18)0.0119 (15)0.0039 (15)0.0156 (16)
C150.0414 (19)0.0451 (19)0.0363 (18)0.0122 (15)0.0042 (15)0.0159 (16)
N10.0721 (19)0.0584 (17)0.0617 (17)0.0053 (14)0.0287 (15)0.0047 (15)
N20.0722 (19)0.0580 (17)0.0614 (17)0.0053 (14)0.0289 (15)0.0054 (15)
C90.0714 (19)0.0570 (17)0.0605 (17)0.0059 (14)0.0288 (15)0.0065 (15)
N40.0715 (18)0.0569 (17)0.0605 (17)0.0058 (14)0.0288 (15)0.0066 (14)
N50.0418 (18)0.0454 (19)0.0366 (18)0.0117 (15)0.0038 (15)0.0156 (16)
N60.0414 (18)0.0451 (19)0.0364 (18)0.0120 (15)0.0042 (15)0.0157 (15)
Geometric parameters (Å, º) top
Mo1—O11.676 (5)Mo11—O291.910 (5)
Mo1—O41.881 (5)Mo11—O361.942 (5)
Mo1—O61.884 (5)Mo11—O351.959 (5)
Mo1—O71.957 (5)Mo11—O282.409 (5)
Mo1—O81.965 (5)Mo12—O401.670 (5)
Mo1—O272.427 (5)Mo12—O331.877 (5)
Mo2—O21.688 (5)Mo12—O321.908 (5)
Mo2—O51.880 (5)Mo12—O361.917 (5)
Mo2—O101.883 (5)Mo12—O371.969 (5)
Mo2—O41.947 (5)Mo12—O282.455 (5)
Mo2—O91.957 (5)P1—O271.526 (5)
Mo2—O252.441 (5)P1—O281.534 (5)
Mo3—O31.676 (5)P1—O261.531 (5)
Mo3—O111.895 (5)P1—O251.544 (5)
Mo3—O121.913 (5)C1—N11.276 (13)
Mo3—O51.923 (5)C1—N21.317 (13)
Mo3—O61.936 (5)C1—H10.9300
Mo3—O262.426 (5)C2—C31.320 (14)
Mo4—O131.688 (5)C2—N11.354 (13)
Mo4—O241.898 (5)C2—H20.9300
Mo4—O191.915 (5)C3—N21.346 (13)
Mo4—O291.920 (5)C3—H30.9300
Mo4—O91.922 (5)C4—C51.400 (14)
Mo4—O252.426 (5)C4—N21.447 (13)
Mo5—O141.684 (5)C4—H4A0.9700
Mo5—O301.863 (5)C4—H4B0.9700
Mo5—O201.888 (5)C5—C61.609 (14)
Mo5—O191.938 (5)C5—H5A0.9700
Mo5—O101.966 (5)C5—H5B0.9700
Mo5—O252.423 (5)C6—C71.493 (14)
Mo6—O151.673 (5)C6—H6A0.9700
Mo6—O311.857 (5)C6—H6B0.9700
Mo6—O211.910 (5)C7—N41.448 (13)
Mo6—O201.938 (5)C7—H7A0.9700
Mo6—O111.955 (5)C7—H7B0.9700
Mo6—O262.434 (4)C8—N31.272 (13)
Mo7—O161.673 (5)C8—N41.304 (13)
Mo7—O321.890 (5)C8—H80.9300
Mo7—O221.922 (5)N3—C91.343 (13)
Mo7—O211.923 (5)N3—H90.8600
Mo7—O121.935 (5)C10—C91.346 (14)
Mo7—O262.440 (5)C10—N41.369 (13)
Mo8—O171.671 (5)C10—H100.9300
Mo8—O71.905 (5)C11—N61.320 (10)
Mo8—O221.908 (5)C11—N51.332 (10)
Mo8—O231.926 (5)C11—H110.9300
Mo8—O331.930 (5)C12—N51.322 (11)
Mo8—O272.452 (5)C12—C131.352 (11)
Mo9—O181.671 (5)C12—H120.9300
Mo9—O81.884 (5)C13—N61.371 (11)
Mo9—O231.910 (5)C13—H130.9300
Mo9—O241.933 (5)C14—N61.479 (10)
Mo9—O341.968 (5)C14—C151.518 (12)
Mo9—O272.449 (4)C14—H14A0.9700
Mo10—O381.674 (6)C14—H14B0.9700
Mo10—O371.878 (5)C15—C15i1.537 (17)
Mo10—O351.894 (5)C15—H15A0.9700
Mo10—O311.932 (5)C15—H15B0.9700
Mo10—O301.987 (5)N1—H1A0.8600
Mo10—O282.453 (5)C9—H3A0.9300
Mo11—O391.679 (5)N5—H50.8600
Mo11—O341.863 (5)
O1—Mo1—O4102.9 (3)O29—Mo11—O3588.2 (2)
O1—Mo1—O6103.1 (3)O36—Mo11—O3584.5 (2)
O4—Mo1—O688.2 (2)O39—Mo11—O28169.8 (2)
O1—Mo1—O799.8 (3)O34—Mo11—O2885.04 (19)
O4—Mo1—O7157.2 (2)O29—Mo11—O2884.46 (19)
O6—Mo1—O789.1 (2)O36—Mo11—O2872.91 (18)
O1—Mo1—O899.8 (3)O35—Mo11—O2873.16 (18)
O4—Mo1—O889.3 (2)O40—Mo12—O33103.4 (3)
O6—Mo1—O8156.9 (2)O40—Mo12—O32103.4 (3)
O7—Mo1—O884.4 (2)O33—Mo12—O3286.6 (2)
O1—Mo1—O27169.9 (2)O40—Mo12—O36100.7 (3)
O4—Mo1—O2784.27 (19)O33—Mo12—O3691.5 (2)
O6—Mo1—O2784.09 (19)O32—Mo12—O36155.6 (2)
O7—Mo1—O2772.92 (18)O40—Mo12—O37100.4 (3)
O8—Mo1—O2772.85 (18)O33—Mo12—O37156.2 (2)
O2—Mo2—O5103.5 (3)O32—Mo12—O3787.3 (2)
O2—Mo2—O10102.3 (3)O36—Mo12—O3784.7 (2)
O5—Mo2—O1091.5 (2)O40—Mo12—O28170.1 (2)
O2—Mo2—O4102.0 (3)O33—Mo12—O2883.92 (19)
O5—Mo2—O484.9 (2)O32—Mo12—O2883.44 (19)
O10—Mo2—O4155.6 (2)O36—Mo12—O2872.19 (18)
O2—Mo2—O9100.7 (2)O37—Mo12—O2872.52 (19)
O5—Mo2—O9155.3 (2)O27—P1—O28109.3 (3)
O10—Mo2—O988.0 (2)O27—P1—O26109.4 (3)
O4—Mo2—O985.4 (2)O28—P1—O26109.8 (3)
O2—Mo2—O25171.7 (2)O27—P1—O25109.6 (3)
O5—Mo2—O2583.68 (19)O28—P1—O25109.6 (3)
O10—Mo2—O2572.95 (18)O26—P1—O25109.1 (3)
O4—Mo2—O2582.65 (18)Mo1—O4—Mo2150.0 (3)
O9—Mo2—O2572.55 (18)Mo2—O5—Mo3153.9 (3)
O3—Mo3—O11102.1 (3)Mo1—O6—Mo3149.8 (3)
O3—Mo3—O12101.1 (3)Mo8—O7—Mo1124.8 (3)
O11—Mo3—O1289.2 (2)Mo9—O8—Mo1124.8 (3)
O3—Mo3—O5102.4 (3)Mo4—O9—Mo2124.1 (3)
O11—Mo3—O589.1 (2)Mo2—O10—Mo5125.5 (3)
O12—Mo3—O5156.2 (2)Mo3—O11—Mo6124.9 (2)
O3—Mo3—O6101.4 (3)Mo3—O12—Mo7125.0 (3)
O11—Mo3—O6156.4 (2)Mo4—O19—Mo5124.6 (3)
O12—Mo3—O687.4 (2)Mo5—O20—Mo6148.0 (3)
O5—Mo3—O684.8 (2)Mo6—O21—Mo7125.4 (3)
O3—Mo3—O26172.5 (2)Mo8—O22—Mo7151.7 (3)
O11—Mo3—O2673.43 (18)Mo9—O23—Mo8125.1 (2)
O12—Mo3—O2673.14 (19)Mo4—O24—Mo9154.9 (3)
O5—Mo3—O2683.69 (19)P1—O25—Mo5125.3 (3)
O6—Mo3—O2683.29 (19)P1—O25—Mo4125.4 (3)
O13—Mo4—O24102.0 (2)Mo5—O25—Mo489.42 (16)
O13—Mo4—O19101.4 (2)P1—O25—Mo2126.2 (3)
O24—Mo4—O19156.6 (2)Mo5—O25—Mo289.45 (15)
O13—Mo4—O29102.6 (3)Mo4—O25—Mo289.54 (16)
O24—Mo4—O2985.0 (2)P1—O26—Mo3126.5 (3)
O19—Mo4—O2988.7 (2)P1—O26—Mo6125.5 (3)
O13—Mo4—O9100.1 (3)Mo3—O26—Mo689.20 (15)
O24—Mo4—O989.1 (2)P1—O26—Mo7125.9 (3)
O19—Mo4—O988.1 (2)Mo3—O26—Mo789.11 (16)
O29—Mo4—O9157.3 (2)Mo6—O26—Mo788.68 (15)
O13—Mo4—O25171.4 (2)P1—O27—Mo1125.4 (3)
O24—Mo4—O2583.84 (19)P1—O27—Mo9127.0 (3)
O19—Mo4—O2573.11 (18)Mo1—O27—Mo988.76 (15)
O29—Mo4—O2584.14 (19)P1—O27—Mo8126.3 (3)
O9—Mo4—O2573.43 (19)Mo1—O27—Mo889.09 (15)
O14—Mo5—O30102.5 (3)Mo9—O27—Mo888.01 (15)
O14—Mo5—O20102.4 (2)P1—O28—Mo11125.9 (3)
O30—Mo5—O2088.2 (2)P1—O28—Mo10126.8 (3)
O14—Mo5—O19100.4 (2)Mo11—O28—Mo1089.07 (16)
O30—Mo5—O1990.4 (2)P1—O28—Mo12125.2 (3)
O20—Mo5—O19156.9 (2)Mo11—O28—Mo1289.58 (15)
O14—Mo5—O10100.6 (3)Mo10—O28—Mo1288.20 (15)
O30—Mo5—O10156.9 (2)Mo11—O29—Mo4148.8 (3)
O20—Mo5—O1087.7 (2)Mo5—O30—Mo10151.5 (3)
O19—Mo5—O1084.6 (2)Mo6—O31—Mo10156.0 (3)
O14—Mo5—O25170.2 (2)Mo7—O32—Mo12151.0 (3)
O30—Mo5—O2584.88 (19)Mo12—O33—Mo8151.9 (3)
O20—Mo5—O2584.07 (19)Mo11—O34—Mo9151.1 (3)
O19—Mo5—O2572.83 (18)Mo10—O35—Mo11124.5 (3)
O10—Mo5—O2572.09 (18)Mo12—O36—Mo11125.3 (2)
O15—Mo6—O31104.9 (3)Mo10—O37—Mo12125.2 (3)
O15—Mo6—O21101.3 (2)N1—C1—N2105.5 (10)
O31—Mo6—O2191.8 (2)N1—C1—H1127.2
O15—Mo6—O20101.5 (2)N2—C1—H1127.2
O31—Mo6—O2085.8 (2)C3—C2—N1104.9 (11)
O21—Mo6—O20156.9 (2)C3—C2—H2127.5
O15—Mo6—O1199.2 (3)N1—C2—H2127.5
O31—Mo6—O11155.7 (2)C2—C3—N2107.0 (11)
O21—Mo6—O1186.2 (2)C2—C3—H3126.5
O20—Mo6—O1186.6 (2)N2—C3—H3126.5
O15—Mo6—O26169.8 (2)C5—C4—N2113.3 (10)
O31—Mo6—O2683.96 (19)C5—C4—H4A108.9
O21—Mo6—O2673.11 (18)N2—C4—H4A108.9
O20—Mo6—O2683.81 (18)C5—C4—H4B108.9
O11—Mo6—O2672.31 (18)N2—C4—H4B108.9
O16—Mo7—O32103.4 (3)H4A—C4—H4B107.7
O16—Mo7—O22101.5 (2)C4—C5—C6113.9 (10)
O32—Mo7—O2285.8 (2)C4—C5—H5A108.8
O16—Mo7—O21102.0 (2)C6—C5—H5A108.8
O32—Mo7—O2190.1 (2)C4—C5—H5B108.8
O22—Mo7—O21156.5 (2)C6—C5—H5B108.8
O16—Mo7—O12100.5 (3)H5A—C5—H5B107.7
O32—Mo7—O12156.1 (2)C7—C6—C5110.6 (9)
O22—Mo7—O1287.8 (2)C7—C6—H6A109.5
O21—Mo7—O1286.7 (2)C5—C6—H6A109.5
O16—Mo7—O26171.2 (2)C7—C6—H6B109.5
O32—Mo7—O2683.93 (19)C5—C6—H6B109.5
O22—Mo7—O2683.80 (18)H6A—C6—H6B108.1
O21—Mo7—O2672.76 (18)N4—C7—C6111.8 (10)
O12—Mo7—O2672.47 (19)N4—C7—H7A109.2
O17—Mo8—O7100.9 (3)C6—C7—H7A109.2
O17—Mo8—O22102.3 (2)N4—C7—H7B109.2
O7—Mo8—O2290.8 (2)C6—C7—H7B109.2
O17—Mo8—O23101.2 (2)H7A—C7—H7B107.9
O7—Mo8—O2387.1 (2)N3—C8—N4109.9 (11)
O22—Mo8—O23156.4 (2)N3—C8—H8125.0
O17—Mo8—O33102.8 (3)N4—C8—H8125.0
O7—Mo8—O33156.3 (2)C8—N3—C9110.8 (10)
O22—Mo8—O3384.5 (2)C8—N3—H9124.6
O23—Mo8—O3388.1 (2)C9—N3—H9124.6
O17—Mo8—O27171.7 (2)C9—C10—N4107.7 (11)
O7—Mo8—O2773.15 (18)C9—C10—H10126.2
O22—Mo8—O2783.78 (18)N4—C10—H10126.2
O23—Mo8—O2773.15 (17)N6—C11—N5108.1 (8)
O33—Mo8—O2783.28 (19)N6—C11—H11126.0
O18—Mo9—O8102.6 (3)N5—C11—H11126.0
O18—Mo9—O23103.2 (2)N5—C12—C13107.6 (8)
O8—Mo9—O2388.7 (2)N5—C12—H12126.2
O18—Mo9—O24101.4 (2)C13—C12—H12126.2
O8—Mo9—O2490.3 (2)C12—C13—N6106.7 (8)
O23—Mo9—O24154.9 (2)C12—C13—H13126.7
O18—Mo9—O34100.9 (2)N6—C13—H13126.7
O8—Mo9—O34156.4 (2)N6—C14—C15112.5 (7)
O23—Mo9—O3488.5 (2)N6—C14—H14A109.1
O24—Mo9—O3482.5 (2)C15—C14—H14A109.1
O18—Mo9—O27174.8 (2)N6—C14—H14B109.1
O8—Mo9—O2773.58 (18)C15—C14—H14B109.1
O23—Mo9—O2773.47 (18)H14A—C14—H14B107.8
O24—Mo9—O2782.24 (18)C14—C15—C15i113.7 (9)
O34—Mo9—O2783.11 (18)C14—C15—H15A108.8
O38—Mo10—O37103.0 (3)C15i—C15—H15A108.8
O38—Mo10—O35102.2 (3)C14—C15—H15B108.8
O37—Mo10—O3589.6 (2)C15i—C15—H15B108.8
O38—Mo10—O31102.4 (3)H15A—C15—H15B107.7
O37—Mo10—O3190.6 (2)C1—N1—C2112.4 (10)
O35—Mo10—O31154.6 (2)C1—N1—H1A123.8
O38—Mo10—O30101.0 (3)C2—N1—H1A123.8
O37—Mo10—O30155.8 (2)C1—N2—C3110.1 (10)
O35—Mo10—O3087.8 (2)C1—N2—C4123.3 (10)
O31—Mo10—O3081.7 (2)C3—N2—C4124.6 (10)
O38—Mo10—O28174.3 (2)N3—C9—C10105.0 (10)
O37—Mo10—O2873.97 (19)N3—C9—H3A127.5
O35—Mo10—O2873.11 (19)C10—C9—H3A127.5
O31—Mo10—O2882.56 (19)C8—N4—C10106.7 (10)
O30—Mo10—O2882.27 (19)C8—N4—C7125.4 (10)
O39—Mo11—O34103.1 (2)C10—N4—C7127.7 (10)
O39—Mo11—O29101.7 (2)C12—N5—C11109.6 (7)
O34—Mo11—O2987.9 (2)C12—N5—H5125.2
O39—Mo11—O36100.6 (2)C11—N5—H5125.2
O34—Mo11—O3691.0 (2)C11—N6—C13108.0 (7)
O29—Mo11—O36157.3 (2)C11—N6—C14126.2 (8)
O39—Mo11—O3598.7 (2)C13—N6—C14125.8 (7)
O34—Mo11—O35158.1 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H9···O90.862.152.952 (10)156
N1—H1A···O36ii0.861.982.809 (10)161
N5—H5···O2iii0.862.563.079 (9)120
N5—H5···O130.862.583.075 (9)118
N5—H5···O12iv0.862.603.147 (9)122
Symmetry codes: (ii) x, y1, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z.
(II) 1,1'-(butane-1,4-diyl)bis(1H-imidazol-3-ium) 1-[4-(1H-imidazol-1-yl)butyl]-1H-imidazol-3-ium tetracosa-µ2-oxido-dodecaoxido-µ12-phosphato-dodecamolybdenum(VI) dihydrate top
Crystal data top
(C10H16N4)(C10H15N4)[PMo12O40]·2H2OZ = 1
Mr = 2240.80F(000) = 1065
Triclinic, P1Dx = 2.818 Mg m3
a = 11.2350 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.7211 (13) ÅCell parameters from 4586 reflections
c = 11.8459 (13) Åθ = 1.8–25.0°
α = 102.194 (1)°µ = 2.89 mm1
β = 98.184 (1)°T = 293 K
γ = 115.998 (2)°Block, black
V = 1320.5 (2) Å30.22 × 0.22 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4586 independent reflections
Radiation source: fine-focus sealed tube3425 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 913
Tmin = 0.569, Tmax = 0.596k = 139
6912 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.035P)2 + 18.6135P]
where P = (Fo2 + 2Fc2)/3
4586 reflections(Δ/σ)max < 0.001
394 parametersΔρmax = 1.63 e Å3
1285 restraintsΔρmin = 1.42 e Å3
Crystal data top
(C10H16N4)(C10H15N4)[PMo12O40]·2H2Oγ = 115.998 (2)°
Mr = 2240.80V = 1320.5 (2) Å3
Triclinic, P1Z = 1
a = 11.2350 (12) ÅMo Kα radiation
b = 11.7211 (13) ŵ = 2.89 mm1
c = 11.8459 (13) ÅT = 293 K
α = 102.194 (1)°0.22 × 0.22 × 0.20 mm
β = 98.184 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4586 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3425 reflections with I > 2σ(I)
Tmin = 0.569, Tmax = 0.596Rint = 0.018
6912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501285 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.035P)2 + 18.6135P]
where P = (Fo2 + 2Fc2)/3
4586 reflectionsΔρmax = 1.63 e Å3
394 parametersΔρmin = 1.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.46552 (9)0.07220 (10)0.22452 (8)0.0388 (2)
Mo20.71523 (9)0.32873 (8)0.48705 (8)0.0356 (2)
Mo30.40031 (9)0.14709 (9)0.73899 (7)0.0333 (2)
Mo40.14615 (8)0.11069 (8)0.48237 (7)0.0306 (2)
Mo50.35826 (9)0.21212 (9)0.45929 (8)0.0368 (2)
Mo60.24643 (8)0.25290 (8)0.23868 (7)0.0318 (2)
P10.50000.00000.50000.0218 (6)
O10.4647 (13)0.0627 (13)0.3634 (12)0.0342 (19)0.50
O20.5070 (14)0.1126 (13)0.4417 (12)0.0374 (17)0.50
O30.3932 (13)0.0373 (13)0.5303 (12)0.0355 (18)0.50
O40.3576 (13)0.1168 (13)0.4540 (11)0.033 (2)0.50
O50.5665 (8)0.0198 (8)0.2060 (7)0.0555 (16)
O60.4464 (8)0.1011 (7)0.0939 (6)0.0484 (18)
O70.6272 (8)0.2259 (8)0.3169 (7)0.0597 (16)
O80.3626 (8)0.1427 (8)0.2992 (7)0.0592 (16)
O90.8292 (8)0.2463 (8)0.4710 (7)0.0505 (16)
O100.8160 (8)0.4785 (7)0.4787 (7)0.0531 (18)
O110.7576 (8)0.3532 (8)0.6503 (7)0.0502 (15)
O120.5499 (8)0.3320 (8)0.4903 (7)0.0612 (16)
O130.5931 (8)0.2613 (8)0.7842 (8)0.0566 (17)
O140.3834 (8)0.2366 (7)0.6249 (7)0.0534 (16)
O150.3521 (8)0.2140 (8)0.8482 (7)0.056 (2)
O160.2255 (8)0.0002 (7)0.6413 (7)0.0562 (17)
O170.0207 (7)0.1652 (9)0.4700 (7)0.056 (2)
O180.1963 (8)0.0447 (7)0.4316 (7)0.0531 (15)
O190.1346 (8)0.2004 (7)0.3191 (6)0.0436 (14)
O200.2916 (8)0.3094 (7)0.4391 (7)0.0528 (18)
O210.1251 (7)0.3728 (7)0.1181 (6)0.051 (2)
O220.3046 (8)0.1015 (8)0.1882 (7)0.0540 (16)
O230.9842 (10)0.9348 (11)0.1883 (9)0.090 (3)
H23A0.90020.89840.18900.108*
H23B1.03390.96150.25950.108*
C10.7503 (11)0.5833 (12)0.2638 (11)0.052 (2)
H10.75730.64720.33000.063*
C20.8040 (12)0.4744 (12)0.1247 (10)0.051 (2)
H20.85490.45090.07850.062*
C30.6686 (12)0.4038 (12)0.1119 (11)0.055 (2)
H30.60780.32250.05400.066*
C40.4988 (12)0.4339 (13)0.2214 (11)0.055 (2)
H4A0.50790.49680.29440.066*
H4B0.46260.34650.23260.066*
C50.3995 (12)0.4301 (13)0.1194 (11)0.056 (2)
H5A0.38820.36490.04720.068*
H5B0.43800.51660.10620.068*
C60.2565 (13)0.3947 (13)0.1414 (12)0.065 (3)
H6A0.26840.44910.22060.077*
H6B0.20560.41530.08310.077*
C70.1789 (12)0.2564 (13)0.1323 (12)0.063 (2)
H7A0.22560.23610.19410.076*
H7B0.17020.20090.05480.076*
C80.0801 (13)0.1642 (14)0.0572 (12)0.066 (3)
H80.08760.13640.02420.079*
N40.1276 (10)0.2105 (11)0.2266 (10)0.063 (2)
H40.17290.21670.27820.075*0.75
C100.0063 (14)0.2593 (14)0.2506 (13)0.068 (3)
H100.06800.30690.32610.082*
N10.6357 (9)0.4733 (9)0.1997 (8)0.0440 (17)
N20.8530 (10)0.5886 (10)0.2195 (9)0.054 (2)
H2A0.93650.65240.24530.065*0.75
N30.0391 (10)0.2287 (11)0.1470 (10)0.062 (2)
C90.1832 (13)0.1480 (14)0.1057 (12)0.063 (3)
H90.27610.10260.06530.076*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0353 (5)0.0578 (6)0.0267 (4)0.0231 (4)0.0091 (4)0.0175 (4)
Mo20.0345 (5)0.0276 (4)0.0343 (5)0.0078 (4)0.0109 (4)0.0050 (4)
Mo30.0370 (5)0.0371 (5)0.0310 (5)0.0226 (4)0.0156 (4)0.0053 (4)
Mo40.0221 (4)0.0343 (5)0.0322 (4)0.0139 (4)0.0063 (3)0.0038 (4)
Mo50.0384 (5)0.0412 (5)0.0383 (5)0.0288 (4)0.0075 (4)0.0064 (4)
Mo60.0246 (4)0.0309 (5)0.0288 (4)0.0100 (4)0.0011 (3)0.0001 (3)
P10.0234 (13)0.0274 (13)0.0218 (13)0.0172 (11)0.0100 (11)0.0079 (11)
O10.031 (3)0.041 (3)0.036 (3)0.023 (3)0.011 (3)0.010 (3)
O20.037 (2)0.042 (2)0.037 (3)0.024 (2)0.011 (2)0.010 (2)
O30.035 (3)0.039 (3)0.035 (3)0.021 (2)0.012 (2)0.008 (3)
O40.033 (3)0.035 (3)0.032 (3)0.019 (3)0.009 (3)0.007 (3)
O50.041 (3)0.053 (3)0.065 (3)0.016 (2)0.008 (3)0.024 (3)
O60.048 (4)0.052 (4)0.038 (4)0.018 (3)0.010 (3)0.018 (3)
O70.043 (2)0.065 (2)0.049 (2)0.017 (2)0.012 (2)0.004 (2)
O80.043 (2)0.062 (2)0.049 (2)0.015 (2)0.011 (2)0.004 (2)
O90.061 (3)0.052 (3)0.043 (3)0.034 (2)0.012 (3)0.009 (3)
O100.057 (4)0.039 (4)0.062 (4)0.018 (3)0.025 (3)0.017 (3)
O110.061 (3)0.052 (3)0.041 (3)0.033 (2)0.015 (2)0.009 (2)
O120.044 (2)0.066 (2)0.048 (2)0.016 (2)0.013 (2)0.007 (2)
O130.042 (3)0.054 (3)0.068 (3)0.018 (2)0.009 (3)0.023 (3)
O140.053 (3)0.043 (2)0.043 (2)0.010 (2)0.001 (2)0.011 (2)
O150.054 (4)0.047 (4)0.049 (4)0.015 (3)0.026 (4)0.007 (3)
O160.058 (3)0.042 (3)0.043 (3)0.007 (2)0.001 (2)0.010 (2)
O170.028 (4)0.083 (5)0.050 (4)0.022 (4)0.011 (3)0.018 (4)
O180.055 (2)0.043 (2)0.042 (2)0.012 (2)0.003 (2)0.010 (2)
O190.050 (3)0.044 (3)0.038 (2)0.027 (2)0.013 (2)0.006 (2)
O200.054 (4)0.045 (4)0.060 (4)0.032 (3)0.002 (3)0.011 (3)
O210.038 (4)0.051 (4)0.040 (4)0.018 (3)0.008 (3)0.012 (3)
O220.042 (3)0.052 (3)0.062 (3)0.018 (2)0.009 (2)0.020 (2)
O230.066 (6)0.113 (7)0.076 (6)0.041 (5)0.004 (5)0.016 (5)
C10.041 (4)0.051 (4)0.055 (4)0.020 (3)0.014 (3)0.002 (3)
C20.043 (4)0.053 (4)0.050 (4)0.020 (3)0.017 (3)0.003 (4)
C30.044 (3)0.053 (4)0.053 (4)0.015 (3)0.015 (3)0.002 (3)
C40.042 (3)0.057 (3)0.053 (3)0.017 (3)0.017 (3)0.006 (3)
C50.041 (3)0.062 (4)0.057 (4)0.018 (3)0.017 (3)0.010 (3)
C60.046 (4)0.069 (4)0.064 (4)0.019 (4)0.017 (4)0.011 (4)
C70.044 (3)0.070 (4)0.063 (4)0.021 (3)0.010 (3)0.013 (3)
C80.044 (4)0.080 (4)0.059 (4)0.019 (4)0.013 (4)0.016 (4)
N40.044 (4)0.075 (4)0.059 (4)0.022 (4)0.013 (3)0.016 (4)
C100.048 (4)0.076 (4)0.061 (4)0.018 (4)0.009 (4)0.015 (4)
N10.038 (3)0.045 (3)0.048 (3)0.020 (3)0.016 (3)0.010 (3)
N20.041 (3)0.058 (4)0.054 (4)0.023 (3)0.011 (3)0.002 (3)
N30.041 (3)0.073 (4)0.059 (4)0.018 (3)0.012 (3)0.019 (3)
C90.040 (4)0.078 (5)0.057 (4)0.017 (4)0.011 (4)0.022 (4)
Geometric parameters (Å, º) top
Mo1—O61.657 (7)P1—O21.592 (14)
Mo1—O71.864 (8)O1—O41.728 (18)
Mo1—O51.882 (8)O1—O3i1.754 (18)
Mo1—O81.903 (8)O1—Mo3i2.467 (12)
Mo1—O221.944 (8)O2—O4i1.794 (18)
Mo1—O22.452 (13)O2—O31.816 (19)
Mo1—O12.510 (13)O3—O41.677 (18)
Mo2—O101.654 (7)O3—O1i1.754 (18)
Mo2—O111.853 (7)O4—O2i1.794 (18)
Mo2—O121.880 (8)O5—Mo3i1.902 (8)
Mo2—O91.920 (8)O9—Mo4i1.903 (8)
Mo2—O71.963 (8)O11—Mo6i1.933 (8)
Mo2—O22.460 (14)O13—Mo6i1.902 (8)
Mo3—O151.651 (7)O23—H23A0.8500
Mo3—O131.896 (8)O23—H23B0.8500
Mo3—O5i1.902 (8)C1—N21.318 (14)
Mo3—O141.914 (8)C1—N11.323 (14)
Mo3—O161.927 (8)C1—H10.9300
Mo3—O1i2.467 (12)C2—C31.341 (16)
Mo3—O32.507 (13)C2—N21.378 (14)
Mo4—O171.666 (7)C2—H20.9300
Mo4—O161.870 (7)C3—N11.378 (14)
Mo4—O9i1.903 (8)C3—H30.9300
Mo4—O181.912 (8)C4—N11.478 (14)
Mo4—O191.953 (7)C4—C51.502 (17)
Mo4—O32.439 (13)C4—H4A0.9700
Mo4—O42.475 (13)C4—H4B0.9700
Mo5—O201.653 (7)C5—C61.549 (16)
Mo5—O141.883 (8)C5—H5A0.9700
Mo5—O121.910 (8)C5—H5B0.9700
Mo5—O81.916 (8)C6—C71.436 (18)
Mo5—O181.923 (8)C6—H6A0.9700
Mo5—O22.429 (13)C6—H6B0.9700
Mo6—O211.671 (6)C7—N31.503 (15)
Mo6—O221.865 (8)C7—H7A0.9700
Mo6—O13i1.902 (8)C7—H7B0.9700
Mo6—O191.906 (7)C8—C91.323 (17)
Mo6—O11i1.933 (8)C8—N31.365 (15)
Mo6—O12.439 (13)C8—H80.9300
Mo6—O42.498 (12)N4—C101.313 (16)
P1—O41.499 (13)N4—C91.370 (16)
P1—O4i1.499 (13)N4—H40.8600
P1—O3i1.508 (13)C10—N31.353 (16)
P1—O31.508 (13)C10—H100.9300
P1—O11.541 (13)N2—H2A0.8600
P1—O1i1.541 (13)C9—H90.9300
P1—O2i1.592 (14)
O6—Mo1—O7101.8 (4)O4—P1—O2109.1 (7)
O6—Mo1—O5101.7 (4)O4i—P1—O270.9 (7)
O7—Mo1—O589.2 (4)O3i—P1—O2108.4 (7)
O6—Mo1—O8101.2 (4)O3—P1—O271.6 (7)
O7—Mo1—O889.4 (3)O1—P1—O273.6 (7)
O5—Mo1—O8156.9 (4)O1i—P1—O2106.4 (7)
O6—Mo1—O22100.8 (3)O2i—P1—O2180.000 (3)
O7—Mo1—O22157.4 (4)P1—O1—O454.2 (6)
O5—Mo1—O2286.6 (3)P1—O1—O3i54.0 (6)
O8—Mo1—O2285.9 (3)O4—O1—O3i91.6 (9)
O6—Mo1—O2159.0 (4)P1—O1—Mo6125.6 (7)
O7—Mo1—O264.8 (4)O4—O1—Mo671.3 (6)
O5—Mo1—O294.4 (4)O3i—O1—Mo6136.4 (8)
O8—Mo1—O264.2 (4)P1—O1—Mo3i124.6 (7)
O22—Mo1—O293.4 (4)O4—O1—Mo3i134.3 (8)
O6—Mo1—O1156.5 (4)O3i—O1—Mo3i70.6 (6)
O7—Mo1—O195.9 (4)Mo6—O1—Mo3i92.7 (4)
O5—Mo1—O162.9 (4)P1—O1—Mo1120.6 (7)
O8—Mo1—O194.3 (4)O4—O1—Mo1130.3 (8)
O22—Mo1—O162.5 (4)O3i—O1—Mo1126.8 (8)
O2—Mo1—O144.4 (4)Mo6—O1—Mo192.5 (4)
O10—Mo2—O11102.7 (4)Mo3i—O1—Mo191.7 (4)
O10—Mo2—O12102.6 (4)P1—O2—O4i52.1 (6)
O11—Mo2—O1291.3 (3)P1—O2—O352.0 (6)
O10—Mo2—O9101.5 (4)O4i—O2—O387.5 (8)
O11—Mo2—O988.9 (3)P1—O2—Mo5123.5 (7)
O12—Mo2—O9155.3 (4)O4i—O2—Mo5134.0 (8)
O10—Mo2—O7101.4 (4)O3—O2—Mo571.5 (6)
O11—Mo2—O7155.7 (4)P1—O2—Mo1121.4 (7)
O12—Mo2—O786.1 (3)O4i—O2—Mo1129.4 (8)
O9—Mo2—O783.6 (3)O3—O2—Mo1130.7 (8)
O10—Mo2—O2158.5 (4)Mo5—O2—Mo193.5 (5)
O11—Mo2—O293.9 (4)P1—O2—Mo2123.5 (7)
O12—Mo2—O263.0 (4)O4i—O2—Mo271.3 (6)
O9—Mo2—O292.3 (4)O3—O2—Mo2133.1 (8)
O7—Mo2—O263.5 (4)Mo5—O2—Mo293.6 (5)
O15—Mo3—O13102.3 (4)Mo1—O2—Mo293.3 (5)
O15—Mo3—O5i103.4 (4)P1—O3—O455.9 (6)
O13—Mo3—O5i88.2 (3)P1—O3—O1i55.8 (6)
O15—Mo3—O14101.7 (4)O4—O3—O1i93.6 (9)
O13—Mo3—O1488.8 (3)P1—O3—O256.3 (6)
O5i—Mo3—O14154.8 (4)O4—O3—O292.3 (8)
O15—Mo3—O16100.6 (4)O1i—O3—O289.3 (8)
O13—Mo3—O16157.1 (4)P1—O3—Mo4127.1 (7)
O5i—Mo3—O1686.9 (3)O4—O3—Mo471.2 (6)
O14—Mo3—O1686.3 (3)O1i—O3—Mo4133.8 (8)
O15—Mo3—O1i159.9 (4)O2—O3—Mo4133.1 (8)
O13—Mo3—O1i63.7 (4)P1—O3—Mo3123.9 (7)
O5i—Mo3—O1i63.7 (4)O4—O3—Mo3134.8 (8)
O14—Mo3—O1i92.7 (4)O1i—O3—Mo368.1 (6)
O16—Mo3—O1i94.2 (4)O2—O3—Mo3126.7 (8)
O15—Mo3—O3158.8 (4)Mo4—O3—Mo391.7 (4)
O13—Mo3—O394.1 (4)P1—O4—O356.4 (6)
O5i—Mo3—O390.3 (4)P1—O4—O156.5 (6)
O14—Mo3—O364.9 (4)O3—O4—O194.2 (9)
O16—Mo3—O363.6 (4)P1—O4—O2i57.0 (6)
O1i—Mo3—O341.3 (4)O3—O4—O2i92.8 (9)
O17—Mo4—O16102.0 (4)O1—O4—O2i90.9 (8)
O17—Mo4—O9i101.5 (4)P1—O4—Mo4125.3 (7)
O16—Mo4—O9i89.5 (3)O3—O4—Mo468.9 (6)
O17—Mo4—O18101.8 (4)O1—O4—Mo4134.5 (8)
O16—Mo4—O1889.0 (3)O2i—O4—Mo4130.3 (8)
O9i—Mo4—O18156.4 (4)P1—O4—Mo6124.2 (7)
O17—Mo4—O1999.1 (3)O3—O4—Mo6132.6 (8)
O16—Mo4—O19158.9 (3)O1—O4—Mo667.7 (6)
O9i—Mo4—O1987.5 (3)O2i—O4—Mo6129.1 (7)
O18—Mo4—O1985.5 (3)Mo4—O4—Mo692.6 (4)
O17—Mo4—O3161.4 (4)Mo1—O5—Mo3i141.3 (5)
O16—Mo4—O365.7 (4)Mo1—O7—Mo2137.8 (5)
O9i—Mo4—O392.5 (4)Mo1—O8—Mo5137.1 (5)
O18—Mo4—O365.5 (4)Mo4i—O9—Mo2138.8 (4)
O19—Mo4—O393.5 (4)Mo2—O11—Mo6i140.4 (4)
O17—Mo4—O4158.6 (4)Mo2—O12—Mo5140.0 (5)
O16—Mo4—O495.0 (4)Mo3—O13—Mo6i138.4 (5)
O9i—Mo4—O465.3 (4)Mo5—O14—Mo3139.9 (5)
O18—Mo4—O491.4 (4)Mo4—O16—Mo3138.5 (5)
O19—Mo4—O464.9 (4)Mo4—O18—Mo5137.7 (4)
O3—Mo4—O439.9 (4)Mo6—O19—Mo4137.3 (4)
O20—Mo5—O14101.8 (4)Mo6—O22—Mo1139.5 (4)
O20—Mo5—O12101.3 (4)H23A—O23—H23B108.7
O14—Mo5—O1288.9 (3)N2—C1—N1109.6 (10)
O20—Mo5—O8100.7 (4)N2—C1—H1125.2
O14—Mo5—O8157.4 (4)N1—C1—H1125.2
O12—Mo5—O886.8 (3)C3—C2—N2106.6 (10)
O20—Mo5—O18101.8 (4)C3—C2—H2126.7
O14—Mo5—O1888.3 (3)N2—C2—H2126.7
O12—Mo5—O18156.8 (4)C2—C3—N1107.8 (10)
O8—Mo5—O1887.0 (3)C2—C3—H3126.1
O20—Mo5—O2158.1 (4)N1—C3—H3126.1
O14—Mo5—O293.8 (4)N1—C4—C5112.0 (10)
O12—Mo5—O263.3 (4)N1—C4—H4A109.2
O8—Mo5—O264.6 (4)C5—C4—H4A109.2
O18—Mo5—O293.9 (4)N1—C4—H4B109.2
O21—Mo6—O22102.8 (4)C5—C4—H4B109.2
O21—Mo6—O13i102.3 (4)H4A—C4—H4B107.9
O22—Mo6—O13i89.0 (3)C4—C5—C6113.4 (10)
O21—Mo6—O1999.4 (3)C4—C5—H5A108.9
O22—Mo6—O1989.6 (3)C6—C5—H5A108.9
O13i—Mo6—O19158.0 (3)C4—C5—H5B108.9
O21—Mo6—O11i100.9 (4)C6—C5—H5B108.9
O22—Mo6—O11i156.2 (3)H5A—C5—H5B107.7
O13i—Mo6—O11i86.5 (3)C7—C6—C5112.0 (12)
O19—Mo6—O11i86.0 (3)C7—C6—H6A109.2
O21—Mo6—O1160.7 (4)C5—C6—H6A109.2
O22—Mo6—O164.9 (4)C7—C6—H6B109.2
O13i—Mo6—O164.2 (4)C5—C6—H6B109.2
O19—Mo6—O195.5 (4)H6A—C6—H6B107.9
O11i—Mo6—O192.2 (4)C6—C7—N3108.6 (11)
O21—Mo6—O4158.3 (4)C6—C7—H7A110.0
O22—Mo6—O492.4 (4)N3—C7—H7A110.0
O13i—Mo6—O493.2 (4)C6—C7—H7B110.0
O19—Mo6—O464.9 (4)N3—C7—H7B110.0
O11i—Mo6—O464.6 (4)H7A—C7—H7B108.4
O1—Mo6—O441.0 (4)C9—C8—N3108.5 (12)
O4—P1—O4i180.000 (2)C9—C8—H8125.8
O4—P1—O3i112.2 (7)N3—C8—H8125.8
O4i—P1—O3i67.8 (7)C10—N4—C9108.7 (11)
O4—P1—O367.8 (7)C10—N4—H4125.6
O4i—P1—O3112.2 (7)C9—N4—H4125.6
O3i—P1—O3180.0 (10)N4—C10—N3108.5 (12)
O4—P1—O169.3 (7)N4—C10—H10125.8
O4i—P1—O1110.7 (7)N3—C10—H10125.8
O3i—P1—O170.2 (7)C1—N1—C3107.5 (9)
O3—P1—O1109.8 (7)C1—N1—C4125.2 (9)
O4—P1—O1i110.7 (7)C3—N1—C4127.3 (9)
O4i—P1—O1i69.3 (7)C1—N2—C2108.4 (10)
O3i—P1—O1i109.8 (7)C1—N2—H2A125.8
O3—P1—O1i70.2 (7)C2—N2—H2A125.8
O1—P1—O1i180.000 (3)C10—N3—C8107.0 (11)
O4—P1—O2i70.9 (7)C10—N3—C7127.1 (11)
O4i—P1—O2i109.1 (7)C8—N3—C7125.9 (11)
O3i—P1—O2i71.6 (7)C8—C9—N4107.2 (11)
O3—P1—O2i108.4 (7)C8—C9—H9126.4
O1—P1—O2i106.4 (7)N4—C9—H9126.4
O1i—P1—O2i73.6 (7)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O9ii0.862.232.976 (13)145
N2—H2A···O19iii0.862.032.892 (12)175
O23—H23A···O15iv0.852.473.308 (13)170
O23—H23B···O18iii0.852.233.071 (12)170
Symmetry codes: (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula(C10H16N4)3[PMo12O40]2(C10H16N4)(C10H15N4)[PMo12O40]·2H2O
Mr4221.302240.80
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)298293
a, b, c (Å)11.838 (1), 12.1071 (11), 17.8029 (18)11.2350 (12), 11.7211 (13), 11.8459 (13)
α, β, γ (°)74.134 (2), 71.044 (1), 71.872 (1)102.194 (1), 98.184 (1), 115.998 (2)
V3)2250.9 (4)1320.5 (2)
Z11
Radiation typeMo KαMo Kα
µ (mm1)3.382.89
Crystal size (mm)0.20 × 0.10 × 0.100.22 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Multi-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.552, 0.7290.569, 0.596
No. of measured, independent and
observed [I > 2σ(I)] reflections
11740, 7806, 5770 6912, 4586, 3425
Rint0.0210.018
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.06 0.050, 0.123, 1.04
No. of reflections78064586
No. of parameters667394
No. of restraints3801285
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0358P)2 + 12.874P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.035P)2 + 18.6135P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.71, 1.381.63, 1.42

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N3—H9···O90.862.152.952 (10)155.6
N1—H1A···O36i0.861.982.809 (10)161.3
N5—H5···O2ii0.862.563.079 (9)120.1
N5—H5···O130.862.583.075 (9)117.8
N5—H5···O12iii0.862.603.147 (9)122.1
Symmetry codes: (i) x, y1, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O9i0.862.232.976 (13)144.8
N2—H2A···O19ii0.862.032.892 (12)175.3
O23—H23A···O15iii0.852.473.308 (13)169.7
O23—H23B···O18ii0.852.233.071 (12)169.6
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds