Download citation
Download citation
link to html
(2R,4S)-2-(3-Methyl­thio­phen-2-yl)-2,3,4,5-tetra­hydro-1,4-ep­oxy­naphtho­[1,2-b]azepine, C19H17NOS, (I), crystallizes with a single enanti­omer in each crystal, whereas its geometrical isomer (2RS,4SR)-2-(5-methyl­thio­phen-2-yl)-2,3,4,5-tetra­hy­dro-1,4-ep­oxy-naphtho­[1,2-b]azepine, (II), and (2RS,4SR)-2-(5-bromo­thio­phen-2-yl)-2,3,4,5-tetra­hydro-1,4-ep­oxy­naphtho­[1,2-b]azepine, C18H14BrNOS, (III), both crystallize as racemic mixtures. A combination of one C-H...O hydrogen bond and two C-H...[pi](arene) hydrogen bonds links the mol­ecules of (I) into a three-dimensional framework; the mol­ecules of (II) are linked into a C(4)C(4)[R22(7)] chain of rings by a combination of C-H...N and C-H...O hydrogen bonds; and in (III), where Z' = 2, a combination of four C-H...[pi](arene) hydrogen bonds and two C-H...[pi](thien­yl) hydrogen bonds links the mol­ecules into complex sheets. Comparisons are made with the assembly patterns in some aryl-substituted 1,4-ep­oxy­naphtho[1,2-b]azepines.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113004551/yf3025sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113004551/yf3025Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113004551/yf3025IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113004551/yf3025IIIsup4.hkl
Contains datablock III

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113004551/yf3025Isup5.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113004551/yf3025IIsup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113004551/yf3025IIIsup7.cml
Supplementary material

CCDC references: 934587; 934588; 934589

Comment top

We have recently described a simple and efficient synthetic route to novel 2-aryl-substituted tetrahydro-1,4-epoxynaphtho[1,2-b]azepines (Palma et al., 2006), and the potential utility of this type of compounds as promising anti-Chagasic and leishmanicidal agents has also been demonstrated (Palma et al., 2009). In order to identify new antiparasitic compounds in the tetrahydronaphtho[1,2-b]azepine series, we have now achieved the synthesis of three thienyl-substituted analogues, namely (2R,4S)-2-(3-methylthiophen-2-yl)-2,3,4,5-tetrahydro-1,4-epoxynaphtho[1,2-b]azepine, (I), (2RS,4SR)-2-(5-methylthiophen-2-yl)-2,3,4,5-tetrahydro-1,4-epoxy-naphtho[1,2-b]azepine, (II), and (2RS,4SR)-2-(5-bromothiophen-2-yl)-2,3,4,5-tetrahydro-1,4-epoxynaphtho[1,2-b]azepine, (III), whose molecular and supramolecular structures are reported here.

All three compounds (I)–(III) contain two stereogenic centres, at atoms C2 and C4 (Figs. 1–3). Compounds (II) and (III) both crystallize as racemic mixtures in the space groups P21/c and Pna21, with Z' = 1 and 2, respectively, but compound (I) crystallizes in the space group P212121, with just one enantiomer present in any individual crystal. In the crystal of (I) selected for data collection, the configuration is (2R,4S), and this configuration was selected for the reference molecules of compounds (II) and (III). The synthetic procedure provides no obvious scope for enantioselective discrimination and thus it seems likely that compound (I) is, in fact, formed in solution as a racemic mixture of (2R,4S) and (2S,4R) forms, but crystallizes as a conglomerate, rather that as a racemate, as found for compounds (II) and (III). The conditions under which racemic mixtures undergo spontaneous resolution via conglomerate crystallization have recently been much discussed (Lorenz et al., 2007; Gil-Hernández et al., 2010; Dupray, 2012; Gonnada et al., 2012; Pálovics et al., 2012).

For compounds (I)–(III), the conformations of the fused heterocyclic systems are similar, as shown (Table 1) by the ring-puckering parameters (Cremer & Pople, 1975) for the (2R,4S) forms. Similarly, the two independent molecules in compound (III) adopt very similar conformations. In every case, the five-membered ring is folded across the line Nx1···Cx4, while the six-membered rings all adopt conformations intermediate between the half-chair and envelope forms, for which the idealized values of the ring-puckering angles are θ = 129.2° and ϕ = (60k + 30)°, and θ = 125.3° and ϕ = 60k°, where k represents an integer. The conformational specification is completed by the torsion angle defining the orientation of the thienyl substituent with respect to the fused ring system (Table 2). These angles are similar in compounds (I) and (III), but that in (II) is rather different (cf. Figs. 1–3). However, there is no evidence for orientational disorder of any of the thienyl groups, such as is sometimes found for unsubstituted thienyl substituents (Trilleras et al., 2005, 2009; Cobo et al., 2006; Blanco et al., 2012).

Despite the similarities between compounds (I)–(III) in terms of their chemical constitution and their overall molecular shape, the intermolecular hydrogen bonds (Table 2) are different for all these compounds, as are the resultant supramolecular aggregation arrangements. Thus, for example, while the aggregation in (I) and (III) is dominated by C—H···π(arene) and C—H···π(thienyl) interactions, the structure of (I) also contains a C—H···O hydrogen bond, although such an interaction is absent from the structure of (III). On the other hand, the structure of compound (II) contains both C—H···N and C—H···O hydrogen bonds, but C—H···π interactions are absent. Although there is an unsubstituted aryl ring in each of (I)–(III), there are no aromatic ππ stacking interactions.

In compound (I), the combination of the C—H···O hydrogen bond and the two C—H···π(arene) hydrogen bonds (Table 2) suffices to generate a three-dimensional framework structure, which is modestly reinforced by the C—H···π(thienyl) interaction. The formation of the framework structure is readily analysed in terms of three independent one-dimensional sub-structures (Ferguson et al., 1998a,b; Gregson et al., 2000), each utilizing just one type of hydrogen bond. The C—H···O hydrogen bond links molecules related by the 21 screw axis along (0, y, 1/4) to form a C(8) (Bernstein et al., 1995) chain running parallel to the [010] direction (Fig. 4). The C—H···π(arene) hydrogen bonds having atoms C24 and C25 as the donors link molecules related, respectively, by the 21 screw axes along (1/4, 1/2, z) and (x, 1/4, 1/2) to generate chains running parallel to the [001] and [100] directions (Figs. 5 and 6). The combination of these three chains is then sufficient to link the molecules into a single three-dimensional framework.

Molecules of compound (II) related by translation along the [010] direction are linked by the C—H···N and C—H···O hydrogen bonds to form a C(4)C(4)[R22(7)] chain of rings (Fig. 7). There are no direction-specific interactions between the chains, so that the supramolecular assembly is just one-dimensional.

Compound (III) crystallizes with Z' = 2 (Fig. 3), however, it was possible to select an asymmetric unit in which the two molecules both had the (2R,4S) configuration and, in addition, were linked by a fairly short C—H···π(arene) hydrogen bond (Table 2). It will be convenient to refer to molecules containing atoms S121 or S221 as being of types 1 and 2, respectively. Three further C—H···π(arene) hydrogen bonds link molecules related by the a-glide plane at y = 0.75 into a chain of rings running parallel to the [100] direction (Fig. 8), while two C—H···π(thienyl) hydrogen bonds link molecules related by the n-glide plane at x = 0.25 into a second chain of rings, this time running parallel to the [011] direction (Fig. 9). The combination of [100] and [011] chains generates a complex sheet lying parallel to (011).

Although the ADDSYM routine in PLATON (Spek, 2009) showed that no additional crystallographic symmetry was present, despite the Z' value and the partial inversion twinning, there are, nonetheless, some close similarities between some of the corresponding pairs of hydrogen bonds. The two hydrogen bonds having atoms C14 and C24 as donors both link molecules of different types, so that a donor in a type 1 molecule combines with an acceptor in a type 2 molecule, and conversely; the acceptors are both thienyl units and their dimensions are very similar. Both generate chains along [011] and only the sense of the hydrogen bonds differs. The metrics of the two hydrogen bonds having atoms C123 and C223 as donors are also very similar, and they have corresponding aryl rings as the acceptors. Each of these interactions involves just a single type of molecule, type 1 or type 2 respectively, and the sense of the two hydrogen bonds is in the same direction along [100]. By contrast, the two hydrogen bonds having atoms C18 and C28 as donors use different types of aryl ring as the acceptors, namely the terminal aryl ring in the type 1 molecule and the internal aryl ring in the type 2 molecule (Table 2, Fig. 3); unsurprisingly, therefore, the dimensions for these two hydrogen bonds differ somewhat. In the type 1 molecule, both rings of the naphthalene unit act as single acceptors, with donors on opposite faces of this unit, whereas in the type 2 molecule, the internal aryl rings acts as a double acceptor, again with the two donors on opposite faces of the ring such that H18···Cg5···H223i = 172° [Cg5 represents the centroid of the C21A/C21B/C25A/C26/C27/C27A ring; symmetry code: (i) x+1/2, -y+3/2, z]. This contrast is sufficient to preclude the possibility of any additional crystallographic symmetry.

It is of interest briefly to compare the supramolecular assembly in compounds (I)–(III) reported here with that in compounds (IV)–(VI) (Palma et al., 2009) and (VII) (Yépes et al., 2012) (see Scheme). The molecules of compound (IV), which exhibits partial inversion twinning in the space group P21, are linked into sheets by a combination of one C—H···O hydrogen bond and two C—H···π(arene) hydrogen bonds, while those of compound (VI) are linked into a three-dimensional array by one C—H···O and four C—H···π(arene) hydrogen bonds. The isomeric compounds (V) and (VII) crystallize in different space groups, viz. Pbca and P21/c, respectively; in (V), the molecules are linked by a single C—H···O hydrogen bond to form chains which are themselves linked into sheets by an aromatic ππ stacking interaction, while in (VII), chains formed by C—H···π(arene) hydrogen bonds are again π-stacked to form sheets. It may be recalled here that aromatic ππ stacking interactions are absent from the structures of (I)–(III). Thus, the seven closely related compounds (I)–(VII), as well as crystallizing in five different space groups, all show different patterns of direction-specific intermolecular interactions with corresponding differences in the overall supramolecular assembly.

Related literature top

For related literature, see: Bernstein et al. (1995); Blanco et al. (2012); Cobo et al. (2006); Cremer & Pople (1975); Dupray (2012); Ferguson et al. (1998a, 1998b); Flack (1983); Gil-Hernández, Höppe, Vieth, Sanchiz & Janiak (2010); Gonnada et al. (2012); Gregson et al. (2000); Hooft et al. (2008); Lorenz et al. (2007); Pálovics et al. (2012); Palma et al. (2006, 2009); Spek (2009); Trilleras et al. (2005, 2009); Yépes et al. (2012).

Experimental top

For the preparation of compounds (I)–(III), sodium tungstate dihydrate and Na2WO4.2H2O (5–10 mol%), followed by 30% aqueous hydrogen peroxide solution (30 mmol), were added to a stirred and cooled (273 K) solution of the appropriately substituted 2-allyl-N-(thienylmethyl)naphthalen-1-amine (10 mmol) in acetone–water (20 ml, 10:1 v/v). The resulting mixtures were stirred at 273 K for 2 h, and then at ambient temperature for periods ranging from 60 to 72 h. Each mixture was filtered and the solvent removed under reduced pressure. Toluene (30 ml) was added to the organic residue and the resulting solution was heated at 363–373 K for 12–13 h. After cooling each solution to ambient temperature, the solvent was removed under reduced pressure and the crude product was purified by chromatography on silica using heptane–ethyl acetate (compositions ranged from 30:1 to 10:1 v/v) as eluent. Crystallization from heptane, at ambient temperature and exposed to air, gave pale-yellow crystals of compounds (I)–(III) suitable for single-crystal X-ray diffraction. Data for (I): yield 45%, m.p. 422–423 K; MS (70 eV) m/z (%): 307 (M+, 14), 277 (3), 264 (14), 180 (9), 154 (3), 142 (100), 115 (31); HR–MS (EI), found 307.1029, C19H17NOS requires 307.1031. Data for (II): yield 50%, m.p. 404–405 K; MS (70 eV) m/z (%): 307 (M+, 18), 277 (4), 264 (30), 180 (8), 154 (4), 142 (100), 115 (25); HR–MS (EI), found 307.1029; C19H17NOS requires 307.1031. Data for (III): yield 49%, m.p. 407–408 K; MS (70 eV) m/z (%): 371 (M+, 79Br, 8), 341 (4), 328 (7), 180 (5), 154 (2), 142 (100), 115 (27); HR–MS (EI), found 371.2789; C18H14BrNOS requires 371.2791.

Refinement top

All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions, with C—H = 0.95 (aryl and thienyl), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic) and with Uiso(H)= kUeq(C), where k = 1.5 for methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. For (I), the (2R,4S) configuration was confirmed for the crystal selected for data collection by the value of the Flack x parameter (Flack, 1983) and the Hooft y parameter (Hooft et al., 2008), i.e. x = 0.03 (9) and y = -0.05 (6) for 1333 Bijvoet pairs (92.5% coverage). Because of the rather weak diffraction observed in (I), data having θ > 25.5° were omitted from the final refinements. Compounds (II) and (III) both crystallize as racemic mixtures of (2R,4S) and (2S,4R) forms in the space groups P21/c and Pna21, respectively. Compound (III) was handled as an inversion twin, giving twin fractions for the crystal selected for data collection of 0.658 (9) and 0.342 (9). Accordingly, the (2R,4S) configuration was selected for the reference molecule of (II) and for both of the independent molecules in (III).

Computing details top

For all compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the (2R,4S) enantiomer of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of the (2R,4S) enantiomer of compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The molecular structure of the (2R,4S) enantiomers of the two independent molecules of compound (III), showing the atom-labelling scheme for (a) a type 1 molecule and (b) a type 2 molecule. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of compound (I), showing the formation of a C(8) chain along [010] built from C—H···O hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of compound (I), showing the formation of a chain along [001] built from C—H···π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of compound (I), showing the formation of a chain along [100] built from C—H···π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 7] Fig. 7. Part of the crystal structure of compound (II), showing the formation of a C(4)C(4)[R22(7) chain of rings along [010] built from C—H···N and C—H···O hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms which are not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, y-1, z) and (x, y+1, z) respectively.
[Figure 8] Fig. 8. A stereoview of part of the crystal structure of compound (III), showing the formation of a chain of rings along [100] built from four C—H···π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 9] Fig. 9. A stereoview of part of the crystal structure of compound (III), showing the formation of a chain of rings along [011] built from one C—H···π(arene) hydrogen bond and two C—H···π(thienyl) hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
(I) (2R,4S)-2-(3-Methylthiophen-2-yl)-2,3,4,5-tetrahydro-1,4-epoxynaphtho[1,2-b]-azepine top
Crystal data top
C19H17NOSF(000) = 648
Mr = 307.41Dx = 1.379 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3274 reflections
a = 7.0387 (3) Åθ = 2.9–27.5°
b = 11.5605 (10) ŵ = 0.22 mm1
c = 18.1951 (17) ÅT = 120 K
V = 1480.6 (2) Å3Block, pale yellow
Z = 40.34 × 0.24 × 0.14 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2698 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode1838 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.129
Detector resolution: 9.091 pixels mm-1θmax = 25.5°, θmin = 2.9°
ϕ & ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1414
Tmin = 0.929, Tmax = 0.970l = 2220
13622 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0405P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
2698 reflectionsΔρmax = 0.43 e Å3
200 parametersΔρmin = 0.62 e Å3
0 restraintsAbsolute structure: Flack (1983), 1333 Bijvoet pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (9)
Crystal data top
C19H17NOSV = 1480.6 (2) Å3
Mr = 307.41Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.0387 (3) ŵ = 0.22 mm1
b = 11.5605 (10) ÅT = 120 K
c = 18.1951 (17) Å0.34 × 0.24 × 0.14 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2698 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1838 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.970Rint = 0.129
13622 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.43 e Å3
S = 0.99Δρmin = 0.62 e Å3
2698 reflectionsAbsolute structure: Flack (1983), 1333 Bijvoet pairs
200 parametersAbsolute structure parameter: 0.03 (9)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4464 (3)0.5357 (2)0.42589 (11)0.0185 (5)
C20.3887 (3)0.4542 (3)0.48391 (13)0.0201 (6)
H20.34940.37960.46050.024*
C30.2132 (4)0.5115 (3)0.51853 (13)0.0217 (7)
H3A0.09530.47090.50380.026*
H3B0.22220.51170.57280.026*
C40.2167 (4)0.6340 (3)0.48831 (13)0.0215 (7)
H40.19130.69180.52800.026*
C50.0844 (4)0.6519 (3)0.42413 (14)0.0233 (7)
H5A0.04700.63130.43850.028*
H5B0.08580.73420.40910.028*
C5A0.1471 (3)0.5773 (3)0.36132 (14)0.0189 (7)
C60.0290 (4)0.5591 (3)0.30023 (14)0.0243 (7)
H60.08820.59960.29690.029*
C70.0790 (4)0.4850 (3)0.24605 (14)0.0265 (8)
H70.00460.47320.20580.032*
C7A0.2524 (4)0.4254 (3)0.24846 (13)0.0207 (7)
C80.3043 (4)0.3437 (3)0.19527 (14)0.0262 (7)
H80.21900.32710.15620.031*
C90.4721 (4)0.2883 (3)0.19826 (15)0.0328 (8)
H90.50360.23280.16170.039*
C100.6009 (4)0.3123 (3)0.25514 (15)0.0311 (8)
H100.72020.27400.25640.037*
C110.5559 (4)0.3898 (3)0.30819 (14)0.0229 (7)
H110.64460.40580.34620.028*
C11A0.3794 (4)0.4468 (3)0.30762 (13)0.0184 (7)
C11B0.3194 (3)0.5229 (3)0.36357 (13)0.0174 (6)
O140.4097 (2)0.64557 (18)0.46023 (9)0.0224 (5)
S210.71287 (9)0.53184 (8)0.56069 (4)0.0270 (2)
C220.5440 (3)0.4302 (3)0.53838 (13)0.0192 (7)
C230.5621 (4)0.3332 (3)0.57931 (14)0.0219 (7)
C240.7171 (4)0.3414 (3)0.62838 (14)0.0258 (7)
H240.75150.28100.66120.031*
C250.8113 (4)0.4420 (3)0.62447 (14)0.0280 (8)
H250.91910.46080.65350.034*
C260.4321 (4)0.2351 (3)0.57507 (15)0.0311 (8)
H26A0.42980.20530.52470.047*
H26B0.30410.26020.58910.047*
H26C0.47490.17410.60860.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0221 (11)0.0163 (14)0.0171 (11)0.0009 (11)0.0003 (9)0.0011 (11)
C20.0212 (14)0.0213 (18)0.0179 (13)0.0013 (13)0.0021 (11)0.0033 (13)
C30.0210 (14)0.026 (2)0.0180 (13)0.0032 (14)0.0020 (11)0.0011 (13)
C40.0281 (16)0.0203 (18)0.0161 (13)0.0040 (14)0.0041 (12)0.0027 (13)
C50.0261 (16)0.0180 (17)0.0258 (15)0.0053 (13)0.0008 (13)0.0010 (13)
C5A0.0212 (16)0.0184 (18)0.0171 (14)0.0001 (12)0.0009 (10)0.0034 (13)
C60.0242 (15)0.023 (2)0.0260 (15)0.0042 (13)0.0037 (12)0.0022 (15)
C70.0276 (17)0.031 (2)0.0210 (14)0.0020 (15)0.0085 (12)0.0028 (15)
C7A0.0306 (17)0.0173 (16)0.0142 (13)0.0032 (13)0.0011 (11)0.0026 (13)
C80.0337 (18)0.027 (2)0.0175 (14)0.0015 (17)0.0008 (13)0.0016 (14)
C90.049 (2)0.029 (2)0.0205 (16)0.0055 (16)0.0098 (15)0.0022 (16)
C100.0288 (16)0.037 (2)0.0278 (16)0.0079 (16)0.0071 (14)0.0004 (16)
C110.0245 (16)0.025 (2)0.0196 (14)0.0021 (14)0.0018 (12)0.0024 (14)
C11A0.0216 (14)0.0171 (19)0.0165 (13)0.0023 (13)0.0024 (11)0.0063 (12)
C11B0.0223 (15)0.0173 (17)0.0128 (12)0.0025 (14)0.0007 (10)0.0006 (13)
O140.0257 (11)0.0198 (12)0.0218 (10)0.0006 (9)0.0008 (8)0.0031 (9)
S210.0241 (4)0.0281 (5)0.0288 (4)0.0028 (4)0.0017 (3)0.0049 (4)
C220.0173 (14)0.0222 (19)0.0181 (14)0.0039 (12)0.0066 (11)0.0001 (14)
C230.0263 (16)0.0207 (19)0.0187 (14)0.0017 (13)0.0028 (12)0.0015 (14)
C240.0290 (16)0.031 (2)0.0174 (14)0.0090 (16)0.0010 (13)0.0039 (14)
C250.0229 (15)0.041 (3)0.0206 (15)0.0061 (16)0.0013 (12)0.0026 (15)
C260.0336 (18)0.033 (2)0.0267 (16)0.0019 (15)0.0042 (14)0.0012 (16)
Geometric parameters (Å, º) top
N1—O141.439 (3)C7A—C11A1.421 (3)
N1—C11B1.451 (3)C8—C91.345 (4)
N1—C21.472 (3)C8—H80.9500
C2—C221.501 (3)C9—C101.403 (4)
C2—C31.537 (4)C9—H90.9500
C2—H21.0000C10—C111.354 (4)
C3—C41.520 (4)C10—H100.9500
C3—H3A0.9900C11—C11A1.407 (4)
C3—H3B0.9900C11—H110.9500
C4—O141.458 (3)C11A—C11B1.410 (4)
C4—C51.508 (4)S21—C251.704 (3)
C4—H41.0000S21—C221.720 (3)
C5—C5A1.498 (4)C22—C231.352 (4)
C5—H5A0.9900C23—C241.413 (4)
C5—H5B0.9900C23—C261.459 (4)
C5A—C11B1.367 (3)C24—C251.341 (5)
C5A—C61.404 (3)C24—H240.9500
C6—C71.353 (4)C25—H250.9500
C6—H60.9500C26—H26A0.9800
C7—C7A1.403 (4)C26—H26B0.9800
C7—H70.9500C26—H26C0.9800
C7A—C81.401 (4)
O14—N1—C11B108.61 (19)C9—C8—C7A121.5 (3)
O14—N1—C2101.80 (18)C9—C8—H8119.3
C11B—N1—C2109.0 (2)C7A—C8—H8119.3
N1—C2—C22113.0 (2)C8—C9—C10120.2 (3)
N1—C2—C3103.8 (2)C8—C9—H9119.9
C22—C2—C3113.2 (2)C10—C9—H9119.9
N1—C2—H2108.8C11—C10—C9120.4 (3)
C22—C2—H2108.8C11—C10—H10119.8
C3—C2—H2108.8C9—C10—H10119.8
C4—C3—C2103.9 (2)C10—C11—C11A120.7 (3)
C4—C3—H3A111.0C10—C11—H11119.6
C2—C3—H3A111.0C11A—C11—H11119.6
C4—C3—H3B111.0C11—C11A—C11B123.5 (2)
C2—C3—H3B111.0C11—C11A—C7A118.7 (3)
H3A—C3—H3B109.0C11B—C11A—C7A117.9 (2)
O14—C4—C5106.96 (19)C5A—C11B—C11A122.1 (2)
O14—C4—C3103.2 (2)C5A—C11B—N1121.5 (2)
C5—C4—C3113.4 (2)C11A—C11B—N1116.3 (2)
O14—C4—H4111.0N1—O14—C4103.80 (19)
C5—C4—H4111.0C25—S21—C2291.45 (15)
C3—C4—H4111.0C23—C22—C2125.8 (3)
C5A—C5—C4109.3 (2)C23—C22—S21111.82 (19)
C5A—C5—H5A109.8C2—C22—S21122.2 (2)
C4—C5—H5A109.8C22—C23—C24111.4 (3)
C5A—C5—H5B109.8C22—C23—C26123.8 (2)
C4—C5—H5B109.8C24—C23—C26124.7 (3)
H5A—C5—H5B108.3C25—C24—C23114.0 (3)
C11B—C5A—C6118.7 (3)C25—C24—H24123.0
C11B—C5A—C5120.2 (2)C23—C24—H24123.0
C6—C5A—C5121.0 (2)C24—C25—S21111.3 (2)
C7—C6—C5A121.2 (3)C24—C25—H25124.3
C7—C6—H6119.4S21—C25—H25124.3
C5A—C6—H6119.4C23—C26—H26A109.5
C6—C7—C7A121.0 (2)C23—C26—H26B109.5
C6—C7—H7119.5H26A—C26—H26B109.5
C7A—C7—H7119.5C23—C26—H26C109.5
C8—C7A—C7122.5 (2)H26A—C26—H26C109.5
C8—C7A—C11A118.5 (2)H26B—C26—H26C109.5
C7—C7A—C11A119.1 (3)
O14—N1—C2—C2285.4 (2)C5—C5A—C11B—C11A176.3 (3)
C11B—N1—C2—C22160.0 (2)C6—C5A—C11B—N1178.5 (3)
O14—N1—C2—C337.7 (2)C5—C5A—C11B—N10.3 (4)
C11B—N1—C2—C376.9 (2)C11—C11A—C11B—C5A179.8 (3)
N1—C2—C3—C413.0 (3)C7A—C11A—C11B—C5A1.5 (4)
C22—C2—C3—C4110.0 (3)C11—C11A—C11B—N13.4 (4)
C2—C3—C4—O1416.1 (2)C7A—C11A—C11B—N1175.4 (2)
C2—C3—C4—C599.2 (2)O14—N1—C11B—C5A27.1 (3)
O14—C4—C5—C5A49.5 (3)C2—N1—C11B—C5A83.0 (3)
C3—C4—C5—C5A63.5 (3)O14—N1—C11B—C11A156.1 (2)
C4—C5—C5A—C11B11.0 (4)C2—N1—C11B—C11A93.8 (3)
C4—C5—C5A—C6167.0 (3)C11B—N1—O14—C465.2 (2)
C11B—C5A—C6—C73.2 (4)C2—N1—O14—C449.65 (19)
C5—C5A—C6—C7174.9 (3)C5—C4—O14—N179.2 (2)
C5A—C6—C7—C7A1.2 (5)C3—C4—O14—N140.7 (2)
C6—C7—C7A—C8176.7 (3)N1—C2—C22—C23154.1 (3)
C6—C7—C7A—C11A2.2 (4)C3—C2—C22—C2388.2 (3)
C7—C7A—C8—C9179.4 (3)N1—C2—C22—S2131.1 (3)
C11A—C7A—C8—C91.8 (4)C3—C2—C22—S2186.6 (3)
C7A—C8—C9—C100.5 (5)C25—S21—C22—C231.1 (2)
C8—C9—C10—C111.2 (5)C25—S21—C22—C2176.5 (2)
C9—C10—C11—C11A0.5 (5)C2—C22—C23—C24176.3 (2)
C10—C11—C11A—C11B176.0 (3)S21—C22—C23—C241.0 (3)
C10—C11—C11A—C7A2.8 (4)C2—C22—C23—C261.3 (4)
C8—C7A—C11A—C113.4 (4)S21—C22—C23—C26176.5 (2)
C7—C7A—C11A—C11177.7 (3)C22—C23—C24—C250.4 (3)
C8—C7A—C11A—C11B175.5 (3)C26—C23—C24—C25177.1 (3)
C7—C7A—C11A—C11B3.5 (4)C23—C24—C25—S210.4 (3)
C6—C5A—C11B—C11A1.8 (4)C22—S21—C25—C240.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O14i0.952.513.425 (3)161
C7—H7···Cg1ii0.952.783.582 (3)143
C24—H24···Cg2iii0.952.643.572 (3)167
C25—H25···Cg2iv0.952.883.690 (3)143
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1/2, y+1, z1/2; (iii) x+1/2, y+3/2, z+1; (iv) x+3/2, y+1, z+1/2.
(II) (2RS,4SR)-2-(5-Methylthiophen-2-yl)-2,3,4,5-tetrahydro-1,4-epoxy-naphtho[1,2-b]azepine top
Crystal data top
C19H17NOSF(000) = 648
Mr = 307.41Dx = 1.370 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3412 reflections
a = 16.165 (2) Åθ = 3.3–27.5°
b = 5.2505 (3) ŵ = 0.22 mm1
c = 20.0410 (19) ÅT = 120 K
β = 118.813 (9)°Block, pale yellow
V = 1490.4 (3) Å30.41 × 0.23 × 0.12 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3412 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode2058 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.3°
ϕ & ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 66
Tmin = 0.916, Tmax = 0.974l = 2626
20766 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0603P)2 + 1.3536P]
where P = (Fo2 + 2Fc2)/3
3412 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C19H17NOSV = 1490.4 (3) Å3
Mr = 307.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.165 (2) ŵ = 0.22 mm1
b = 5.2505 (3) ÅT = 120 K
c = 20.0410 (19) Å0.41 × 0.23 × 0.12 mm
β = 118.813 (9)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3412 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2058 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.974Rint = 0.082
20766 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.08Δρmax = 0.35 e Å3
3412 reflectionsΔρmin = 0.31 e Å3
200 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20849 (15)0.4955 (4)0.58378 (12)0.0225 (5)
C20.20137 (19)0.3317 (5)0.64226 (15)0.0236 (6)
H20.26450.25620.67710.028*
C30.1322 (2)0.1187 (5)0.59562 (15)0.0260 (6)
H3A0.16560.04500.60220.031*
H3B0.08260.09620.61070.031*
C40.08977 (19)0.2145 (5)0.51330 (16)0.0256 (6)
H40.01980.18840.48540.031*
C50.13543 (19)0.0953 (5)0.47049 (16)0.0254 (6)
H5A0.10020.14410.41610.030*
H5B0.13390.09260.47390.030*
C5A0.23657 (18)0.1854 (5)0.50444 (15)0.0222 (6)
C60.2985 (2)0.0794 (6)0.48050 (17)0.0284 (7)
H60.27640.05240.44340.034*
C70.3895 (2)0.1626 (6)0.50958 (16)0.0295 (7)
H70.42950.08850.49250.035*
C7A0.42474 (19)0.3595 (6)0.56531 (16)0.0271 (7)
C80.5183 (2)0.4530 (6)0.59578 (18)0.0340 (8)
H80.55980.38040.57980.041*
C90.5494 (2)0.6460 (6)0.64768 (18)0.0362 (8)
H90.61200.70770.66720.043*
C100.4893 (2)0.7550 (6)0.67268 (17)0.0335 (7)
H100.51190.88830.70920.040*
C110.39863 (19)0.6699 (5)0.64465 (15)0.0256 (6)
H110.35860.74530.66160.031*
C11A0.36397 (19)0.4697 (5)0.59045 (15)0.0243 (6)
C11B0.26945 (18)0.3749 (5)0.55810 (15)0.0221 (6)
O140.11286 (12)0.4854 (4)0.52181 (11)0.0246 (5)
S210.24866 (5)0.68266 (15)0.75998 (4)0.0280 (2)
C220.16870 (19)0.4907 (5)0.68786 (15)0.0241 (6)
C230.0807 (2)0.5227 (6)0.68014 (16)0.0276 (7)
H230.02640.43550.64320.033*
C240.0786 (2)0.6992 (6)0.73283 (16)0.0290 (7)
H240.02270.73920.73510.035*
C250.1639 (2)0.8060 (6)0.77980 (16)0.0267 (6)
C260.1882 (2)1.0026 (6)0.84045 (17)0.0340 (7)
H26A0.17851.17290.81790.051*
H26B0.25440.98300.87940.051*
H26C0.14750.98070.86380.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0212 (12)0.0232 (13)0.0226 (12)0.0005 (10)0.0102 (10)0.0019 (10)
C20.0259 (14)0.0212 (15)0.0249 (14)0.0012 (12)0.0132 (12)0.0004 (12)
C30.0331 (16)0.0214 (15)0.0272 (15)0.0012 (12)0.0175 (14)0.0003 (12)
C40.0239 (14)0.0245 (16)0.0278 (15)0.0045 (12)0.0120 (12)0.0012 (13)
C50.0319 (15)0.0219 (15)0.0217 (14)0.0024 (12)0.0125 (13)0.0018 (12)
C5A0.0266 (14)0.0194 (14)0.0214 (14)0.0032 (12)0.0124 (12)0.0046 (12)
C60.0328 (16)0.0249 (16)0.0271 (15)0.0038 (13)0.0142 (14)0.0018 (13)
C70.0306 (15)0.0336 (18)0.0280 (16)0.0083 (13)0.0171 (13)0.0030 (14)
C7A0.0250 (14)0.0305 (17)0.0252 (15)0.0026 (12)0.0117 (12)0.0052 (13)
C80.0248 (15)0.042 (2)0.0354 (18)0.0042 (14)0.0151 (14)0.0052 (15)
C90.0242 (15)0.045 (2)0.0348 (17)0.0004 (14)0.0107 (14)0.0060 (16)
C100.0322 (16)0.0377 (19)0.0263 (16)0.0064 (14)0.0107 (14)0.0013 (14)
C110.0294 (15)0.0246 (15)0.0240 (14)0.0016 (13)0.0138 (12)0.0001 (13)
C11A0.0272 (15)0.0226 (15)0.0221 (14)0.0022 (12)0.0110 (12)0.0033 (12)
C11B0.0238 (14)0.0228 (15)0.0208 (14)0.0051 (11)0.0117 (12)0.0044 (12)
O140.0218 (9)0.0217 (11)0.0272 (11)0.0001 (8)0.0092 (8)0.0012 (9)
S210.0265 (4)0.0291 (4)0.0268 (4)0.0012 (3)0.0114 (3)0.0042 (3)
C220.0286 (15)0.0211 (14)0.0238 (15)0.0002 (12)0.0137 (13)0.0018 (12)
C230.0258 (15)0.0288 (17)0.0259 (15)0.0010 (13)0.0106 (12)0.0024 (13)
C240.0308 (15)0.0308 (17)0.0326 (16)0.0031 (13)0.0209 (14)0.0009 (14)
C250.0335 (16)0.0266 (16)0.0235 (15)0.0004 (13)0.0164 (13)0.0001 (13)
C260.0433 (18)0.0303 (17)0.0302 (16)0.0040 (14)0.0192 (15)0.0044 (14)
Geometric parameters (Å, º) top
N1—O141.444 (3)C7A—C11A1.425 (4)
N1—C11B1.458 (3)C8—C91.363 (4)
N1—C21.502 (3)C8—H80.9500
C2—C221.509 (4)C9—C101.411 (4)
C2—C31.539 (4)C9—H90.9500
C2—H21.0000C10—C111.367 (4)
C3—C41.534 (4)C10—H100.9500
C3—H3A0.9900C11—C11A1.418 (4)
C3—H3B0.9900C11—H110.9500
C4—O141.459 (3)C11A—C11B1.431 (4)
C4—C51.511 (4)S21—C221.725 (3)
C4—H41.0000S21—C251.726 (3)
C5—C5A1.512 (4)C22—C231.364 (4)
C5—H5A0.9900C23—C241.418 (4)
C5—H5B0.9900C23—H230.9500
C5A—C11B1.370 (4)C24—C251.360 (4)
C5A—C61.417 (4)C24—H240.9500
C6—C71.366 (4)C25—C261.496 (4)
C6—H60.9500C26—H26A0.9800
C7—C7A1.424 (4)C26—H26B0.9800
C7—H70.9500C26—H26C0.9800
C7A—C81.418 (4)
O14—N1—C11B107.81 (19)C9—C8—C7A120.7 (3)
O14—N1—C2101.36 (18)C9—C8—H8119.7
C11B—N1—C2110.2 (2)C7A—C8—H8119.7
N1—C2—C22109.6 (2)C8—C9—C10120.6 (3)
N1—C2—C3104.4 (2)C8—C9—H9119.7
C22—C2—C3113.9 (2)C10—C9—H9119.7
N1—C2—H2109.6C11—C10—C9120.4 (3)
C22—C2—H2109.6C11—C10—H10119.8
C3—C2—H2109.6C9—C10—H10119.8
C4—C3—C2103.4 (2)C10—C11—C11A120.4 (3)
C4—C3—H3A111.1C10—C11—H11119.8
C2—C3—H3A111.1C11A—C11—H11119.8
C4—C3—H3B111.1C11—C11A—C7A119.1 (3)
C2—C3—H3B111.1C11—C11A—C11B123.1 (3)
H3A—C3—H3B109.0C7A—C11A—C11B117.8 (3)
O14—C4—C5107.6 (2)C5A—C11B—C11A122.3 (2)
O14—C4—C3103.7 (2)C5A—C11B—N1121.3 (2)
C5—C4—C3112.8 (2)C11A—C11B—N1116.4 (2)
O14—C4—H4110.8N1—O14—C4104.13 (18)
C5—C4—H4110.8C22—S21—C2593.13 (13)
C3—C4—H4110.8C23—C22—C2130.5 (3)
C4—C5—C5A109.5 (2)C23—C22—S21110.0 (2)
C4—C5—H5A109.8C2—C22—S21119.42 (19)
C5A—C5—H5A109.8C22—C23—C24113.2 (3)
C4—C5—H5B109.8C22—C23—H23123.4
C5A—C5—H5B109.8C24—C23—H23123.4
H5A—C5—H5B108.2C25—C24—C23113.9 (3)
C11B—C5A—C6118.7 (3)C25—C24—H24123.1
C11B—C5A—C5120.4 (2)C23—C24—H24123.1
C6—C5A—C5120.8 (3)C24—C25—C26129.0 (3)
C7—C6—C5A121.4 (3)C24—C25—S21109.8 (2)
C7—C6—H6119.3C26—C25—S21121.3 (2)
C5A—C6—H6119.3C25—C26—H26A109.5
C6—C7—C7A120.6 (3)C25—C26—H26B109.5
C6—C7—H7119.7H26A—C26—H26B109.5
C7A—C7—H7119.7C25—C26—H26C109.5
C8—C7A—C7122.0 (3)H26A—C26—H26C109.5
C8—C7A—C11A118.7 (3)H26B—C26—H26C109.5
C7—C7A—C11A119.3 (3)
O14—N1—C2—C2285.8 (2)C5—C5A—C11B—C11A178.6 (2)
C11B—N1—C2—C22160.2 (2)C6—C5A—C11B—N1178.6 (2)
O14—N1—C2—C336.6 (2)C5—C5A—C11B—N10.2 (4)
C11B—N1—C2—C377.4 (2)C11—C11A—C11B—C5A178.4 (3)
N1—C2—C3—C411.9 (3)C7A—C11A—C11B—C5A0.3 (4)
C22—C2—C3—C4107.7 (3)C11—C11A—C11B—N10.0 (4)
C2—C3—C4—O1416.8 (3)C7A—C11A—C11B—N1178.7 (2)
C2—C3—C4—C599.3 (3)O14—N1—C11B—C5A29.1 (3)
O14—C4—C5—C5A46.5 (3)C2—N1—C11B—C5A80.7 (3)
C3—C4—C5—C5A67.3 (3)O14—N1—C11B—C11A149.3 (2)
C4—C5—C5A—C11B8.5 (4)C2—N1—C11B—C11A100.9 (3)
C4—C5—C5A—C6172.7 (2)C11B—N1—O14—C467.0 (2)
C11B—C5A—C6—C70.2 (4)C2—N1—O14—C448.8 (2)
C5—C5A—C6—C7178.7 (3)C5—C4—O14—N178.5 (2)
C5A—C6—C7—C7A0.1 (4)C3—C4—O14—N141.2 (2)
C6—C7—C7A—C8179.0 (3)N1—C2—C22—C2397.2 (3)
C6—C7—C7A—C11A0.1 (4)C3—C2—C22—C2319.4 (4)
C7—C7A—C8—C9178.4 (3)N1—C2—C22—S2179.1 (3)
C11A—C7A—C8—C90.5 (4)C3—C2—C22—S21164.25 (19)
C7A—C8—C9—C100.6 (5)C25—S21—C22—C230.0 (2)
C8—C9—C10—C110.6 (5)C25—S21—C22—C2177.1 (2)
C9—C10—C11—C11A0.4 (4)C2—C22—C23—C24177.3 (3)
C10—C11—C11A—C7A0.3 (4)S21—C22—C23—C240.6 (3)
C10—C11—C11A—C11B179.0 (3)C22—C23—C24—C251.2 (4)
C8—C7A—C11A—C110.4 (4)C23—C24—C25—C26178.3 (3)
C7—C7A—C11A—C11178.5 (3)C23—C24—C25—S211.1 (3)
C8—C7A—C11A—C11B179.1 (3)C22—S21—C25—C240.6 (2)
C7—C7A—C11A—C11B0.2 (4)C22—S21—C25—C26178.8 (3)
C6—C5A—C11B—C11A0.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N1i0.992.593.545 (4)163
C5—H5B···O14i0.992.503.436 (3)157
Symmetry code: (i) x, y1, z.
(III) (2RS,4SR)-2-(5-bromothiophen-2-yl)-2,3,4,5-tetrahydro-1,4-epoxynaphtho[1,2-b]azepine top
Crystal data top
C18H14BrNOSF(000) = 1504
Mr = 372.27Dx = 1.609 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 6933 reflections
a = 15.316 (2) Åθ = 2.7–27.5°
b = 9.9230 (18) ŵ = 2.81 mm1
c = 20.225 (3) ÅT = 120 K
V = 3073.8 (8) Å3Needle, pale yellow
Z = 80.40 × 0.14 × 0.12 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
6933 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode5427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.7°
ϕ & ω scansh = 1719
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 812
Tmin = 0.399, Tmax = 0.729l = 2625
27630 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.3624P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6932 reflectionsΔρmax = 0.87 e Å3
398 parametersΔρmin = 0.43 e Å3
1 restraintAbsolute structure: Flack (1983); this is not a conventional Flack x parameter but a twin fraction, calculated using TWIN and BASF
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.663 (9)
Crystal data top
C18H14BrNOSV = 3073.8 (8) Å3
Mr = 372.27Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 15.316 (2) ŵ = 2.81 mm1
b = 9.9230 (18) ÅT = 120 K
c = 20.225 (3) Å0.40 × 0.14 × 0.12 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
6933 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
5427 reflections with I > 2σ(I)
Tmin = 0.399, Tmax = 0.729Rint = 0.049
27630 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.87 e Å3
S = 1.03Δρmin = 0.43 e Å3
6932 reflectionsAbsolute structure: Flack (1983); this is not a conventional Flack x parameter but a twin fraction, calculated using TWIN and BASF
398 parametersAbsolute structure parameter: 0.663 (9)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.3118 (2)0.8001 (4)0.43537 (14)0.0153 (7)
C120.2192 (2)0.7982 (5)0.41230 (19)0.0175 (8)
H120.21520.75120.36870.021*
C130.1972 (2)0.9498 (4)0.4036 (2)0.0204 (9)
H13A0.19910.97630.35640.025*
H13B0.13880.97100.42170.025*
C140.2696 (3)1.0206 (4)0.4433 (2)0.0214 (9)
H140.24461.09080.47330.026*
C150.3417 (3)1.0795 (4)0.4003 (2)0.0207 (9)
H15A0.31621.14200.36730.025*
H15B0.38341.13060.42800.025*
C15A0.3886 (3)0.9661 (5)0.3654 (2)0.0181 (11)
C160.4511 (3)0.9914 (5)0.3155 (2)0.0205 (11)
H160.46461.08200.30450.025*
C170.4926 (3)0.8896 (5)0.2826 (2)0.0227 (12)
H170.53390.91070.24920.027*
C17A0.4749 (4)0.7534 (4)0.2977 (4)0.0164 (16)
C180.5162 (3)0.6442 (5)0.2656 (2)0.0212 (12)
H180.55740.66200.23160.025*
C190.4986 (3)0.5140 (5)0.2823 (2)0.0254 (10)
H190.52690.44220.25970.030*
C1100.4385 (3)0.4862 (6)0.3331 (2)0.0256 (12)
H1100.42620.39530.34450.031*
C1110.3975 (3)0.5884 (5)0.3661 (2)0.0186 (11)
H1110.35800.56700.40080.022*
C11A0.4122 (4)0.7248 (5)0.3501 (3)0.0143 (10)
C11B0.3714 (2)0.8345 (5)0.38212 (18)0.0157 (9)
O1140.30923 (19)0.9120 (2)0.48113 (12)0.0187 (6)
S1210.18004 (11)0.73901 (13)0.54603 (10)0.0205 (4)
C1220.1610 (4)0.7293 (5)0.4618 (3)0.0160 (12)
C1230.0858 (3)0.6624 (4)0.44928 (19)0.0192 (9)
H1230.06470.64690.40580.023*
C1240.0415 (3)0.6178 (4)0.5061 (2)0.0181 (8)
H1240.01210.56980.50560.022*
C1250.0853 (3)0.6523 (4)0.56138 (19)0.0197 (9)
Br150.05695 (3)0.61051 (5)0.65017 (2)0.02996 (11)
N210.5651 (2)0.6960 (4)0.04523 (14)0.0165 (7)
C220.4727 (2)0.6961 (4)0.06898 (19)0.0154 (8)
H220.46880.74340.11250.018*
C230.4509 (3)0.5424 (4)0.0780 (2)0.0218 (9)
H23A0.45140.51670.12530.026*
H23B0.39310.52030.05890.026*
C240.5243 (3)0.4724 (4)0.0401 (2)0.0227 (9)
H240.50050.39990.01080.027*
C250.5956 (3)0.4179 (4)0.0844 (2)0.0257 (10)
H25A0.57000.35730.11820.031*
H25B0.63790.36540.05790.031*
C25A0.6415 (3)0.5343 (5)0.1179 (3)0.0189 (11)
C260.7037 (3)0.5115 (5)0.1690 (2)0.0245 (12)
H260.71710.42160.18160.029*
C270.7446 (3)0.6163 (6)0.2005 (2)0.0225 (12)
H270.78440.59840.23540.027*
C27A0.7277 (4)0.7510 (4)0.1811 (4)0.0197 (17)
C280.7719 (3)0.8637 (6)0.2093 (2)0.0247 (12)
H280.81330.84920.24340.030*
C290.7559 (3)0.9910 (5)0.1883 (2)0.0250 (10)
H290.78721.06410.20730.030*
C2100.6940 (3)1.0160 (5)0.1391 (2)0.0200 (10)
H2100.68231.10600.12570.024*
C2110.6502 (3)0.9119 (5)0.1101 (2)0.0160 (10)
H2110.60840.92970.07650.019*
C21A0.6669 (4)0.7764 (5)0.1302 (3)0.0179 (12)
C21B0.6246 (3)0.6649 (5)0.09965 (19)0.0176 (9)
O2140.56441 (19)0.5798 (3)0.00080 (13)0.0199 (6)
S2210.43371 (10)0.75414 (10)0.06499 (10)0.0179 (4)
C2220.4145 (4)0.7632 (4)0.0199 (4)0.0142 (13)
C2230.3388 (3)0.8307 (4)0.03218 (19)0.0177 (9)
H2230.31750.84630.07560.021*
C2240.2943 (3)0.8759 (4)0.0258 (2)0.0214 (9)
H2240.24020.92290.02570.026*
C2250.3393 (2)0.8429 (4)0.08085 (19)0.0193 (9)
Br250.31015 (3)0.88673 (5)0.16844 (2)0.02968 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0142 (16)0.0169 (19)0.0149 (16)0.0057 (16)0.0001 (15)0.0023 (14)
C120.012 (2)0.025 (2)0.015 (2)0.001 (2)0.0002 (16)0.0018 (19)
C130.017 (2)0.023 (2)0.021 (2)0.0014 (17)0.0001 (16)0.0055 (19)
C140.021 (2)0.016 (2)0.027 (2)0.0040 (18)0.0054 (18)0.0012 (18)
C150.018 (2)0.018 (2)0.026 (2)0.0005 (16)0.0004 (17)0.0026 (17)
C15A0.018 (2)0.018 (3)0.018 (2)0.001 (2)0.0035 (18)0.004 (2)
C160.023 (2)0.020 (3)0.018 (2)0.005 (2)0.0046 (19)0.0035 (19)
C170.020 (2)0.033 (3)0.015 (2)0.005 (2)0.0017 (19)0.008 (2)
C17A0.011 (3)0.025 (4)0.013 (3)0.0021 (16)0.002 (3)0.0021 (15)
C180.014 (2)0.031 (3)0.019 (2)0.003 (2)0.0041 (18)0.002 (2)
C190.024 (2)0.029 (3)0.023 (2)0.004 (2)0.0010 (18)0.0059 (19)
C1100.022 (2)0.024 (3)0.031 (3)0.003 (2)0.008 (2)0.001 (2)
C1110.014 (2)0.026 (3)0.016 (2)0.000 (2)0.0013 (17)0.006 (2)
C11A0.010 (2)0.026 (2)0.007 (2)0.003 (2)0.0032 (18)0.006 (2)
C11B0.0081 (19)0.025 (2)0.0144 (19)0.0029 (19)0.0020 (16)0.0008 (19)
O1140.0188 (13)0.0214 (15)0.0161 (13)0.0029 (13)0.0018 (12)0.0032 (11)
S1210.0178 (8)0.0282 (10)0.0157 (9)0.0035 (4)0.0020 (7)0.0006 (5)
C1220.017 (3)0.016 (2)0.014 (3)0.001 (2)0.001 (2)0.003 (2)
C1230.0154 (19)0.024 (2)0.018 (2)0.0012 (18)0.0045 (17)0.0028 (18)
C1240.0126 (17)0.019 (2)0.023 (2)0.0046 (17)0.0037 (17)0.0023 (19)
C1250.019 (2)0.018 (2)0.022 (2)0.0039 (18)0.0030 (17)0.0045 (17)
Br150.0247 (2)0.0440 (3)0.02112 (18)0.0014 (2)0.00419 (18)0.0102 (3)
N210.0124 (16)0.023 (2)0.0136 (15)0.0050 (16)0.0034 (14)0.0046 (15)
C220.013 (2)0.015 (2)0.018 (2)0.0003 (19)0.0004 (16)0.0010 (19)
C230.019 (2)0.018 (2)0.029 (2)0.0042 (17)0.0009 (17)0.001 (2)
C240.022 (2)0.019 (2)0.028 (2)0.0034 (18)0.0021 (18)0.0010 (19)
C250.020 (2)0.025 (3)0.032 (2)0.0027 (18)0.0037 (19)0.0028 (19)
C25A0.015 (2)0.023 (3)0.018 (2)0.000 (2)0.0044 (18)0.003 (2)
C260.020 (2)0.027 (3)0.026 (3)0.009 (2)0.006 (2)0.014 (2)
C270.013 (2)0.037 (3)0.017 (2)0.004 (2)0.0024 (18)0.001 (2)
C27A0.014 (3)0.032 (5)0.013 (3)0.0029 (17)0.005 (3)0.0008 (16)
C280.017 (2)0.041 (3)0.016 (2)0.004 (2)0.0022 (18)0.005 (2)
C290.021 (2)0.034 (3)0.020 (2)0.006 (2)0.0031 (18)0.0085 (19)
C2100.020 (2)0.022 (2)0.018 (2)0.0031 (19)0.0052 (19)0.0010 (19)
C2110.015 (2)0.020 (3)0.013 (2)0.001 (2)0.0017 (17)0.001 (2)
C21A0.011 (2)0.025 (2)0.018 (3)0.006 (2)0.0020 (19)0.004 (2)
C21B0.015 (2)0.025 (2)0.013 (2)0.001 (2)0.0038 (17)0.0046 (19)
O2140.0219 (14)0.0186 (15)0.0191 (13)0.0007 (13)0.0013 (13)0.0067 (11)
S2210.0148 (8)0.0233 (9)0.0156 (9)0.0017 (4)0.0028 (7)0.0004 (4)
C2220.012 (2)0.014 (2)0.016 (3)0.0038 (17)0.001 (2)0.0014 (17)
C2230.017 (2)0.017 (2)0.018 (2)0.0042 (18)0.0011 (17)0.0025 (18)
C2240.0164 (18)0.020 (2)0.028 (2)0.0078 (18)0.0040 (18)0.0033 (19)
C2250.018 (2)0.021 (2)0.0192 (19)0.0006 (18)0.0014 (18)0.0060 (18)
Br250.0232 (2)0.0436 (3)0.02227 (18)0.0012 (2)0.00527 (17)0.0107 (3)
N110.0142 (16)0.0169 (19)0.0149 (16)0.0057 (16)0.0001 (15)0.0023 (14)
C120.012 (2)0.025 (2)0.015 (2)0.001 (2)0.0002 (16)0.0018 (19)
C130.017 (2)0.023 (2)0.021 (2)0.0014 (17)0.0001 (16)0.0055 (19)
C140.021 (2)0.016 (2)0.027 (2)0.0040 (18)0.0054 (18)0.0012 (18)
C150.018 (2)0.018 (2)0.026 (2)0.0005 (16)0.0004 (17)0.0026 (17)
C15A0.018 (2)0.018 (3)0.018 (2)0.001 (2)0.0035 (18)0.004 (2)
C160.023 (2)0.020 (3)0.018 (2)0.005 (2)0.0046 (19)0.0035 (19)
C170.020 (2)0.033 (3)0.015 (2)0.005 (2)0.0017 (19)0.008 (2)
C17A0.011 (3)0.025 (4)0.013 (3)0.0021 (16)0.002 (3)0.0021 (15)
C180.014 (2)0.031 (3)0.019 (2)0.003 (2)0.0041 (18)0.002 (2)
C190.024 (2)0.029 (3)0.023 (2)0.004 (2)0.0010 (18)0.0059 (19)
C1100.022 (2)0.024 (3)0.031 (3)0.003 (2)0.008 (2)0.001 (2)
C1110.014 (2)0.026 (3)0.016 (2)0.000 (2)0.0013 (17)0.006 (2)
C11A0.010 (2)0.026 (2)0.007 (2)0.003 (2)0.0032 (18)0.006 (2)
C11B0.0081 (19)0.025 (2)0.0144 (19)0.0029 (19)0.0020 (16)0.0008 (19)
O1140.0188 (13)0.0214 (15)0.0161 (13)0.0029 (13)0.0018 (12)0.0032 (11)
S1210.0178 (8)0.0282 (10)0.0157 (9)0.0035 (4)0.0020 (7)0.0006 (5)
C1220.017 (3)0.016 (2)0.014 (3)0.001 (2)0.001 (2)0.003 (2)
C1230.0154 (19)0.024 (2)0.018 (2)0.0012 (18)0.0045 (17)0.0028 (18)
C1240.0126 (17)0.019 (2)0.023 (2)0.0046 (17)0.0037 (17)0.0023 (19)
C1250.019 (2)0.018 (2)0.022 (2)0.0039 (18)0.0030 (17)0.0045 (17)
Br150.0247 (2)0.0440 (3)0.02112 (18)0.0014 (2)0.00419 (18)0.0102 (3)
N210.0124 (16)0.023 (2)0.0136 (15)0.0050 (16)0.0034 (14)0.0046 (15)
C220.013 (2)0.015 (2)0.018 (2)0.0003 (19)0.0004 (16)0.0010 (19)
C230.019 (2)0.018 (2)0.029 (2)0.0042 (17)0.0009 (17)0.001 (2)
C240.022 (2)0.019 (2)0.028 (2)0.0034 (18)0.0021 (18)0.0010 (19)
C250.020 (2)0.025 (3)0.032 (2)0.0027 (18)0.0037 (19)0.0028 (19)
C25A0.015 (2)0.023 (3)0.018 (2)0.000 (2)0.0044 (18)0.003 (2)
C260.020 (2)0.027 (3)0.026 (3)0.009 (2)0.006 (2)0.014 (2)
C270.013 (2)0.037 (3)0.017 (2)0.004 (2)0.0024 (18)0.001 (2)
C27A0.014 (3)0.032 (5)0.013 (3)0.0029 (17)0.005 (3)0.0008 (16)
C280.017 (2)0.041 (3)0.016 (2)0.004 (2)0.0022 (18)0.005 (2)
C290.021 (2)0.034 (3)0.020 (2)0.006 (2)0.0031 (18)0.0085 (19)
C2100.020 (2)0.022 (2)0.018 (2)0.0031 (19)0.0052 (19)0.0010 (19)
C2110.015 (2)0.020 (3)0.013 (2)0.001 (2)0.0017 (17)0.001 (2)
C21A0.011 (2)0.025 (2)0.018 (3)0.006 (2)0.0020 (19)0.004 (2)
C21B0.015 (2)0.025 (2)0.013 (2)0.001 (2)0.0038 (17)0.0046 (19)
O2140.0219 (14)0.0186 (15)0.0191 (13)0.0007 (13)0.0013 (13)0.0067 (11)
S2210.0148 (8)0.0233 (9)0.0156 (9)0.0017 (4)0.0028 (7)0.0004 (4)
C2220.012 (2)0.014 (2)0.016 (3)0.0038 (17)0.001 (2)0.0014 (17)
C2230.017 (2)0.017 (2)0.018 (2)0.0042 (18)0.0011 (17)0.0025 (18)
C2240.0164 (18)0.020 (2)0.028 (2)0.0078 (18)0.0040 (18)0.0033 (19)
C2250.018 (2)0.021 (2)0.0192 (19)0.0006 (18)0.0014 (18)0.0060 (18)
Br250.0232 (2)0.0436 (3)0.02227 (18)0.0012 (2)0.00527 (17)0.0107 (3)
Geometric parameters (Å, º) top
N11—O1141.447 (4)N21—O2141.461 (4)
N11—C11B1.453 (5)N21—C21B1.462 (5)
N11—C121.493 (5)N21—C221.493 (5)
C12—C1221.505 (7)C22—C2221.492 (8)
C12—C131.551 (6)C22—C231.571 (6)
C12—H121.0000C22—H221.0000
C13—C141.539 (5)C23—C241.528 (6)
C13—H13A0.9900C23—H23A0.9900
C13—H13B0.9900C23—H23B0.9900
C14—O1141.453 (5)C24—O2141.464 (5)
C14—C151.523 (5)C24—C251.513 (6)
C14—H141.0000C24—H241.0000
C15—C15A1.510 (6)C25—C25A1.512 (7)
C15—H15A0.9900C25—H25A0.9900
C15—H15B0.9900C25—H25B0.9900
C15A—C11B1.374 (6)C25A—C21B1.372 (6)
C15A—C161.414 (7)C25A—C261.424 (7)
C16—C171.366 (7)C26—C271.370 (7)
C16—H160.9500C26—H260.9500
C17—C17A1.412 (6)C27—C27A1.417 (7)
C17—H170.9500C27—H270.9500
C17A—C181.413 (7)C27A—C21A1.413 (9)
C17A—C11A1.457 (9)C27A—C281.425 (7)
C18—C191.362 (7)C28—C291.355 (7)
C18—H180.9500C28—H280.9500
C19—C1101.406 (6)C29—C2101.397 (6)
C19—H190.9500C29—H290.9500
C110—C1111.368 (7)C210—C2111.364 (6)
C110—H1100.9500C210—H2100.9500
C111—C11A1.410 (7)C211—C21A1.428 (7)
C111—H1110.9500C211—H2110.9500
C11A—C11B1.414 (6)C21A—C21B1.422 (6)
S121—C1251.715 (4)S221—C2251.723 (4)
S121—C1221.730 (7)S221—C2221.744 (7)
C122—C1231.353 (7)C222—C2231.361 (7)
C123—C1241.406 (6)C223—C2241.430 (6)
C123—H1230.9500C223—H2230.9500
C124—C1251.348 (5)C224—C2251.349 (6)
C124—H1240.9500C224—H2240.9500
C125—Br151.893 (4)C225—Br251.878 (4)
O114—N11—C11B108.1 (3)O214—N21—C21B107.5 (3)
O114—N11—C12100.6 (3)O214—N21—C22101.0 (3)
C11B—N11—C12111.6 (3)C21B—N21—C22110.4 (3)
N11—C12—C122111.1 (4)C222—C22—N21110.6 (4)
N11—C12—C13103.3 (3)C222—C22—C23112.5 (3)
C122—C12—C13112.8 (4)N21—C22—C23103.8 (3)
N11—C12—H12109.8C222—C22—H22109.9
C122—C12—H12109.8N21—C22—H22109.9
C13—C12—H12109.8C23—C22—H22109.9
C14—C13—C12103.1 (3)C24—C23—C22103.1 (3)
C14—C13—H13A111.1C24—C23—H23A111.2
C12—C13—H13A111.1C22—C23—H23A111.2
C14—C13—H13B111.1C24—C23—H23B111.2
C12—C13—H13B111.1C22—C23—H23B111.2
H13A—C13—H13B109.1H23A—C23—H23B109.1
O114—C14—C15106.4 (3)O214—C24—C25106.2 (3)
O114—C14—C13103.7 (3)O214—C24—C23104.5 (3)
C15—C14—C13113.5 (3)C25—C24—C23113.3 (4)
O114—C14—H14111.0O214—C24—H24110.8
C15—C14—H14111.0C25—C24—H24110.8
C13—C14—H14111.0C23—C24—H24110.8
C15A—C15—C14109.0 (3)C25A—C25—C24109.1 (4)
C15A—C15—H15A109.9C25A—C25—H25A109.9
C14—C15—H15A109.9C24—C25—H25A109.9
C15A—C15—H15B109.9C25A—C25—H25B109.9
C14—C15—H15B109.9C24—C25—H25B109.9
H15A—C15—H15B108.3H25A—C25—H25B108.3
C11B—C15A—C16118.3 (4)C21B—C25A—C26118.1 (4)
C11B—C15A—C15120.1 (4)C21B—C25A—C25120.9 (4)
C16—C15A—C15121.6 (4)C26—C25A—C25120.9 (4)
C17—C16—C15A122.1 (5)C27—C26—C25A121.5 (5)
C17—C16—H16119.0C27—C26—H26119.3
C15A—C16—H16119.0C25A—C26—H26119.3
C16—C17—C17A120.9 (5)C26—C27—C27A120.3 (5)
C16—C17—H17119.5C26—C27—H27119.8
C17A—C17—H17119.5C27A—C27—H27119.8
C17—C17A—C18123.3 (6)C21A—C27A—C27119.3 (5)
C17—C17A—C11A118.0 (5)C21A—C27A—C28117.7 (4)
C18—C17A—C11A118.6 (4)C27—C27A—C28123.0 (6)
C19—C18—C17A121.7 (4)C29—C28—C27A121.5 (5)
C19—C18—H18119.2C29—C28—H28119.3
C17A—C18—H18119.2C27A—C28—H28119.3
C18—C19—C110119.8 (5)C28—C29—C210120.7 (5)
C18—C19—H19120.1C28—C29—H29119.7
C110—C19—H19120.1C210—C29—H29119.7
C111—C110—C19120.8 (5)C211—C210—C29120.4 (5)
C111—C110—H110119.6C211—C210—H210119.8
C19—C110—H110119.6C29—C210—H210119.8
C110—C111—C11A121.6 (5)C210—C211—C21A120.2 (5)
C110—C111—H111119.2C210—C211—H211119.9
C11A—C111—H111119.2C21A—C211—H211119.9
C111—C11A—C11B124.2 (5)C27A—C21A—C21B118.6 (4)
C111—C11A—C17A117.4 (4)C27A—C21A—C211119.6 (4)
C11B—C11A—C17A118.3 (4)C21B—C21A—C211121.9 (5)
C15A—C11B—C11A122.3 (4)C25A—C21B—C21A122.2 (4)
C15A—C11B—N11121.8 (4)C25A—C21B—N21121.2 (4)
C11A—C11B—N11115.9 (4)C21A—C21B—N21116.5 (4)
N11—O114—C14104.1 (3)N21—O214—C24104.1 (3)
C125—S121—C12290.4 (3)C225—S221—C22290.9 (3)
C123—C122—C12127.0 (5)C223—C222—C22127.4 (6)
C123—C122—S121110.8 (4)C223—C222—S221110.4 (5)
C12—C122—S121122.0 (4)C22—C222—S221122.1 (4)
C122—C123—C124114.3 (4)C222—C223—C224114.3 (4)
C122—C123—H123122.8C222—C223—H223122.9
C124—C123—H123122.8C224—C223—H223122.9
C125—C124—C123111.0 (3)C225—C224—C223110.9 (4)
C125—C124—H124124.5C225—C224—H224124.6
C123—C124—H124124.5C223—C224—H224124.6
C124—C125—S121113.5 (3)C224—C225—S221113.5 (3)
C124—C125—Br15128.1 (3)C224—C225—Br25126.9 (3)
S121—C125—Br15118.4 (2)S221—C225—Br25119.6 (2)
O114—N11—C12—C12280.0 (4)O214—N21—C22—C22282.0 (4)
C11B—N11—C12—C122165.6 (4)C21B—N21—C22—C222164.5 (4)
O114—N11—C12—C1341.2 (3)O214—N21—C22—C2339.0 (3)
C11B—N11—C12—C1373.3 (4)C21B—N21—C22—C2374.6 (4)
N11—C12—C13—C1417.2 (4)C222—C22—C23—C24104.3 (4)
C122—C12—C13—C14102.8 (4)N21—C22—C23—C2415.3 (4)
C12—C13—C14—O11412.8 (3)C22—C23—C24—O21414.1 (4)
C12—C13—C14—C15102.2 (4)C22—C23—C24—C25101.1 (4)
O114—C14—C15—C15A48.8 (4)O214—C24—C25—C25A48.6 (4)
C13—C14—C15—C15A64.6 (4)C23—C24—C25—C25A65.5 (5)
C14—C15—C15A—C11B8.8 (5)C24—C25—C25A—C21B8.6 (6)
C14—C15—C15A—C16171.6 (4)C24—C25—C25A—C26171.6 (4)
C11B—C15A—C16—C171.8 (6)C21B—C25A—C26—C271.3 (7)
C15—C15A—C16—C17178.6 (4)C25—C25A—C26—C27178.8 (4)
C15A—C16—C17—C17A0.4 (7)C25A—C26—C27—C27A2.0 (7)
C16—C17—C17A—C18179.5 (5)C26—C27—C27A—C21A1.5 (9)
C16—C17—C17A—C11A1.1 (8)C26—C27—C27A—C28176.3 (5)
C17—C17A—C18—C19178.8 (5)C21A—C27A—C28—C290.3 (8)
C11A—C17A—C18—C190.4 (9)C27—C27A—C28—C29178.1 (5)
C17A—C18—C19—C1100.7 (7)C27A—C28—C29—C2101.4 (7)
C18—C19—C110—C1110.2 (7)C28—C29—C210—C2111.8 (6)
C19—C110—C111—C11A1.3 (7)C29—C210—C211—C21A0.4 (7)
C110—C111—C11A—C11B179.5 (5)C27—C27A—C21A—C21B0.3 (9)
C110—C111—C11A—C17A1.5 (8)C28—C27A—C21A—C21B177.6 (5)
C17—C17A—C11A—C111177.8 (5)C27—C27A—C21A—C211179.5 (5)
C18—C17A—C11A—C1110.7 (9)C28—C27A—C21A—C2111.7 (9)
C17—C17A—C11A—C11B1.2 (8)C210—C211—C21A—C27A1.3 (8)
C18—C17A—C11A—C11B179.7 (5)C210—C211—C21A—C21B177.9 (4)
C16—C15A—C11B—C11A1.6 (6)C26—C25A—C21B—C21A0.1 (7)
C15—C15A—C11B—C11A178.7 (4)C25—C25A—C21B—C21A179.9 (4)
C16—C15A—C11B—N11176.5 (4)C26—C25A—C21B—N21176.8 (3)
C15—C15A—C11B—N113.2 (6)C25—C25A—C21B—N213.1 (6)
C111—C11A—C11B—C15A179.1 (5)C27A—C21A—C21B—C25A0.4 (8)
C17A—C11A—C11B—C15A0.2 (7)C211—C21A—C21B—C25A178.8 (5)
C111—C11A—C11B—N110.9 (7)C27A—C21A—C21B—N21177.4 (5)
C17A—C11A—C11B—N11178.0 (5)C211—C21A—C21B—N211.8 (7)
O114—N11—C11B—C15A25.3 (5)O214—N21—C21B—C25A25.7 (5)
C12—N11—C11B—C15A84.4 (4)C22—N21—C21B—C25A83.7 (5)
O114—N11—C11B—C11A152.9 (4)O214—N21—C21B—C21A151.3 (4)
C12—N11—C11B—C11A97.4 (4)C22—N21—C21B—C21A99.3 (4)
C11B—N11—O114—C1465.8 (3)C21B—N21—O214—C2466.2 (3)
C12—N11—O114—C1451.3 (3)C22—N21—O214—C2449.5 (3)
C15—C14—O114—N1180.1 (3)C25—C24—O214—N2180.4 (4)
C13—C14—O114—N1139.9 (3)C23—C24—O214—N2139.7 (4)
N11—C12—C122—C123151.7 (5)N21—C22—C222—C223151.1 (4)
C13—C12—C122—C12392.9 (6)C23—C22—C222—C22393.2 (5)
N11—C12—C122—S12133.6 (6)N21—C22—C222—S22133.2 (5)
C13—C12—C122—S12181.8 (5)C23—C22—C222—S22182.4 (4)
C125—S121—C122—C1230.1 (4)C225—S221—C222—C2230.5 (4)
C125—S121—C122—C12175.4 (4)C225—S221—C222—C22176.8 (4)
C12—C122—C123—C124175.0 (4)C22—C222—C223—C224175.7 (4)
S121—C122—C123—C1240.2 (6)S221—C222—C223—C2240.3 (5)
C122—C123—C124—C1250.3 (6)C222—C223—C224—C2251.2 (5)
C123—C124—C125—S1210.2 (5)C223—C224—C225—S2211.5 (4)
C123—C124—C125—Br15177.2 (3)C223—C224—C225—Br25177.2 (3)
C122—S121—C125—C1240.0 (3)C222—S221—C225—C2241.2 (3)
C122—S121—C125—Br15177.6 (3)C222—S221—C225—Br25177.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg3i1.002.753.616 (5)143
C24—H24···Cg4ii1.002.773.632 (5)145
C18—H18···Cg50.952.573.488 (5)163
C28—H28···Cg6iii0.952.653.557 (5)159
C123—H123···Cg7iv0.952.523.349 (5)146
C223—H223···Cg5iv0.952.533.359 (5)146
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z1/2; (iii) x+1/2, y+3/2, z; (iv) x1/2, y+3/2, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC19H17NOSC19H17NOSC18H14BrNOS
Mr307.41307.41372.27
Crystal system, space groupOrthorhombic, P212121Monoclinic, P21/cOrthorhombic, Pna21
Temperature (K)120120120
a, b, c (Å)7.0387 (3), 11.5605 (10), 18.1951 (17)16.165 (2), 5.2505 (3), 20.0410 (19)15.316 (2), 9.9230 (18), 20.225 (3)
α, β, γ (°)90, 90, 9090, 118.813 (9), 9090, 90, 90
V3)1480.6 (2)1490.4 (3)3073.8 (8)
Z448
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.220.222.81
Crystal size (mm)0.34 × 0.24 × 0.140.41 × 0.23 × 0.120.40 × 0.14 × 0.12
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.929, 0.9700.916, 0.9740.399, 0.729
No. of measured, independent and
observed [I > 2σ(I)] reflections
13622, 2698, 1838 20766, 3412, 2058 27630, 6933, 5427
Rint0.1290.0820.049
(sin θ/λ)max1)0.6060.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.083, 0.99 0.057, 0.156, 1.08 0.038, 0.076, 1.03
No. of reflections269834126932
No. of parameters200200398
No. of restraints001
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.620.35, 0.310.87, 0.43
Absolute structureFlack (1983), 1333 Bijvoet pairs?Flack (1983); this is not a conventional Flack x parameter but a twin fraction, calculated using TWIN and BASF
Absolute structure parameter0.03 (9)?0.663 (9)

Computer programs: COLLECT (Hooft, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometrical parameters (Å, °) for compounds (I)–(III) top
(i) Ring puckering parameters
Parameter(I)(II)(III)
x = nulx = nulx = 1x = 2
(a) Five-membered rings
Q20.447 (2)0.445 (3)0.466 (4)0.454 (4)
ϕ216.0 (3)15.1 (4)21.3 (5)19.4 (5)
(b) Six-membered rings
Q0.615 (2)0.614 (3)0.626 (4)0.632 (4)
θ128.8 (3)128.3 (3)127.1 (4)127.1 (4)
ϕ162.2 (3)166.4 (4)162.2 (5)163.0 (5)
(c) Seven-membered rings
Q1.113 (3)1.112 (3)1.104 (4)1.107 (4)
ϕ214.65 (16)16.61 (17)12.9 (2)13.6 (2)
ϕ3300.0 (5)299.7 (5)295.2 (7)297.9 (8)
(ii) Torsion angles
Mx1—Cx2—C2xx—Sxx2131.0 (3)-79.1 (3)33.6 (6)33.2 (5)
Notes: puckering parameters for five-membered rings are defined for the atom sequence Ox14–Nx1–Cx2–Cx3–Cx4, puckering parameters for six-membered rings are defined for the atom sequence Ox14–Nx1–Cx1B–Cx5A–Cx5–Cx4 and puckering parameters for seven-membered rings are defined for the atom sequence Nx1–Cx2–Cx3–Cx4–Cx5–Cx5A–Cx1B.
Parameters (Å, °) for hydrogen bonds in compounds (I)–(III) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)C9—H9···O14i0.952.513.425 (3)161
C7—H7···Cg1ii0.952.783.582 (3)143
C24—H24···Cg2iii0.952.643.572 (3)167
C25—H25···Cg2iv0.952.883.690 (3)143
(II)C3—H3A···N1v0.992.593.545 (4)163
C5—H5B···O14v0.992.503.436 (3)157
(III)C14—H14···Cg3vi1.002.753.616 (5)143
C24—H24···Cg4vii1.002.773.632 (5)145
C18—H18···Cg50.952.573.488 (5)163
C28—H28···Cg6viii0.952.653.557 (5)159
C123—H123···Cg7ix0.952.523.349 (5)146
C223—H223···Cg5ix0.952.533.359 (5)146
Cg1–7 represent the centroids of S21/C22–C25, C7A/C8–C11/C11A, S221/C222–C225, S121/C122–C125, C21A/C21B/C25A/C26/C27/C27A, C17A/C18/C19/C110/C111/C11A and C11A/C11B/C15A/C16/C17/C17A rings, respectively.

Symmetry codes: (i) -x, y-1/2, -z+1/2; (ii) -x+1/2, -y+1, z-1/2; (iii) x+1/2, -y+1/2, -z+1; (iv) -x+3/2, -y+1, z+1/2; (v) x, y-1, z; (vi) -x+1/2, y+1/2, z+1/2; (vii) -x+1/2, y-1/2, z-1/2; (viii) x+1/2, -y+3/2, z; (ix) x-1/2, -y+3/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds