Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In each of ethyl N-{2-amino-5-formyl-6-[meth­yl(phen­yl)amino]­pyrimidin-4-yl}glycinate, C16H19N5O3, (I), N-{2-amino-5-formyl-6-[meth­yl(phen­yl)amino]­pyrimidin-4-yl}glycin­amide, C14H16N6O2, (II), and ethyl 3-amino-N-{2-amino-5-formyl-6-[meth­yl(phen­yl)amino]­pyrimidin-4-yl}propionate, C17H21N5O3, (III), the pyrimidine ring is effectively planar, but in each of methyl N-{2-amino-6-[benz­yl(meth­yl)amino]-5-formyl­pyrimidin-4-yl}glycinate, C16H19N5O3, (IV), ethyl 3-amino-N-{2-amino-6-[benz­yl(meth­yl)amino]-5-formylpyrimidin-4-yl}propionate, C18H23N5O3, (V), and ethyl 3-amino-N-[2-amino-5-formyl-6-(piperidin-4-yl)pyrimidin-4-yl]propionate, C15H23N5O3, (VI), the pyrimidine ring is folded into a boat conformation. The bond lengths in each of (I)-(VI) provide evidence for significant polarization of the electronic structure. The mol­ecules of (I) are linked by paired N-H...N hydrogen bonds to form isolated dimeric aggregates, and those of (III) are linked by a combination of N-H...N and N-H...O hydrogen bonds into a chain of edge-fused rings. In the structure of (IV), mol­ecules are linked into sheets by means of two hydrogen bonds, both of N-H...O type, in the structure of (V) by three hydrogen bonds, two of N-H...N type and one of C-H...O type, and in the structure of (VI) by four hydrogen bonds, all of N-H...O type. Mol­ecules of (II) are linked into a three-dimensional framework structure by a combination of three N-H...O hydrogen bonds and one C-H...O hydrogen bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112051049/yf3022sup1.cif
Contains datablocks global, I, II, III, IV, V, VI

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112051049/yf3022Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112051049/yf3022IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112051049/yf3022IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112051049/yf3022IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112051049/yf3022Vsup6.hkl
Contains datablock V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112051049/yf3022VIsup7.hkl
Contains datablock VI

CCDC references: 925765; 925766; 925767; 925768; 925769; 925770

Comment top

When heterocyclic species are covalently linked to biomolecules such as amino acids and peptides, carbohydrates, DNA or steroids, this type of combination can enhance the bioactivity of both components. For example, pyrimidine derivatives have been used in this way, particularly when linked to essential amino acids, in searches for new potentially bioactive agents, including anti-inflammatory agents (Bruno et al., 1999), antimicrobials (Ghorab et al., 2004), antidiabetic agents (Cantin et al., 2006) and agents for the treatment of urinary tract disease (Murata et al., 2004). Such combinations have also been investigated as potential intermediates for the synthesis of poly-fused pyrimidines of possible biological value (Min et al., 2008). Here, we report the molecular and supramolecular structures of six compounds of this type, (I)–(VI) (Fig. 1 and scheme), all having a simple amino substituent at position 6 of the pyrimidine ring, while position 4 of said ring carries, in each case, an amino substituent derived from a simple amino acid derivative. The present work is a development of an earlier study (Cobo et al., 2008) which reported the structures of 12 N6-substituted 2-amino-4-chloro-5-formylpyrimidines.

Minor variations in one or other of the substituents at positions 4 and 6 in these compounds can lead to significant differences, both in the molecular conformations and in the hydrogen-bonded supramolecular assemblies. None of the molecules of (I)–(VI) exhibits any internal symmetry and they are all conformationally chiral, although all of them crystallize in centrosymmetric space groups. The reference molecules were selected so that all have the same sign for the torsion angle C4—C5—C51—O51 (Table 1). In each structure, formyl atom O51 is involved in an intramolecular N—H···O hydrogen bond (Table 2), forming an S(6) motif (Bernstein et al., 1995).

Compounds (I)–(III) (Fig. 1) all have an N-methyl-N-phenyl substituent at position 6 of the pyrimidine ring with slightly different substituents at position 4 (Fig. 1), viz. a glycinate ester and a glycinamide substituent in (I) and (II), respectively, and a 3-aminopropionate ester substituent in (III), and in each of (I)–(III) the pyrimidine ring is effectively planar. Compounds (IV) and (V) both have an N-benzyl-N-methyl substituent at position 6, with different amino acid ester substituents at position 4; the orientation of the 6-substituent is different, as indicated by the torsion angles C5—C6—N61—C67 and C5—C6—N61—C68 (Table 1 and Fig. 1). In addition, the pyrimidine ring in each of (IV)–(VI) is slightly distorted from planarity into a boat conformation, as indicated by the ring-puckering parameters (Cremer & Pople, 1975) for the atom sequence N1—C2—N3—C4—C5—C6 (Table 1). Thus, the ring-puckering parameters for compounds (IV)-(VI) are all very similar, and in each case the boat conformation has atoms C2 and C5 as the prow and stern of the boat, respectively, displaced to one side of the mean plane through the ring atoms, with atoms N1, N3, C4 and C6 all displaced to the opposite side of this plane, indicated schematically as (A) in the scheme. Where three substituents are present at the 4-, 5- and 6-positions in pyrimidines, the ring is often found to be quite markedly nonplanar, leading to boat (Quesada et al., 2004; Low et al., 2007; Trilleras et al., 2007; Cobo et al., 2008), twist-boat (Melguizo et al., 2003; Quesada et al., 2003; Cobo et al., 2008) or screw-boat (Low et al., 2007) conformations, as well as a variety of intermediate forms (Cobo et al., 2008). The conformations of (IV)–(VI) reported here are thus fully consistent with some of the examples reported earlier. However, even when the pyrimidine ring is effectively planar, as in (I)–(III), the ring substituent atoms are not always coplanar with the ring, with atom C51 always markedly displaced from the mean plane (Table 1).

While the glycinate ester side chains at position 4 in (I) and (IV) both adopt all-transoid extended-chain conformations, as demonstrated by the relevant torsion angles, which all lie within 10° of 180°, the corresponding aminopropionate substituents in (III), (V) and (VI) show a considerable variation in their conformations (Table 1 and Fig. 1). In particular, the values of the three torsion angles C4—N41—C42—C43, N41—C42—C43—C44 and C42—C43—C44—O45 show wide variations among these compounds. While it is tempting to associate these variations with the different patterns of hydrogen bonds involving this substituent in (III), (V) and (VI), such an approach could not readily be reconciled with the similarity in the conformations of the 4-substituent in (I) and (IV), where the hydrogen bonds involving the 4-substituent are also different, with no involvement at all in (I), but participation of atom O43 in (IV) (Table 2).

There are some interesting patterns in the bond distances in (I)–(VI) (Table 1) which suggest that the polarized form (C) (see scheme) is a significant contributor to the overall electronic structure, in addition to the classical aromatic form (B). Within the formyl fragments, the C—O distance is, in every case, long for its type [mean 1.192 Å and upper quartile 1.197 Å; Allen et al. (1987, 2006)], while the C5—C51 bond between the formyl group and the pyrimidine ring is short for its type (mean 1.470 Å and lower quartile 1.463 Å). The N21—C2, C2—N3, N3—C4 and C4—N41 bond lengths (Fig. 1) are all very similar in each compound, despite the fact that the C2—N3 and N3—C4 bonds are formally of heteroaromatic type, while the exocyclic N21—C2 and C4—N41 bonds are formally single bonds. It may also be noted here that the N1—C2 bond is usually the longest of the ring N—C bonds, while the C6—N61 bond is consistently longer than the C4—N41 bond, and this may be associated with the fact that, in general, the substituents at N61 are usually displaced well away from the mean pyrimidine plane by a rotation about the C6—N61 bond. Moreover, the geometry at N61 is always slightly pyramidal, with a mean sum of the bond angles of 353.6 (2) Å, while atom N41 is always effectively planar.

The supramolecular assembly is dominated by N—H···N and N—H···O hydrogen bonds, with C—H···O hydrogen bonds also present in the structures of (II) and (V) and a C—H···N hydrogen bond present in the structure of (VI). C—H···O interactions involving C—H bonds in methyl groups, and those having D—H···A angles significantly less than 140°, have been discounted (cf. Wood et al., 2009). However, N—H···π(arene) and C—H···π(arene) hydrogen bonds are absent, while the polarized pyrimidine rings are far from being aromatic. Despite the rather similar constitutions of (I)–(VI), the patterns of their hydrogen-bonded supramolecular assemblies vary widely, from simple dimeric units in (I), via chains and sheets, to a three-dimensional framework structure in (II). It is convenient to consider the hydrogen-bonded structures in order of increasing complexity.

In the structure of (I), there is only a single intermolecular hydrogen bond, of N—H···N type, and pairs of such bonds link inversion-related pairs of molecules into dimers characterized by a centrosymmetric R22(8) (Bernstein et al., 1995) motif (Fig. 2).

The molecules of (III) are linked into a chain of edge-fused rings by a combination of N—H···N and N—H···O hydrogen bonds. A pair of molecules related by the twofold rotation axis along (1/2, y, 1/4) are linked by symmetry-related N—H···N hydrogen bonds, using the same donor and acceptor as in (I) and forming an R22(8) ring, while a pair of molecules related by inversion are linked by symmetry-related N—H···O hydrogen bonds to form an R22(20) motif centred at (1/2, 1/2, 1/2). The combination of these two motifs, propagated by rotation and inversion, generates a chain of edge-fused rings running parallel to the [001] direction, with R22(20) rings centred at (1/2, 1/2, n/2), where n represents an integer, alternating with R22(8) rings lying across the twofold axes along (1/2, y, 1/4 + n/2), where n again represents an integer (Fig. 3).

Compounds (IV), (V) and (VI) all form sheets, of increasing complexity and built using two, three and four hydrogen bonds, respectively (Table 2). There is no obvious correlation between the complexity of the supramolecular assemblies and the complexity, specifically the number of symmetry operators, of the space groups concerned, P21/c, C2/c and P1, respectively. In (IV), amino atom N21 in the molecule at (x, y, z) acts as hydrogen-bond donor, via atom H21A, to formyl atom O51 in the molecule at (x, -y + 3/2, z + 1/2), so forming a C(9) chain running parallel to the [001] direction and built from molecules related by the 21 screw axis along (0, 3/4, z). This same atom, N21, also acts as hydrogen-bond donor, this time via atom H21B, to ester atom O43 in the molecule at (x, -y + 1/2, z + 1/2), forming a C(9) chain, also parallel to [001] and containing molecules related by the 21 screw axis along (0, 1/4, z). The combination of these two chain motifs generates a sheet lying parallel to (100), in the form of a (4,4) net containing a single type of R44(28) ring (Fig. 4).

While the sheet in (IV) is built from two N—H···O hydrogen bonds, intermolecular hydrogen bonds of this type are absent from the structure of (V). Instead, the supramolecular assembly depends upon two hydrogen bonds of N—H···N type and one of C—H···O type (Table 2), and the formation of the sheet is most readily analysed in terms of two one-dimensional substructures (Ferguson et al., 1998a,b; Gregson et al., 2000). In the first substructure, the two N—H···N hydrogen bonds, acting in isolation, each form a C(4) chain running parallel to the [010] direction, and in combination they generate a chain of edge-fused rings containing molecules related by the 21 screw axis along (3/4, y, 3/4) (Fig. 5). The C—H···O hydrogen bond links inversion-related pairs of molecules to form a centrosymmetric R22(22) motif. The molecule at (x, y, z) lies in the chain of edge-fused rings along (3/4, y, 3/4), while that at (-x + 1, -y + 1, -z + 1) forms part of a similar chain along (1/4, y, 1/4). The combination of all three hydrogen bonds generates a chain of rings running parallel to the [111] direction in which R22(8) and R22(22) rings alternate (Fig. 6). The combination of the [101] and [111] substructural chains then generates a complex sheet lying parallel to (101).

Hydrogen bonds of N—H···N type are absent from the structure of (VI), where the sheet structure is generated by N—H···O hydrogen bonds (Table 2). As for (V), it is convenient to describe the formation of the sheet structure in (VI) in terms of two one-dimensional substructures. In one substructure, amino atom N21 acts as hydrogen-bond donor, via atoms H21A and H21B, to ester atoms O44 in the molecules at (x, y + 1, z) and (-x, -y + 1, -z), respectively, and these interactions generate a chain of edge-fused centrosymmetric rings running parallel to the [010] direction, within which R42(8) rings centred at (0, n, 0) alternate with R22(20) rings centred at (0, 1/2 + n, 0), where n represents an integer in both cases (Fig. 7). There is an intermolecular C—H···N contact in the structure, involving the α-CH2 group of the carboxylate unit as donor. If this is regarded as structurally significant, its role is modestly to reinforce the chain along [010]. Amino atom N41 participates in a planar three-centre N—H···(O)2 hydrogen bond, where the acceptors are two formyl atoms O51 at (x, y, z) and (-x, -y + 1, -z + 1) (Table 2), forming, respectively, S(6) and R22(4) motifs. The combination of these motifs with the R22(20) motif produces a second substructure in the form of a chain of rings running parallel to the [001] direction, with R22(20) rings centred at (0, 1/2, n) alternating with R22(4) rings centred at (0, 1/2, 1/2+n), where n represents an integer (Fig. 8). The combination of the substructures parallel to [010] and [001] generates a sheet lying parallel to (100) (Fig. 9).

Compound (II) is the only example amongst those discussed here in which the hydrogen-bonded supramolecular assembly is three-dimensional. The formation of this three-dimensional framework is most conveniently analysed in terms of the linking of sheets generated solely by N—H···O hydrogen bonds, and the formation of the sheet structure in turn is most readily analysed in terms of two substructures in the form of chains. In the simpler of the two chain motifs comprising the sheet, molecules related by translation are linked into a C(9) chain running parallel to the [010] direction (Fig. 10). It is interesting to note that only one of the N—H bonds in the amide unit containing atom N21 participates in the hydrogen bonding.

The second chain motif in (II) involves the two N—H bonds of the amide unit containing atom N44. This atom, in the reference molecule at (x, y, z), acts as hydrogen-bond donor, via atom H44A, to formyl atom O51 at (-x + 1, y, -z + 1/2), so forming an R22(18) ring containing two molecules related by the twofold rotation axis along (1/2, y, 1/4). Atom N44 at (x, y, z) also acts as donor, this time via atom H44B, to amide atom O43 at (-x + 3/2, -y + 1/2, -z + 1), so forming an R22(8) ring containing two molecules related by inversion across (3/4, 1/4, 1/2). The combination of these two motifs generates a chain of edge-fused rings running parallel to the [101] direction, with R22(8) rings centred at (1/4 + n/2, 1/4, n/2) alternating with R22(8) rings lying across the twofold rotation axes along (n/2, y, -1/4 + n/2), where n represents an integer in each case (Fig. 11).

The combination of the simple chain along [010] and the chain of rings along [101] generates a sheet lying parallel to (101). Two sheets of this type, related to one another by inversion, pass through each unit cell, and adjacent sheets are linked by the third substructural motif, so generating a three-dimensional framework structure. Aryl atom C62 in the molecule at (x, y, z) acts as hydrogen-bond donor to amide atom O43 at (-x + 1, -y + 1, -z + 1), so forming a centrosymmetric R22(22) ring (Fig. 12) in which the two component molecules lie in different (101) sheets. Propagation of this interaction by the space-group symmetry operators serves to link all of the sheets into a single continuous structure.

In summary, we have shown that the hydrogen-bonded assembly of six very closely related pyrimidine derivatives varies widely, emcompassing a simple dimeric unit, chains, sheets and a three-dimensional framework structure.

Related literature top

For related literature, see: Allen et al. (1987, 2006); Bernstein et al. (1995); Bruno et al. (1999); Cantin (2006); Cobo et al. (2008); Cremer & Pople (1975); Ferguson et al. (1998a, 1998b); Ghorab et al. (2004); Gregson et al. (2000); Low et al. (2007); Melguizo et al. (2003); Min et al. (2008); Murata et al. (2004); Quesada et al. (2003, 2004); Trilleras et al. (2007); Wood et al. (2009).

Experimental top

For the synthesis of the esters (I) and (III)–(VI), the appropriate amino ester hydrochloride (1.3 mmol) and anhydrous potassium carbonate (6.5 mmol) were added to a suspension of the appropriate N4-substituted 2,4-diamino-6-chloropyrimidine-5-carbaldehyde in dry acetonitrile (10 ml). The mixtures were then heated under reflux until thin-layer chromatography (TLC) indicated that the starting pyrimidine had all been consumed. The mixtures were then cooled to ambient temperature and the solvent was removed under reduced pressure. The resulting products were then purified by flash chromatography on silica gel using dichloromethane/acetone mixtures (95:5 to 90:10 v/v) as eluent. Finally, crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in methanol at ambient temperature and in air.

Compound (I), from 2-amino-4-chloro-6-[methyl(phenyl)amino]pyrimidine-5-carbaldehyde and glycine ethyl ester hydrochloride. Reaction time 24 h, yield 83%, pale yellow, m.p. 394 K (decomposition). MS (EI, 70 eV) m/z (%): 329 (M+, 92), 328 (100), 312 (51), 200 (41), 254 (68), 238 (43), 226 (66). Analysis, found: C 58.1, H 5.9, N 20.9%; C16H19N5O3 requires: C 58.3, H 5.8, N 21.3%.

Compound (III), from 2-amino-4-chloro-6-[methyl(phenyl)amino]pyrimidine-5-carbaldehyde and β-alanine ethyl ester hydrochloride. Reaction time 20 h, yield 78%, colourless, m.p. >433 K (decomposition). MS (EI, 70 eV) m/z (%): 3443 (M+, 79), 342 (100), 254 (62), 214 (40). Analysis, found: C 59.5, H 5.9, N 19.9%; C17H21N5O3 requires: C 59.5, H 6.2, N 20.4%.

Compound (IV), from 2-amino-6-[benzyl(methyl)amino]-4-chloropyrimidine-5-carbaldehyde and glycine ethyl ester hydrochloride. Reaction time 4 d, yield 87%, colourless, m.p. 388 K (decomposition). MS (EI, 70 eV) m/z (%): 329 (M+, 77), 313 (20), 312 (100), 300 (31), 270 (21), 259 (29), 120 (73), 91 (65).

Compound (V), from 2-amino-6-[benzyl(methyl)amino]-4-chloropyrimidine-5-carbaldehyde and β-alanine ethyl ester hydrochloride. Reaction time 24 h, yield 88%, colourless, m.p. 388 K (decomposition). MS (EI, 70 eV) m/z (%): 357 (M+, 53), 340 (72), 328 (20), 312 (26), 270 (13), 266 (26), 252 (31), 192 (82), 91 (100). Analysis, found: C 60.7, H 6.2, N 19.2%; C18H23N5O3 requires: C 60.5, H 6.5, N 19.6%.

Compound (VI), from 2-amino-4-chloro-6-(piperidin-1-yl)pyrimidine-5-carbaldehyde and β-alanine ethyl ester hydrochloride. Reaction time 21 h, yield 99%, colourless, m.p. 378 K. MS (EI, 70 eV) m/z (%): 321 (M+, 42), 304 (100), 276 (25), 230 (18), 216 (26). Analysis, found: C 55.7, H 7.4, N 21.7%; C15H23N5O3 requires: C 56.1, H 7.2, N 21.8%.

For the synthesis of (II), a sample of (I) (0.3 mmol) was added to a methanol ammonia solution (5 ml of 7 M), and this mixture was then held at 313 K for 6 h. The solvent and the excess ammonia were removed under reduced pressure at ambient temperature and the product was crystallized from methanol [yield 75%, colourless, m.p. >413 K (decomposition)]. MS (EI, 70 eV) m/z (%): 300 (M+, 65), 299 (100), 283 (17), 256 (92), 254 (67), 238 (44), 226 (56), 212 (34), 200 (22), 106 (20). HRMS found: 300.1331; C14H16N6O2 requires 300.1335.

Refinement top

All H atoms were located in difference maps. C-bound H atoms were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.93–0.99 Å and Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other C-bound H atoms. N-bound H atoms were permitted to ride at the positions deduced from the difference maps, with Uiso(H) = 1.2Ueq(N), giving N—H distances in the range 0.77–1.01 Å (see Table 2).

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structures of compounds (I)–(VI), showing the atom-labelling schemes: (a) (I), (b) (II), (c) (III), (d) (IV), (e) (V) and (f) (VI). Displacement ellipsoids are drawn at the 20% probability level for (I) and at the 30% probability level for (II)–(VI).
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a centrosymmetric hydrogen-bonded (dashed lines) R22(8) dimer. For the sake of clarity, H atoms other than those bonded to atom N21 have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (-x, -y + 1, -z + 1).
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (III), showing the formation of a hydrogen-bonded (dashed lines) chain of R22(8) and R22(20) rings along [001]. For the sake of clarity, H atoms other than those bonded to atom N21 have been omitted.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (IV), showing the formation of a hydrogen-bonded (dashed lines) sheet of R44(28) rings lying parallel to (100). For the sake of clarity, H atoms other than those bonded to atom N21 have been omitted.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of (V), showing the formation of a hydrogen-bonded (dashed lines) chain of edge-fused R22(8) rings along [010]. For the sake of clarity, H atoms other than those bonded to atom N21 have been omitted.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of (V), showing the formation of a hydrogen-bonded (dashed lines) chain of alternating R22(8) and R22(22) rings along [111]. For the sake of clarity, H atoms other than those bonded to atoms N21 and C46 have been omitted.
[Figure 7] Fig. 7. Part of the crystal structure of compound (VI), showing the formation of a hydrogen-bonded (dashed lines) chain of alternating R42(8) and R22(20) rings along [010]. For the sake of clarity, H atoms other than those bonded to atom N21 have been omitted. Atoms marked with an asterisk (*), a hash symbol (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (x, y + 1, z), (x, y - 1, z), (-x, -y + 1, -z) and (-x, -y, -z), respectively.
[Figure 8] Fig. 8. Part of the crystal structure of (VI), showing the formation of a hydrogen-bonded (dashed lines) chain of alternating R22(4) and R22(20) rings along [001]. For the sake of clarity, H atoms other than those bonded to atoms N21 and N41 have been omitted. Atoms marked with an asterisk (*), a hash symbol (#) or a dollar sign ($) are at the symmetry positions (-x, -y + 1, -z + 1), (x, y, z + 1) and (-x, -y + 1, -z + 2), respectively.
[Figure 9] Fig. 9. A stereoview of part of the crystal structure of (VI), showing the formation of a hydrogen-bonded (dashed lines) sheet lying parallel to (100). For the sake of clarity, H atoms other than those bonded to atoms N21 and N41 have been omitted.
[Figure 10] Fig. 10. Part of the crystal structure of (II), showing the formation of a hydrogen-bonded (dashed lines) C(9) chain along [010]. For the sake of clarity, H atoms other than those bonded to atoms N21 and N44 have been omitted. Atoms marked with an asterisk (*) or a hash symbol (#) are at the symmetry positions (x, y + 1, z) and (x, y - 1, z), respectively.
[Figure 11] Fig. 11. A stereoview of part of the crystal structure of (II), showing the formation of a hydrogen-bonded (dashed lines) chain of alternating R22(8) and R22(18) rings along [101]. For the sake of clarity, H atoms other than those bonded to atoms N21 and N44 have been omitted.
[Figure 12] Fig. 12. Part of the crystal structure of (II), showing the formation of the centrosymmetric R22(22) motif which links the (101) sheets. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (-x + 1, -y + 1, -z + 1).
(I) Ethyl N-{2-amino-5-formyl-6-[methyl(phenyl)amino]pyrimidin-4-yl}glycinate top
Crystal data top
C16H19N5O3Z = 2
Mr = 329.36F(000) = 348
Triclinic, P1Dx = 1.353 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3990 (5) ÅCell parameters from 3718 reflections
b = 9.609 (3) Åθ = 3.2–27.5°
c = 12.449 (3) ŵ = 0.10 mm1
α = 73.30 (2)°T = 293 K
β = 82.680 (14)°Block, pale yellow
γ = 72.693 (13)°0.41 × 0.25 × 0.22 mm
V = 808.5 (3) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3006 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2054 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 9.091 pixels mm-1θmax = 25.5°, θmin = 3.2°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1111
Tmin = 0.885, Tmax = 0.936l = 1515
18365 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.2215P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3006 reflectionsΔρmax = 0.19 e Å3
220 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.033 (4)
Crystal data top
C16H19N5O3γ = 72.693 (13)°
Mr = 329.36V = 808.5 (3) Å3
Triclinic, P1Z = 2
a = 7.3990 (5) ÅMo Kα radiation
b = 9.609 (3) ŵ = 0.10 mm1
c = 12.449 (3) ÅT = 293 K
α = 73.30 (2)°0.41 × 0.25 × 0.22 mm
β = 82.680 (14)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3006 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2054 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.936Rint = 0.042
18365 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
3006 reflectionsΔρmin = 0.17 e Å3
220 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1832 (2)0.62253 (17)0.41032 (12)0.0370 (4)
C20.2237 (2)0.6088 (2)0.51649 (15)0.0358 (4)
N30.3581 (2)0.65340 (17)0.54930 (12)0.0372 (4)
C40.4570 (2)0.7269 (2)0.46709 (15)0.0343 (4)
C50.4235 (2)0.7561 (2)0.35103 (15)0.0348 (4)
C60.2866 (2)0.6925 (2)0.32890 (14)0.0341 (4)
N210.1191 (2)0.5411 (2)0.59954 (13)0.0488 (5)
H21A0.04120.48840.58720.059*
H21B0.15250.52270.67570.059*
N410.5891 (2)0.77684 (18)0.49610 (13)0.0415 (4)
H410.64710.83640.43630.050*
C420.6239 (3)0.7672 (2)0.60966 (15)0.0414 (5)
H42A0.66660.66230.65200.050*
H42B0.50870.81570.64650.050*
C430.7738 (3)0.8457 (2)0.60362 (16)0.0417 (5)
O430.8323 (2)0.9156 (2)0.51776 (13)0.0728 (5)
O440.83342 (19)0.82899 (16)0.70415 (11)0.0464 (4)
C450.9843 (3)0.8998 (3)0.70299 (19)0.0534 (6)
H45A0.94971.00360.65750.064*
H45B1.10110.84580.67080.064*
C461.0116 (4)0.8957 (3)0.8196 (2)0.0657 (7)
H46A1.04900.79260.86360.099*
H46B0.89510.94840.85110.099*
H46C1.10860.94350.81980.099*
C510.5014 (3)0.8607 (2)0.26646 (16)0.0421 (5)
H510.45350.89040.19540.050*
O510.6259 (2)0.91568 (17)0.27831 (11)0.0533 (4)
N610.2488 (2)0.70546 (19)0.22015 (12)0.0406 (4)
C610.3994 (3)0.6844 (2)0.13638 (15)0.0387 (5)
C620.5608 (3)0.5669 (2)0.16096 (17)0.0474 (5)
H620.57370.50000.23220.057*
C630.7041 (3)0.5488 (3)0.0788 (2)0.0614 (6)
H630.81510.47110.09580.074*
C640.6842 (4)0.6443 (3)0.0276 (2)0.0664 (7)
H640.78070.63050.08250.080*
C650.5227 (4)0.7593 (3)0.05232 (18)0.0615 (6)
H650.50890.82400.12430.074*
C660.3798 (3)0.7799 (2)0.02895 (16)0.0502 (5)
H660.26960.85840.01160.060*
C670.0719 (3)0.6819 (3)0.19802 (18)0.0557 (6)
H67A0.02870.72350.24620.084*
H67B0.08640.57560.21230.084*
H67C0.04220.73110.12100.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0371 (9)0.0447 (9)0.0343 (9)0.0186 (7)0.0011 (7)0.0121 (7)
C20.0368 (10)0.0391 (11)0.0340 (10)0.0141 (9)0.0028 (8)0.0115 (8)
N30.0398 (9)0.0449 (9)0.0325 (8)0.0206 (7)0.0019 (7)0.0108 (7)
C40.0341 (10)0.0363 (10)0.0352 (10)0.0123 (8)0.0004 (8)0.0119 (8)
C50.0347 (10)0.0391 (11)0.0332 (10)0.0147 (8)0.0005 (8)0.0093 (8)
C60.0330 (10)0.0370 (10)0.0329 (10)0.0103 (8)0.0014 (8)0.0093 (8)
N210.0562 (11)0.0683 (12)0.0347 (9)0.0392 (9)0.0040 (8)0.0130 (8)
N410.0466 (9)0.0544 (11)0.0330 (9)0.0302 (8)0.0009 (7)0.0104 (7)
C420.0466 (11)0.0520 (12)0.0326 (10)0.0234 (10)0.0010 (8)0.0118 (9)
C430.0468 (11)0.0502 (12)0.0346 (11)0.0245 (10)0.0006 (9)0.0108 (9)
O430.0944 (12)0.1037 (14)0.0418 (9)0.0740 (11)0.0048 (8)0.0027 (9)
O440.0491 (8)0.0653 (9)0.0375 (8)0.0324 (7)0.0011 (6)0.0161 (7)
C450.0486 (12)0.0679 (15)0.0591 (14)0.0320 (11)0.0013 (10)0.0242 (11)
C460.0748 (16)0.0708 (16)0.0639 (15)0.0337 (13)0.0236 (13)0.0136 (13)
C510.0453 (11)0.0471 (12)0.0382 (11)0.0205 (10)0.0031 (9)0.0094 (9)
O510.0593 (9)0.0638 (10)0.0450 (8)0.0386 (8)0.0019 (7)0.0046 (7)
N610.0369 (9)0.0580 (11)0.0320 (8)0.0202 (8)0.0030 (7)0.0115 (7)
C610.0444 (11)0.0453 (11)0.0331 (10)0.0212 (9)0.0015 (8)0.0113 (9)
C620.0532 (13)0.0459 (12)0.0433 (12)0.0176 (10)0.0015 (10)0.0084 (9)
C630.0535 (14)0.0606 (15)0.0703 (16)0.0134 (12)0.0068 (12)0.0243 (13)
C640.0729 (17)0.0821 (19)0.0557 (15)0.0365 (15)0.0245 (13)0.0319 (14)
C650.0825 (18)0.0749 (17)0.0341 (12)0.0394 (15)0.0075 (11)0.0109 (11)
C660.0589 (13)0.0549 (13)0.0368 (11)0.0195 (11)0.0059 (10)0.0065 (10)
C670.0478 (13)0.0859 (17)0.0412 (12)0.0326 (12)0.0075 (9)0.0116 (11)
Geometric parameters (Å, º) top
N1—C61.335 (2)C45—H45B0.9700
N1—C21.353 (2)C46—H46A0.9600
C2—N31.340 (2)C46—H46B0.9600
C2—N211.342 (2)C46—H46C0.9600
N3—C41.335 (2)C51—O511.232 (2)
C4—N411.336 (2)C51—H510.9300
C4—C51.430 (2)N61—C611.436 (2)
C5—C61.418 (2)N61—C671.464 (2)
C5—C511.426 (3)C61—C621.374 (3)
C6—N611.380 (2)C61—C661.385 (3)
N21—H21A0.9242C62—C631.384 (3)
N21—H21B0.9636C62—H620.9300
N41—C421.441 (2)C63—C641.375 (3)
N41—H410.9409C63—H630.9300
C42—C431.500 (3)C64—C651.362 (3)
C42—H42A0.9700C64—H640.9300
C42—H42B0.9700C65—C661.378 (3)
C43—O431.193 (2)C65—H650.9300
C43—O441.330 (2)C66—H660.9300
O44—C451.467 (2)C67—H67A0.9600
C45—C461.479 (3)C67—H67B0.9600
C45—H45A0.9700C67—H67C0.9600
C6—N1—C2115.75 (15)C45—C46—H46A109.5
N3—C2—N21115.54 (16)C45—C46—H46B109.5
N3—C2—N1127.77 (16)H46A—C46—H46B109.5
N21—C2—N1116.68 (16)C45—C46—H46C109.5
C4—N3—C2115.82 (15)H46A—C46—H46C109.5
N3—C4—N41117.83 (16)H46B—C46—H46C109.5
N3—C4—C5122.50 (16)O51—C51—C5126.41 (18)
N41—C4—C5119.66 (16)O51—C51—H51116.8
C6—C5—C51122.78 (17)C5—C51—H51116.8
C6—C5—C4115.27 (16)C6—N61—C61120.97 (15)
C51—C5—C4121.27 (16)C6—N61—C67119.49 (15)
N1—C6—N61116.45 (16)C61—N61—C67115.42 (15)
N1—C6—C5122.59 (16)C62—C61—C66119.58 (19)
N61—C6—C5120.92 (16)C62—C61—N61120.45 (17)
C2—N21—H21A122.3C66—C61—N61119.93 (18)
C2—N21—H21B118.0C61—C62—C63119.4 (2)
H21A—N21—H21B117.4C61—C62—H62120.3
C4—N41—C42124.86 (15)C63—C62—H62120.3
C4—N41—H41115.3C64—C63—C62120.7 (2)
C42—N41—H41119.0C64—C63—H63119.6
N41—C42—C43107.29 (15)C62—C63—H63119.6
N41—C42—H42A110.3C65—C64—C63119.7 (2)
C43—C42—H42A110.3C65—C64—H64120.1
N41—C42—H42B110.3C63—C64—H64120.1
C43—C42—H42B110.3C64—C65—C66120.2 (2)
H42A—C42—H42B108.5C64—C65—H65119.9
O43—C43—O44124.00 (18)C66—C65—H65119.9
O43—C43—C42123.37 (18)C65—C66—C61120.3 (2)
O44—C43—C42112.62 (15)C65—C66—H66119.9
C43—O44—C45114.96 (15)C61—C66—H66119.9
O44—C45—C46108.72 (17)N61—C67—H67A109.5
O44—C45—H45A109.9N61—C67—H67B109.5
C46—C45—H45A109.9H67A—C67—H67B109.5
O44—C45—H45B109.9N61—C67—H67C109.5
C46—C45—H45B109.9H67A—C67—H67C109.5
H45A—C45—H45B108.3H67B—C67—H67C109.5
C6—N1—C2—N31.9 (3)O43—C43—O44—C451.9 (3)
C6—N1—C2—N21178.89 (16)C42—C43—O44—C45178.29 (17)
N21—C2—N3—C4177.11 (16)C43—O44—C45—C46170.04 (19)
N1—C2—N3—C43.7 (3)C6—C5—C51—O51176.82 (19)
C2—N3—C4—N41178.29 (16)C4—C5—C51—O5113.1 (3)
C2—N3—C4—C50.3 (3)N1—C6—N61—C61139.74 (18)
N3—C4—C5—C64.1 (3)C5—C6—N61—C6142.6 (3)
N41—C4—C5—C6177.27 (16)N1—C6—N61—C6716.4 (3)
N3—C4—C5—C51166.67 (17)C5—C6—N61—C67161.27 (18)
N41—C4—C5—C5111.9 (3)C6—N61—C61—C6243.8 (3)
C2—N1—C6—N61179.10 (16)C67—N61—C61—C62113.3 (2)
C2—N1—C6—C53.3 (3)C6—N61—C61—C66138.31 (19)
C51—C5—C6—N1164.61 (18)C67—N61—C61—C6664.7 (2)
C4—C5—C6—N16.1 (3)C66—C61—C62—C632.1 (3)
C51—C5—C6—N6112.9 (3)N61—C61—C62—C63180.00 (19)
C4—C5—C6—N61176.44 (16)C61—C62—C63—C641.8 (3)
N3—C4—N41—C424.8 (3)C62—C63—C64—C650.8 (4)
C5—C4—N41—C42173.87 (18)C63—C64—C65—C660.1 (4)
C4—N41—C42—C43176.15 (17)C64—C65—C66—C610.2 (3)
N41—C42—C43—O437.4 (3)C62—C61—C66—C651.3 (3)
N41—C42—C43—O44172.71 (17)N61—C61—C66—C65179.20 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21A···N1i0.922.223.125 (2)167
N41—H41···O510.941.902.675 (2)138
Symmetry code: (i) x, y+1, z+1.
(II) N-{2-Amino-5-formyl-6-[methyl(phenyl)amino]pyrimidin-4-yl}glycinamide top
Crystal data top
C14H16N6O2F(000) = 1264
Mr = 300.33Dx = 1.395 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3290 reflections
a = 20.045 (4) Åθ = 2.6–27.5°
b = 8.6868 (7) ŵ = 0.10 mm1
c = 17.990 (3) ÅT = 120 K
β = 114.064 (11)°Plate, colourless
V = 2860.3 (8) Å30.32 × 0.20 × 0.11 mm
Z = 8
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2657 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1993 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 9.091 pixels mm-1θmax = 25.5°, θmin = 2.6°
ϕ and ω scansh = 2424
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1010
Tmin = 0.969, Tmax = 0.989l = 2121
32858 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0427P)2 + 5.1608P]
where P = (Fo2 + 2Fc2)/3
2657 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C14H16N6O2V = 2860.3 (8) Å3
Mr = 300.33Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.045 (4) ŵ = 0.10 mm1
b = 8.6868 (7) ÅT = 120 K
c = 17.990 (3) Å0.32 × 0.20 × 0.11 mm
β = 114.064 (11)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2657 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1993 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.989Rint = 0.068
32858 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.12Δρmax = 0.34 e Å3
2657 reflectionsΔρmin = 0.26 e Å3
200 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.53486 (10)0.9198 (2)0.40896 (11)0.0177 (4)
C20.58234 (12)0.8233 (2)0.46413 (13)0.0176 (5)
N30.57839 (10)0.6681 (2)0.46616 (11)0.0191 (4)
C40.52481 (12)0.6035 (2)0.40211 (13)0.0161 (5)
C50.47362 (11)0.6906 (2)0.33536 (13)0.0157 (5)
C60.48010 (11)0.8548 (2)0.34637 (12)0.0157 (5)
N210.63877 (11)0.8895 (2)0.52450 (11)0.0264 (5)
H21A0.64280.99640.52150.032*
H21B0.67280.83020.56390.032*
N410.52083 (10)0.4481 (2)0.40089 (11)0.0199 (4)
H410.48330.40640.35860.024*
C420.56561 (12)0.3514 (3)0.46820 (13)0.0200 (5)
H42A0.53710.25780.46740.024*
H42B0.57420.40710.51930.024*
C430.63942 (12)0.3004 (2)0.47167 (13)0.0179 (5)
O430.67776 (9)0.21582 (17)0.52914 (9)0.0228 (4)
N440.66162 (11)0.3466 (2)0.41535 (11)0.0240 (5)
H44A0.63060.41950.37820.029*
H44B0.71270.33210.42320.029*
C510.42654 (11)0.6197 (2)0.26089 (13)0.0163 (5)
H510.39900.68590.21710.020*
O510.41838 (8)0.47834 (17)0.24825 (9)0.0208 (4)
N610.43222 (10)0.9555 (2)0.29196 (11)0.0171 (4)
C610.35514 (12)0.9229 (2)0.24847 (13)0.0161 (5)
C620.31485 (12)0.8653 (3)0.28957 (13)0.0199 (5)
H620.33840.83840.34550.024*
C630.23939 (13)0.8474 (3)0.24764 (14)0.0246 (5)
H630.21140.80790.27520.030*
C640.20517 (13)0.8868 (3)0.16633 (14)0.0243 (5)
H640.15370.87670.13840.029*
C650.24613 (12)0.9412 (3)0.12547 (14)0.0228 (5)
H650.22260.96580.06920.027*
C660.32116 (12)0.9600 (2)0.16621 (13)0.0186 (5)
H660.34900.99780.13820.022*
C670.44708 (12)1.1210 (2)0.30632 (14)0.0219 (5)
H67A0.49901.14050.32080.033*
H67B0.43441.15460.35090.033*
H67C0.41771.17830.25680.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0172 (10)0.0147 (9)0.0164 (9)0.0011 (7)0.0021 (8)0.0015 (7)
C20.0183 (12)0.0169 (12)0.0136 (11)0.0004 (9)0.0023 (9)0.0003 (9)
N30.0186 (10)0.0167 (10)0.0156 (9)0.0009 (8)0.0003 (8)0.0004 (8)
C40.0179 (11)0.0140 (11)0.0146 (11)0.0002 (9)0.0047 (9)0.0017 (8)
C50.0143 (11)0.0154 (11)0.0160 (11)0.0006 (9)0.0047 (9)0.0003 (9)
C60.0166 (11)0.0167 (11)0.0135 (11)0.0001 (9)0.0059 (9)0.0013 (9)
N210.0270 (11)0.0141 (10)0.0209 (10)0.0020 (8)0.0080 (9)0.0008 (8)
N410.0207 (10)0.0155 (10)0.0166 (9)0.0029 (8)0.0006 (8)0.0008 (8)
C420.0274 (13)0.0134 (11)0.0162 (11)0.0022 (9)0.0059 (10)0.0015 (9)
C430.0227 (12)0.0112 (11)0.0146 (11)0.0046 (9)0.0023 (9)0.0025 (9)
O430.0245 (9)0.0186 (8)0.0184 (8)0.0004 (7)0.0017 (7)0.0024 (7)
N440.0239 (11)0.0256 (11)0.0187 (10)0.0048 (9)0.0047 (8)0.0043 (8)
C510.0127 (11)0.0172 (12)0.0177 (11)0.0017 (9)0.0048 (9)0.0011 (9)
O510.0193 (8)0.0163 (8)0.0209 (8)0.0025 (7)0.0022 (7)0.0052 (6)
N610.0156 (9)0.0118 (9)0.0185 (9)0.0005 (7)0.0015 (8)0.0002 (7)
C610.0148 (11)0.0116 (11)0.0178 (11)0.0014 (8)0.0025 (9)0.0023 (8)
C620.0213 (12)0.0195 (12)0.0161 (11)0.0016 (9)0.0047 (9)0.0007 (9)
C630.0221 (13)0.0290 (13)0.0243 (12)0.0034 (10)0.0111 (10)0.0029 (10)
C640.0151 (12)0.0244 (13)0.0260 (13)0.0009 (10)0.0007 (10)0.0044 (10)
C650.0229 (13)0.0188 (12)0.0163 (11)0.0034 (10)0.0027 (9)0.0005 (9)
C660.0205 (12)0.0142 (11)0.0185 (11)0.0012 (9)0.0052 (9)0.0020 (9)
C670.0197 (12)0.0146 (12)0.0244 (12)0.0013 (9)0.0019 (10)0.0006 (9)
Geometric parameters (Å, º) top
N1—C61.336 (3)N44—H44B0.9820
N1—C21.350 (3)C51—O511.247 (3)
C2—N211.337 (3)C51—H510.9500
C2—N31.352 (3)N61—C611.447 (3)
N3—C41.336 (3)N61—C671.469 (3)
C4—N411.352 (3)C61—C661.391 (3)
C4—C51.436 (3)C61—C621.391 (3)
C5—C511.426 (3)C62—C631.397 (3)
C5—C61.438 (3)C62—H620.9500
C6—N611.371 (3)C63—C641.382 (3)
N21—H21A0.9359C63—H630.9500
N21—H21B0.9156C64—C651.390 (3)
N41—C421.446 (3)C64—H640.9500
N41—H410.8995C65—C661.388 (3)
C42—C431.521 (3)C65—H650.9500
C42—H42A0.9900C66—H660.9500
C42—H42B0.9900C67—H67A0.9800
C43—O431.246 (3)C67—H67B0.9800
C43—N441.324 (3)C67—H67C0.9800
N44—H44A0.9463
C6—N1—C2116.60 (18)H44A—N44—H44B122.3
N21—C2—N1116.09 (19)O51—C51—C5125.7 (2)
N21—C2—N3116.49 (19)O51—C51—H51117.1
N1—C2—N3127.4 (2)C5—C51—H51117.1
C4—N3—C2115.49 (18)C6—N61—C61122.89 (18)
N3—C4—N41117.01 (19)C6—N61—C67117.80 (17)
N3—C4—C5123.3 (2)C61—N61—C67112.46 (17)
N41—C4—C5119.69 (19)C66—C61—C62120.7 (2)
C51—C5—C4122.08 (19)C66—C61—N61118.8 (2)
C51—C5—C6123.08 (19)C62—C61—N61120.42 (19)
C4—C5—C6114.43 (19)C61—C62—C63119.2 (2)
N1—C6—N61115.29 (19)C61—C62—H62120.4
N1—C6—C5122.18 (19)C63—C62—H62120.4
N61—C6—C5122.49 (19)C64—C63—C62120.3 (2)
C2—N21—H21A116.4C64—C63—H63119.8
C2—N21—H21B120.2C62—C63—H63119.8
H21A—N21—H21B123.2C63—C64—C65119.9 (2)
C4—N41—C42123.65 (19)C63—C64—H64120.0
C4—N41—H41116.1C65—C64—H64120.0
C42—N41—H41119.6C66—C65—C64120.5 (2)
N41—C42—C43117.69 (19)C66—C65—H65119.8
N41—C42—H42A107.9C64—C65—H65119.8
C43—C42—H42A107.9C65—C66—C61119.3 (2)
N41—C42—H42B107.9C65—C66—H66120.3
C43—C42—H42B107.9C61—C66—H66120.3
H42A—C42—H42B107.2N61—C67—H67A109.5
O43—C43—N44121.9 (2)N61—C67—H67B109.5
O43—C43—C42117.8 (2)H67A—C67—H67B109.5
N44—C43—C42120.34 (19)N61—C67—H67C109.5
C43—N44—H44A114.4H67A—C67—H67C109.5
C43—N44—H44B120.4H67B—C67—H67C109.5
C6—N1—C2—N21177.1 (2)N41—C42—C43—N441.3 (3)
C6—N1—C2—N34.5 (3)C4—C5—C51—O518.3 (4)
N21—C2—N3—C4175.1 (2)C6—C5—C51—O51179.4 (2)
N1—C2—N3—C46.4 (3)N1—C6—N61—C61146.9 (2)
C2—N3—C4—N41177.8 (2)C5—C6—N61—C6135.4 (3)
C2—N3—C4—C50.8 (3)N1—C6—N61—C671.9 (3)
N3—C4—C5—C51167.3 (2)C5—C6—N61—C67175.8 (2)
N41—C4—C5—C5111.3 (3)C6—N61—C61—C66137.5 (2)
N3—C4—C5—C65.7 (3)C67—N61—C61—C6672.2 (3)
N41—C4—C5—C6175.8 (2)C6—N61—C61—C6246.9 (3)
C2—N1—C6—N61179.15 (19)C67—N61—C61—C62103.4 (2)
C2—N1—C6—C53.2 (3)C66—C61—C62—C631.1 (3)
C51—C5—C6—N1165.2 (2)N61—C61—C62—C63174.5 (2)
C4—C5—C6—N17.7 (3)C61—C62—C63—C640.1 (3)
C51—C5—C6—N6112.4 (3)C62—C63—C64—C651.5 (4)
C4—C5—C6—N61174.8 (2)C63—C64—C65—C661.6 (4)
N3—C4—N41—C427.0 (3)C64—C65—C66—C610.4 (3)
C5—C4—N41—C42174.3 (2)C62—C61—C66—C651.0 (3)
C4—N41—C42—C4388.6 (3)N61—C61—C66—C65174.65 (19)
N41—C42—C43—O43179.29 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21A···O43i0.942.022.933 (2)166
N41—H41···O510.901.982.689 (2)135
N44—H44A···O51ii0.952.142.949 (2)143
N44—H44B···O43iii0.982.053.006 (3)164
C62—H62···O43iv0.952.453.280 (3)146
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1/2; (iii) x+3/2, y+1/2, z+1; (iv) x+1, y+1, z+1.
(III) Ethyl 3-amino-N-{2-amino-5-formyl-6-[methyl(phenyl)amino]pyrimidin- 4-yl}propionate top
Crystal data top
C17H21N5O3F(000) = 1456
Mr = 343.39Dx = 1.340 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3916 reflections
a = 16.707 (6) Åθ = 2.7–27.5°
b = 10.218 (2) ŵ = 0.10 mm1
c = 20.733 (5) ÅT = 120 K
β = 105.929 (19)°Plate, colourless
V = 3403.5 (16) Å30.29 × 0.22 × 0.10 mm
Z = 8
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3160 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2239 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 9.091 pixels mm-1θmax = 25.5°, θmin = 2.7°
ϕ and ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.973, Tmax = 0.991l = 2525
21914 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0345P)2 + 2.178P]
where P = (Fo2 + 2Fc2)/3
3160 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C17H21N5O3V = 3403.5 (16) Å3
Mr = 343.39Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.707 (6) ŵ = 0.10 mm1
b = 10.218 (2) ÅT = 120 K
c = 20.733 (5) Å0.29 × 0.22 × 0.10 mm
β = 105.929 (19)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3160 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2239 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.991Rint = 0.063
21914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.09Δρmax = 0.17 e Å3
3160 reflectionsΔρmin = 0.23 e Å3
228 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.40872 (10)0.17214 (14)0.28821 (7)0.0177 (3)
C20.46275 (11)0.23317 (17)0.34084 (8)0.0168 (4)
N30.44497 (9)0.28871 (14)0.39387 (7)0.0171 (3)
C40.36591 (11)0.27637 (17)0.39697 (8)0.0163 (4)
C50.30520 (11)0.20093 (17)0.34921 (9)0.0174 (4)
C60.33077 (12)0.15698 (17)0.29255 (9)0.0177 (4)
N210.54146 (9)0.24174 (15)0.33734 (7)0.0222 (4)
H21A0.55580.20940.30160.027*
H21B0.58190.28600.37310.027*
N410.34415 (10)0.33671 (15)0.44718 (7)0.0200 (4)
H410.28820.32640.45060.024*
C420.39948 (12)0.42037 (18)0.49688 (9)0.0219 (4)
H42A0.45610.41590.49080.026*
H42B0.40240.38690.54230.026*
C430.37086 (12)0.56410 (18)0.49202 (9)0.0238 (5)
H43A0.41760.61950.51740.029*
H43B0.35650.59190.44450.029*
C440.29701 (12)0.58623 (18)0.51876 (9)0.0224 (4)
O440.29875 (9)0.64666 (14)0.56953 (7)0.0312 (4)
O450.22837 (8)0.52993 (13)0.48012 (6)0.0233 (3)
C460.15224 (12)0.5431 (2)0.50101 (10)0.0268 (5)
H46A0.13410.63570.49830.032*
H46B0.16120.51240.54770.032*
C470.08790 (13)0.4597 (2)0.45338 (10)0.0309 (5)
H47A0.07890.49260.40750.046*
H47B0.03550.46330.46590.046*
H47C0.10750.36900.45570.046*
C510.22888 (12)0.16081 (18)0.36199 (9)0.0223 (4)
H510.19710.09600.33320.027*
O510.20072 (8)0.20319 (13)0.40731 (6)0.0281 (3)
N610.27576 (10)0.09496 (14)0.23933 (7)0.0198 (4)
C670.30784 (13)0.0352 (2)0.18652 (9)0.0259 (5)
H67A0.31260.10250.15410.039*
H67B0.26950.03330.16360.039*
H67C0.36270.00320.20690.039*
C610.19051 (12)0.13782 (18)0.21516 (9)0.0208 (4)
C620.17252 (13)0.2689 (2)0.19992 (10)0.0298 (5)
H620.21620.33100.20590.036*
C630.09012 (14)0.3083 (2)0.17591 (11)0.0379 (6)
H630.07760.39800.16600.045*
C640.02607 (14)0.2183 (2)0.16628 (10)0.0332 (5)
H640.03020.24610.15050.040*
C650.04448 (13)0.0876 (2)0.17972 (10)0.0286 (5)
H650.00080.02510.17230.034*
C660.12634 (13)0.04734 (19)0.20402 (9)0.0243 (5)
H660.13860.04270.21310.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0166 (9)0.0197 (8)0.0161 (8)0.0019 (7)0.0032 (7)0.0008 (6)
C20.0157 (11)0.0172 (9)0.0165 (9)0.0023 (8)0.0027 (8)0.0029 (8)
N30.0158 (9)0.0198 (8)0.0158 (8)0.0005 (7)0.0042 (7)0.0007 (6)
C40.0173 (10)0.0153 (9)0.0161 (9)0.0016 (8)0.0043 (8)0.0035 (8)
C50.0177 (11)0.0167 (9)0.0174 (9)0.0010 (8)0.0040 (8)0.0003 (7)
C60.0191 (11)0.0137 (9)0.0184 (9)0.0012 (8)0.0019 (8)0.0016 (7)
N210.0154 (9)0.0330 (9)0.0185 (8)0.0004 (8)0.0050 (7)0.0074 (7)
N410.0169 (9)0.0256 (9)0.0184 (8)0.0036 (7)0.0064 (7)0.0059 (7)
C420.0162 (11)0.0292 (11)0.0200 (10)0.0025 (9)0.0047 (8)0.0071 (8)
C430.0206 (11)0.0264 (11)0.0249 (10)0.0054 (9)0.0071 (9)0.0073 (9)
C440.0229 (12)0.0200 (10)0.0229 (10)0.0003 (9)0.0039 (9)0.0021 (8)
O440.0261 (9)0.0387 (9)0.0284 (8)0.0022 (7)0.0069 (6)0.0152 (7)
O450.0171 (8)0.0299 (7)0.0231 (7)0.0034 (6)0.0057 (6)0.0063 (6)
C460.0200 (12)0.0330 (12)0.0289 (11)0.0026 (10)0.0091 (9)0.0043 (9)
C470.0220 (12)0.0389 (12)0.0325 (12)0.0034 (10)0.0088 (10)0.0035 (10)
C510.0227 (11)0.0246 (10)0.0185 (10)0.0053 (9)0.0038 (9)0.0016 (8)
O510.0227 (8)0.0387 (8)0.0256 (7)0.0064 (7)0.0114 (6)0.0071 (6)
N610.0194 (9)0.0221 (8)0.0173 (8)0.0024 (7)0.0042 (7)0.0050 (7)
C670.0253 (12)0.0315 (11)0.0216 (10)0.0059 (10)0.0075 (9)0.0091 (9)
C610.0198 (11)0.0251 (11)0.0155 (9)0.0030 (9)0.0017 (8)0.0023 (8)
C620.0275 (13)0.0260 (11)0.0290 (11)0.0064 (10)0.0036 (9)0.0001 (9)
C630.0366 (14)0.0264 (12)0.0392 (13)0.0024 (11)0.0086 (11)0.0008 (10)
C640.0252 (13)0.0342 (13)0.0325 (12)0.0044 (11)0.0048 (10)0.0041 (10)
C650.0239 (12)0.0310 (12)0.0280 (11)0.0068 (10)0.0022 (9)0.0057 (9)
C660.0256 (12)0.0213 (10)0.0243 (10)0.0031 (9)0.0039 (9)0.0044 (8)
Geometric parameters (Å, º) top
N1—C61.339 (2)C46—H46A0.9900
N1—C21.361 (2)C46—H46B0.9900
C2—N211.340 (2)C47—H47A0.9800
C2—N31.341 (2)C47—H47B0.9800
N3—C41.346 (2)C47—H47C0.9800
C4—N411.343 (2)C51—O511.239 (2)
C4—C51.433 (2)C51—H510.9500
C5—C61.428 (2)N61—C611.442 (2)
C5—C511.432 (3)N61—C671.477 (2)
C6—N611.381 (2)C67—H67A0.9800
N21—H21A0.9013C67—H67B0.9800
N21—H21B0.9681C67—H67C0.9800
N41—C421.458 (2)C61—C661.386 (3)
N41—H410.9621C61—C621.390 (3)
C42—C431.539 (3)C62—C631.389 (3)
C42—H42A0.9900C62—H620.9500
C42—H42B0.9900C63—C641.384 (3)
C43—C441.502 (3)C63—H630.9500
C43—H43A0.9900C64—C651.381 (3)
C43—H43B0.9900C64—H640.9500
C44—O441.214 (2)C65—C661.384 (3)
C44—O451.336 (2)C65—H650.9500
O45—C461.458 (2)C66—H660.9500
C46—C471.508 (3)
C6—N1—C2116.26 (15)O45—C46—H46B110.5
N21—C2—N3117.27 (16)C47—C46—H46B110.5
N21—C2—N1115.56 (15)H46A—C46—H46B108.7
N3—C2—N1127.13 (17)C46—C47—H47A109.5
C2—N3—C4116.14 (15)C46—C47—H47B109.5
N41—C4—N3118.17 (16)H47A—C47—H47B109.5
N41—C4—C5119.46 (16)C46—C47—H47C109.5
N3—C4—C5122.37 (16)H47A—C47—H47C109.5
C6—C5—C51123.02 (17)H47B—C47—H47C109.5
C6—C5—C4115.02 (16)O51—C51—C5125.68 (18)
C51—C5—C4121.59 (16)O51—C51—H51117.2
N1—C6—N61116.47 (16)C5—C51—H51117.2
N1—C6—C5122.34 (17)C6—N61—C61121.03 (15)
N61—C6—C5121.18 (17)C6—N61—C67119.00 (16)
C2—N21—H21A120.5C61—N61—C67113.12 (15)
C2—N21—H21B118.6N61—C67—H67A109.5
H21A—N21—H21B120.9N61—C67—H67B109.5
C4—N41—C42124.28 (16)H67A—C67—H67B109.5
C4—N41—H41118.8N61—C67—H67C109.5
C42—N41—H41116.9H67A—C67—H67C109.5
N41—C42—C43112.82 (16)H67B—C67—H67C109.5
N41—C42—H42A109.0C66—C61—C62119.71 (19)
C43—C42—H42A109.0C66—C61—N61120.02 (17)
N41—C42—H42B109.0C62—C61—N61120.20 (17)
C43—C42—H42B109.0C63—C62—C61119.50 (19)
H42A—C42—H42B107.8C63—C62—H62120.2
C44—C43—C42113.03 (16)C61—C62—H62120.2
C44—C43—H43A109.0C64—C63—C62120.7 (2)
C42—C43—H43A109.0C64—C63—H63119.7
C44—C43—H43B109.0C62—C63—H63119.7
C42—C43—H43B109.0C65—C64—C63119.5 (2)
H43A—C43—H43B107.8C65—C64—H64120.2
O44—C44—O45123.48 (18)C63—C64—H64120.2
O44—C44—C43124.76 (18)C64—C65—C66120.27 (19)
O45—C44—C43111.76 (16)C64—C65—H65119.9
C44—O45—C46117.21 (14)C66—C65—H65119.9
O45—C46—C47106.03 (15)C65—C66—C61120.27 (19)
O45—C46—H46A110.5C65—C66—H66119.9
C47—C46—H46A110.5C61—C66—H66119.9
C6—N1—C2—N21176.77 (15)O44—C44—O45—C460.0 (3)
C6—N1—C2—N35.7 (3)C43—C44—O45—C46179.43 (16)
N21—C2—N3—C4178.63 (15)C44—O45—C46—C47174.16 (16)
N1—C2—N3—C43.8 (3)C6—C5—C51—O51174.25 (18)
C2—N3—C4—N41176.31 (15)C4—C5—C51—O5113.2 (3)
C2—N3—C4—C54.2 (2)N1—C6—N61—C61141.21 (17)
N41—C4—C5—C6171.17 (16)C5—C6—N61—C6139.4 (2)
N3—C4—C5—C69.3 (2)N1—C6—N61—C677.8 (2)
N41—C4—C5—C5115.7 (3)C5—C6—N61—C67171.57 (16)
N3—C4—C5—C51163.79 (17)C6—N61—C61—C66131.94 (18)
C2—N1—C6—N61179.91 (15)C67—N61—C61—C6677.4 (2)
C2—N1—C6—C50.5 (2)C6—N61—C61—C6251.1 (2)
C51—C5—C6—N1165.64 (17)C67—N61—C61—C6299.6 (2)
C4—C5—C6—N17.4 (2)C66—C61—C62—C632.3 (3)
C51—C5—C6—N6113.7 (3)N61—C61—C62—C63179.22 (17)
C4—C5—C6—N61173.28 (16)C61—C62—C63—C640.8 (3)
N3—C4—N41—C423.2 (3)C62—C63—C64—C651.0 (3)
C5—C4—N41—C42177.28 (16)C63—C64—C65—C661.4 (3)
C4—N41—C42—C43114.35 (19)C64—C65—C66—C610.1 (3)
N41—C42—C43—C4474.4 (2)C62—C61—C66—C651.9 (3)
C42—C43—C44—O44111.1 (2)N61—C61—C66—C65178.87 (16)
C42—C43—C44—O4568.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21A···N1i0.902.143.027 (2)169
N21—H21B···O44ii0.972.143.054 (2)158
N41—H41···O510.961.952.683 (2)131
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z+1.
(IV) Methyl N-{2-amino-6-[benzyl(methyl)amino]-5-formylpyrimidin-4-yl}glycinate top
Crystal data top
C16H19N5O3F(000) = 696
Mr = 329.36Dx = 1.339 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3733 reflections
a = 15.636 (4) Åθ = 2.8–27.5°
b = 6.5674 (18) ŵ = 0.10 mm1
c = 17.336 (5) ÅT = 120 K
β = 113.440 (18)°Block, colourless
V = 1633.3 (8) Å30.29 × 0.27 × 0.15 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3013 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2209 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 9.091 pixels mm-1θmax = 25.5°, θmin = 2.8°
ϕ and ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 77
Tmin = 0.973, Tmax = 0.986l = 2020
21188 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0897P)2 + 1.0498P]
where P = (Fo2 + 2Fc2)/3
3013 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C16H19N5O3V = 1633.3 (8) Å3
Mr = 329.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.636 (4) ŵ = 0.10 mm1
b = 6.5674 (18) ÅT = 120 K
c = 17.336 (5) Å0.29 × 0.27 × 0.15 mm
β = 113.440 (18)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3013 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2209 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.986Rint = 0.072
21188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.09Δρmax = 0.35 e Å3
3013 reflectionsΔρmin = 0.36 e Å3
219 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.76191 (13)0.7943 (3)0.53404 (12)0.0198 (5)
C20.82036 (15)0.6345 (4)0.56416 (14)0.0182 (5)
N30.85110 (13)0.5052 (3)0.52088 (11)0.0186 (5)
C40.83019 (15)0.5560 (4)0.44062 (13)0.0170 (5)
C50.77674 (15)0.7337 (4)0.40234 (14)0.0191 (5)
C60.73816 (16)0.8387 (4)0.45326 (14)0.0184 (5)
N210.84767 (14)0.5969 (3)0.64650 (12)0.0227 (5)
H21A0.82540.67640.68400.027*
H21B0.86750.47070.66400.027*
N410.86339 (14)0.4372 (3)0.39645 (12)0.0216 (5)
H410.85250.48190.34090.026*
C420.92283 (16)0.2643 (4)0.43330 (14)0.0206 (5)
H42A0.88940.16460.45400.025*
H42B0.97930.30930.48160.025*
C430.94983 (16)0.1673 (4)0.36808 (14)0.0193 (5)
O430.91642 (11)0.2078 (3)0.29407 (10)0.0231 (4)
O441.01581 (12)0.0275 (3)0.40347 (10)0.0258 (4)
C451.04556 (18)0.0855 (4)0.34677 (16)0.0268 (6)
H45A1.06460.00980.31310.040*
H45B0.99390.16960.30950.040*
H45C1.09830.17310.37940.040*
C510.77698 (15)0.8161 (4)0.32669 (14)0.0200 (5)
H510.75350.95040.31210.024*
O510.80517 (12)0.7278 (3)0.27814 (10)0.0262 (4)
N610.67418 (14)0.9937 (3)0.42083 (12)0.0220 (5)
C670.59484 (17)0.9692 (4)0.33873 (15)0.0246 (6)
H67A0.61640.89470.30010.029*
H67B0.57351.10550.31430.029*
C610.51365 (17)0.8562 (4)0.34467 (15)0.0221 (5)
C620.52537 (18)0.6637 (4)0.38099 (16)0.0285 (6)
H620.58580.60470.40400.034*
C630.45071 (19)0.5564 (5)0.38425 (17)0.0320 (6)
H630.46010.42510.40930.038*
C640.36207 (18)0.6408 (5)0.35094 (17)0.0327 (7)
H640.31060.56780.35310.039*
C650.34922 (18)0.8310 (5)0.31483 (18)0.0360 (7)
H650.28860.88910.29190.043*
C660.42394 (17)0.9384 (5)0.31163 (16)0.0292 (6)
H660.41401.06980.28660.035*
C680.65143 (18)1.1154 (4)0.48056 (16)0.0283 (6)
H68A0.70901.15360.52800.042*
H68B0.61191.03560.50120.042*
H68C0.61811.23860.45260.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0178 (10)0.0224 (11)0.0180 (10)0.0019 (8)0.0059 (8)0.0006 (8)
C20.0139 (11)0.0219 (13)0.0185 (11)0.0020 (10)0.0062 (9)0.0016 (10)
N30.0181 (10)0.0218 (11)0.0152 (10)0.0001 (8)0.0061 (8)0.0007 (8)
C40.0122 (11)0.0216 (13)0.0153 (11)0.0016 (9)0.0037 (9)0.0005 (9)
C50.0132 (11)0.0233 (13)0.0187 (11)0.0012 (10)0.0043 (9)0.0004 (10)
C60.0156 (11)0.0196 (13)0.0186 (11)0.0025 (9)0.0052 (9)0.0009 (9)
N210.0268 (11)0.0249 (12)0.0166 (10)0.0053 (9)0.0090 (8)0.0016 (8)
N410.0231 (11)0.0256 (12)0.0156 (9)0.0056 (9)0.0071 (8)0.0023 (8)
C420.0201 (12)0.0231 (13)0.0168 (11)0.0016 (10)0.0052 (9)0.0011 (10)
C430.0191 (12)0.0175 (13)0.0206 (12)0.0016 (10)0.0072 (10)0.0007 (9)
O430.0254 (9)0.0269 (10)0.0166 (8)0.0016 (7)0.0079 (7)0.0002 (7)
O440.0280 (10)0.0291 (10)0.0190 (8)0.0097 (8)0.0079 (7)0.0003 (7)
C450.0275 (13)0.0291 (15)0.0238 (12)0.0077 (11)0.0102 (11)0.0031 (11)
C510.0125 (11)0.0251 (14)0.0194 (11)0.0003 (10)0.0031 (9)0.0021 (10)
O510.0284 (10)0.0332 (11)0.0195 (8)0.0013 (8)0.0121 (7)0.0041 (8)
N610.0182 (10)0.0239 (12)0.0202 (10)0.0030 (9)0.0037 (8)0.0002 (8)
C670.0209 (13)0.0276 (15)0.0210 (12)0.0059 (11)0.0039 (10)0.0057 (10)
C610.0199 (12)0.0270 (14)0.0164 (11)0.0012 (10)0.0040 (9)0.0020 (10)
C620.0206 (13)0.0313 (16)0.0293 (13)0.0005 (11)0.0054 (11)0.0013 (12)
C630.0286 (14)0.0346 (16)0.0292 (13)0.0062 (12)0.0078 (11)0.0005 (12)
C640.0235 (14)0.0464 (19)0.0289 (14)0.0103 (13)0.0111 (11)0.0123 (13)
C650.0167 (13)0.054 (2)0.0329 (15)0.0023 (12)0.0051 (11)0.0084 (14)
C660.0227 (13)0.0344 (16)0.0267 (13)0.0076 (11)0.0057 (11)0.0017 (11)
C680.0239 (13)0.0282 (15)0.0286 (13)0.0077 (11)0.0061 (11)0.0033 (11)
Geometric parameters (Å, º) top
N1—C61.331 (3)C45—H45C0.9800
N1—C21.353 (3)C51—O511.239 (3)
C2—N211.340 (3)C51—H510.9500
C2—N31.342 (3)N61—C681.459 (3)
N3—C41.339 (3)N61—C671.479 (3)
C4—N411.334 (3)C67—C611.509 (4)
C4—C51.436 (3)C67—H67A0.9900
C5—C511.420 (3)C67—H67B0.9900
C5—C61.429 (3)C61—C621.392 (4)
C6—N611.381 (3)C61—C661.396 (4)
N21—H21A0.9984C62—C631.383 (4)
N21—H21B0.8951C62—H620.9500
N41—C421.445 (3)C63—C641.387 (4)
N41—H410.9547C63—H630.9500
C42—C431.497 (3)C64—C651.376 (5)
C42—H42A0.9900C64—H640.9500
C42—H42B0.9900C65—C661.385 (4)
C43—O431.207 (3)C65—H650.9500
C43—O441.334 (3)C66—H660.9500
O44—C451.448 (3)C68—H68A0.9800
C45—H45A0.9800C68—H68B0.9800
C45—H45B0.9800C68—H68C0.9800
C6—N1—C2116.0 (2)O51—C51—C5125.5 (2)
N21—C2—N3116.5 (2)O51—C51—H51117.2
N21—C2—N1115.7 (2)C5—C51—H51117.2
N3—C2—N1127.8 (2)C6—N61—C68117.2 (2)
C4—N3—C2115.4 (2)C6—N61—C67120.4 (2)
N41—C4—N3117.4 (2)C68—N61—C67113.3 (2)
N41—C4—C5119.9 (2)N61—C67—C61113.2 (2)
N3—C4—C5122.7 (2)N61—C67—H67A108.9
C51—C5—C6122.9 (2)C61—C67—H67A108.9
C51—C5—C4121.5 (2)N61—C67—H67B108.9
C6—C5—C4114.7 (2)C61—C67—H67B108.9
N1—C6—N61116.3 (2)H67A—C67—H67B107.7
N1—C6—C5122.3 (2)C62—C61—C66117.8 (2)
N61—C6—C5121.3 (2)C62—C61—C67121.0 (2)
C2—N21—H21A123.5C66—C61—C67121.1 (2)
C2—N21—H21B116.9C63—C62—C61121.3 (3)
H21A—N21—H21B115.2C63—C62—H62119.3
C4—N41—C42122.29 (19)C61—C62—H62119.3
C4—N41—H41116.4C62—C63—C64119.9 (3)
C42—N41—H41120.8C62—C63—H63120.0
N41—C42—C43108.99 (18)C64—C63—H63120.0
N41—C42—H42A109.9C65—C64—C63119.5 (3)
C43—C42—H42A109.9C65—C64—H64120.2
N41—C42—H42B109.9C63—C64—H64120.2
C43—C42—H42B109.9C64—C65—C66120.5 (3)
H42A—C42—H42B108.3C64—C65—H65119.7
O43—C43—O44124.7 (2)C66—C65—H65119.7
O43—C43—C42125.2 (2)C65—C66—C61120.8 (3)
O44—C43—C42110.13 (19)C65—C66—H66119.6
C43—O44—C45116.03 (18)C61—C66—H66119.6
O44—C45—H45A109.5N61—C68—H68A109.5
O44—C45—H45B109.5N61—C68—H68B109.5
H45A—C45—H45B109.5H68A—C68—H68B109.5
O44—C45—H45C109.5N61—C68—H68C109.5
H45A—C45—H45C109.5H68A—C68—H68C109.5
H45B—C45—H45C109.5H68B—C68—H68C109.5
C6—N1—C2—N21176.8 (2)O43—C43—O44—C452.2 (4)
C6—N1—C2—N36.0 (4)C42—C43—O44—C45177.2 (2)
N21—C2—N3—C4174.1 (2)C6—C5—C51—O51176.2 (2)
N1—C2—N3—C48.8 (4)C4—C5—C51—O5115.3 (4)
C2—N3—C4—N41176.7 (2)N1—C6—N61—C6810.2 (3)
C2—N3—C4—C51.4 (3)C5—C6—N61—C68169.3 (2)
N41—C4—C5—C5115.8 (3)N1—C6—N61—C67134.4 (2)
N3—C4—C5—C51162.2 (2)C5—C6—N61—C6746.0 (3)
N41—C4—C5—C6174.8 (2)C6—N61—C67—C6183.0 (3)
N3—C4—C5—C67.2 (3)C68—N61—C67—C6163.0 (3)
C2—N1—C6—N61176.2 (2)N61—C67—C61—C6255.3 (3)
C2—N1—C6—C54.2 (3)N61—C67—C61—C66126.7 (2)
C51—C5—C6—N1159.1 (2)C66—C61—C62—C630.1 (4)
C4—C5—C6—N110.1 (3)C67—C61—C62—C63177.9 (2)
C51—C5—C6—N6120.4 (4)C61—C62—C63—C640.1 (4)
C4—C5—C6—N61170.3 (2)C62—C63—C64—C650.0 (4)
N3—C4—N41—C422.4 (3)C63—C64—C65—C660.1 (4)
C5—C4—N41—C42175.7 (2)C64—C65—C66—C610.2 (4)
C4—N41—C42—C43178.5 (2)C62—C61—C66—C650.2 (4)
N41—C42—C43—O4310.1 (3)C67—C61—C66—C65177.9 (2)
N41—C42—C43—O44170.47 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21A···O51i1.001.892.860 (3)163
N21—H21B···O43ii0.892.383.085 (3)136
N41—H41···O510.961.922.682 (3)135
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z+1/2.
(V) Ethyl 3-amino-N-{2-amino-6-[benzyl(methyl)amino]-5-formylpyrimidin- 4-yl}propionate top
Crystal data top
C18H23N5O3F(000) = 1520
Mr = 357.41Dx = 1.355 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4039 reflections
a = 24.8226 (5) Åθ = 3.0–27.5°
b = 7.1379 (14) ŵ = 0.10 mm1
c = 20.601 (2) ÅT = 120 K
β = 106.213 (8)°Block, colourless
V = 3505.0 (8) Å30.26 × 0.21 × 0.14 mm
Z = 8
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3269 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2276 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 9.091 pixels mm-1θmax = 25.5°, θmin = 3.0°
ϕ and ω scansh = 3030
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 88
Tmin = 0.976, Tmax = 0.987l = 2424
22384 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.039P)2 + 2.9368P]
where P = (Fo2 + 2Fc2)/3
3269 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C18H23N5O3V = 3505.0 (8) Å3
Mr = 357.41Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.8226 (5) ŵ = 0.10 mm1
b = 7.1379 (14) ÅT = 120 K
c = 20.601 (2) Å0.26 × 0.21 × 0.14 mm
β = 106.213 (8)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3269 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2276 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.987Rint = 0.073
22384 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.06Δρmax = 0.21 e Å3
3269 reflectionsΔρmin = 0.25 e Å3
237 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.69278 (6)0.7477 (2)0.66478 (8)0.0163 (4)
C20.70537 (8)0.6127 (3)0.71219 (10)0.0154 (4)
N30.67234 (6)0.4705 (2)0.72058 (8)0.0166 (4)
C40.62542 (8)0.4445 (3)0.66962 (10)0.0159 (4)
C50.61274 (8)0.5559 (3)0.60889 (10)0.0169 (4)
C60.64576 (8)0.7221 (3)0.61344 (9)0.0157 (4)
N210.75599 (6)0.6237 (2)0.75782 (8)0.0188 (4)
H21A0.77980.72960.75850.023*
H21B0.76790.52670.79030.023*
N410.59084 (7)0.3046 (2)0.67526 (8)0.0200 (4)
H410.55720.27510.63630.024*
C420.59488 (8)0.1981 (3)0.73683 (10)0.0202 (5)
H42A0.56700.24660.75880.024*
H42B0.63260.21610.76850.024*
C430.58472 (8)0.0093 (3)0.72265 (10)0.0202 (5)
H43A0.61230.05710.70010.024*
H43B0.59070.07690.76600.024*
C440.52655 (8)0.0493 (3)0.67878 (10)0.0191 (5)
O440.49263 (6)0.0690 (2)0.65309 (9)0.0387 (4)
O450.51667 (6)0.23223 (19)0.67155 (7)0.0267 (4)
C460.46236 (9)0.2905 (3)0.62757 (11)0.0288 (5)
H46A0.46500.31140.58100.035*
H46B0.43390.19240.62620.035*
C470.44631 (9)0.4687 (3)0.65593 (12)0.0328 (6)
H47A0.47630.56130.66060.049*
H47B0.41150.51740.62540.049*
H47C0.44060.44380.70030.049*
C510.57391 (8)0.4903 (3)0.54831 (10)0.0210 (5)
H510.57230.55700.50790.025*
O510.54207 (6)0.35380 (19)0.54367 (7)0.0249 (4)
N610.63127 (6)0.8638 (2)0.56785 (8)0.0173 (4)
C670.67035 (8)1.0176 (3)0.56761 (10)0.0199 (5)
H67A0.70710.98850.59990.024*
H67B0.65601.13370.58310.024*
C610.67824 (8)1.0504 (3)0.49824 (10)0.0197 (5)
C620.68991 (9)0.9001 (3)0.46137 (11)0.0258 (5)
H620.68990.77620.47820.031*
C630.70159 (9)0.9299 (4)0.40034 (11)0.0333 (6)
H630.70970.82660.37560.040*
C640.70148 (9)1.1090 (4)0.37540 (11)0.0343 (6)
H640.70951.12900.33350.041*
C650.68969 (9)1.2590 (3)0.41123 (11)0.0318 (6)
H650.68941.38240.39390.038*
C660.67813 (8)1.2301 (3)0.47289 (11)0.0243 (5)
H660.67011.33380.49760.029*
C680.57405 (8)0.8987 (3)0.52501 (10)0.0215 (5)
H68A0.57140.86210.47840.032*
H68B0.56531.03230.52640.032*
H68C0.54740.82510.54170.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0162 (8)0.0174 (9)0.0144 (9)0.0005 (7)0.0028 (7)0.0001 (8)
C20.0154 (10)0.0149 (10)0.0159 (11)0.0020 (8)0.0042 (9)0.0031 (9)
N30.0153 (8)0.0175 (9)0.0157 (9)0.0010 (7)0.0024 (7)0.0005 (7)
C40.0151 (10)0.0141 (10)0.0190 (11)0.0031 (8)0.0054 (9)0.0038 (9)
C50.0163 (10)0.0163 (10)0.0174 (10)0.0016 (8)0.0037 (8)0.0007 (9)
C60.0164 (10)0.0174 (11)0.0147 (10)0.0022 (8)0.0064 (8)0.0017 (9)
N210.0172 (9)0.0170 (9)0.0187 (9)0.0023 (7)0.0008 (7)0.0034 (8)
N410.0197 (9)0.0184 (9)0.0192 (9)0.0027 (7)0.0010 (7)0.0029 (8)
C420.0221 (11)0.0207 (11)0.0179 (11)0.0028 (9)0.0057 (9)0.0007 (9)
C430.0194 (10)0.0214 (11)0.0201 (11)0.0007 (9)0.0063 (9)0.0022 (9)
C440.0239 (11)0.0160 (11)0.0192 (11)0.0015 (9)0.0092 (9)0.0002 (9)
O440.0252 (8)0.0215 (8)0.0587 (12)0.0003 (7)0.0059 (8)0.0012 (8)
O450.0260 (8)0.0172 (8)0.0320 (9)0.0039 (6)0.0002 (7)0.0003 (7)
C460.0284 (12)0.0281 (13)0.0265 (13)0.0098 (10)0.0018 (10)0.0015 (11)
C470.0292 (12)0.0231 (13)0.0433 (15)0.0040 (10)0.0057 (11)0.0028 (11)
C510.0218 (11)0.0167 (11)0.0217 (11)0.0049 (9)0.0017 (9)0.0019 (10)
O510.0244 (8)0.0170 (8)0.0266 (9)0.0045 (6)0.0040 (7)0.0007 (7)
N610.0167 (8)0.0172 (9)0.0164 (9)0.0020 (7)0.0021 (7)0.0032 (8)
C670.0217 (10)0.0201 (11)0.0167 (11)0.0035 (9)0.0032 (9)0.0006 (9)
C610.0138 (10)0.0246 (12)0.0184 (11)0.0025 (9)0.0006 (8)0.0036 (10)
C620.0259 (11)0.0276 (13)0.0239 (12)0.0003 (10)0.0069 (10)0.0003 (10)
C630.0277 (12)0.0487 (15)0.0252 (13)0.0016 (11)0.0102 (10)0.0055 (12)
C640.0243 (12)0.0607 (18)0.0190 (12)0.0039 (12)0.0076 (10)0.0082 (12)
C650.0211 (11)0.0412 (15)0.0309 (13)0.0026 (11)0.0034 (10)0.0187 (12)
C660.0180 (10)0.0260 (12)0.0274 (12)0.0004 (9)0.0040 (9)0.0054 (10)
C680.0193 (11)0.0190 (11)0.0234 (12)0.0011 (9)0.0012 (9)0.0023 (9)
Geometric parameters (Å, º) top
N1—C21.346 (2)C46—H46B0.9900
N1—C61.351 (2)C47—H47A0.9800
C2—N211.345 (2)C47—H47B0.9800
C2—N31.346 (2)C47—H47C0.9800
N3—C41.346 (2)C51—O511.241 (2)
C4—N411.343 (2)C51—H510.9500
C4—C51.441 (3)N61—C671.466 (2)
C5—C511.426 (3)N61—C681.469 (2)
C5—C61.430 (3)C67—C611.514 (3)
C6—N611.359 (2)C67—H67A0.9900
N21—H21A0.9568C67—H67B0.9900
N21—H21B0.9506C61—C661.384 (3)
N41—C421.458 (2)C61—C621.391 (3)
N41—H411.0067C62—C631.383 (3)
C42—C431.516 (3)C62—H620.9500
C42—H42A0.9900C63—C641.377 (3)
C42—H42B0.9900C63—H630.9500
C43—C441.501 (3)C64—C651.378 (3)
C43—H43A0.9900C64—H640.9500
C43—H43B0.9900C65—C661.394 (3)
C44—O441.205 (2)C65—H650.9500
C44—O451.330 (2)C66—H660.9500
O45—C461.459 (2)C68—H68A0.9800
C46—C471.499 (3)C68—H68B0.9800
C46—H46A0.9900C68—H68C0.9800
C2—N1—C6116.49 (16)C46—C47—H47A109.5
N21—C2—N1116.59 (17)C46—C47—H47B109.5
N21—C2—N3115.99 (17)H47A—C47—H47B109.5
N1—C2—N3127.38 (17)C46—C47—H47C109.5
C4—N3—C2115.43 (16)H47A—C47—H47C109.5
N41—C4—N3118.03 (17)H47B—C47—H47C109.5
N41—C4—C5119.71 (17)O51—C51—C5125.83 (19)
N3—C4—C5122.21 (17)O51—C51—H51117.1
C51—C5—C6124.40 (18)C5—C51—H51117.1
C51—C5—C4120.58 (18)C6—N61—C67120.81 (16)
C6—C5—C4114.74 (17)C6—N61—C68124.49 (16)
N1—C6—N61116.39 (17)C67—N61—C68113.63 (15)
N1—C6—C5121.19 (17)N61—C67—C61112.29 (16)
N61—C6—C5122.41 (17)N61—C67—H67A109.1
C2—N21—H21A120.6C61—C67—H67A109.1
C2—N21—H21B119.7N61—C67—H67B109.1
H21A—N21—H21B119.8C61—C67—H67B109.1
C4—N41—C42124.93 (17)H67A—C67—H67B107.9
C4—N41—H41119.7C66—C61—C62119.17 (19)
C42—N41—H41115.2C66—C61—C67120.82 (19)
N41—C42—C43111.95 (16)C62—C61—C67119.84 (18)
N41—C42—H42A109.2C63—C62—C61120.4 (2)
C43—C42—H42A109.2C63—C62—H62119.8
N41—C42—H42B109.2C61—C62—H62119.8
C43—C42—H42B109.2C64—C63—C62120.2 (2)
H42A—C42—H42B107.9C64—C63—H63119.9
C44—C43—C42112.44 (17)C62—C63—H63119.9
C44—C43—H43A109.1C63—C64—C65120.0 (2)
C42—C43—H43A109.1C63—C64—H64120.0
C44—C43—H43B109.1C65—C64—H64120.0
C42—C43—H43B109.1C64—C65—C66120.1 (2)
H43A—C43—H43B107.8C64—C65—H65119.9
O44—C44—O45123.66 (19)C66—C65—H65119.9
O44—C44—C43124.59 (19)C61—C66—C65120.1 (2)
O45—C44—C43111.75 (17)C61—C66—H66119.9
C44—O45—C46117.33 (16)C65—C66—H66119.9
O45—C46—C47107.45 (17)N61—C68—H68A109.5
O45—C46—H46A110.2N61—C68—H68B109.5
C47—C46—H46A110.2H68A—C68—H68B109.5
O45—C46—H46B110.2N61—C68—H68C109.5
C47—C46—H46B110.2H68A—C68—H68C109.5
H46A—C46—H46B108.5H68B—C68—H68C109.5
C6—N1—C2—N21170.68 (16)O44—C44—O45—C462.7 (3)
C6—N1—C2—N311.6 (3)C43—C44—O45—C46177.40 (16)
N21—C2—N3—C4170.86 (16)C44—O45—C46—C47147.25 (18)
N1—C2—N3—C411.4 (3)C6—C5—C51—O51174.98 (18)
C2—N3—C4—N41179.97 (16)C4—C5—C51—O5111.5 (3)
C2—N3—C4—C52.7 (3)N1—C6—N61—C6711.4 (2)
N41—C4—C5—C5117.6 (3)C5—C6—N61—C67170.05 (17)
N3—C4—C5—C51159.69 (18)N1—C6—N61—C68156.05 (17)
N41—C4—C5—C6168.26 (16)C5—C6—N61—C6822.5 (3)
N3—C4—C5—C614.5 (3)C6—N61—C67—C61128.48 (18)
C2—N1—C6—N61176.14 (16)C68—N61—C67—C6162.8 (2)
C2—N1—C6—C52.5 (3)N61—C67—C61—C66135.72 (19)
C51—C5—C6—N1159.69 (18)N61—C67—C61—C6249.1 (2)
C4—C5—C6—N114.2 (3)C66—C61—C62—C630.4 (3)
C51—C5—C6—N6121.8 (3)C67—C61—C62—C63174.87 (19)
C4—C5—C6—N61164.31 (17)C61—C62—C63—C640.3 (3)
N3—C4—N41—C4211.0 (3)C62—C63—C64—C650.0 (3)
C5—C4—N41—C42171.62 (17)C63—C64—C65—C660.3 (3)
C4—N41—C42—C43138.69 (18)C62—C61—C66—C650.1 (3)
N41—C42—C43—C4463.1 (2)C67—C61—C66—C65175.10 (18)
C42—C43—C44—O445.3 (3)C64—C65—C66—C610.2 (3)
C42—C43—C44—O45174.63 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21A···N3i0.962.073.008 (2)168
N21—H21B···N1ii0.952.303.199 (2)158
N41—H41···O441.012.272.891 (2)119
N41—H41···O511.011.922.666 (2)128
C46—H46A···O51iii0.992.543.528 (3)172
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2; (iii) x+1, y, z+1.
(VI) ethyl 3-amino-N-[2-amino-5-formyl-6-(piperidin-4-yl)pyrimidin-4-yl]propionate top
Crystal data top
C15H23N5O3Z = 2
Mr = 321.38F(000) = 344
Triclinic, P1Dx = 1.366 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.040 (4) ÅCell parameters from 3583 reflections
b = 10.391 (3) Åθ = 2.9–27.5°
c = 10.458 (8) ŵ = 0.10 mm1
α = 109.16 (3)°T = 120 K
β = 98.19 (5)°Block, colourless
γ = 103.10 (3)°0.41 × 0.25 × 0.22 mm
V = 781.2 (8) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3227 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode2384 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 9.091 pixels mm-1θmax = 26.5°, θmin = 2.9°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.885, Tmax = 0.936l = 1313
17622 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.5988P]
where P = (Fo2 + 2Fc2)/3
3227 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C15H23N5O3γ = 103.10 (3)°
Mr = 321.38V = 781.2 (8) Å3
Triclinic, P1Z = 2
a = 8.040 (4) ÅMo Kα radiation
b = 10.391 (3) ŵ = 0.10 mm1
c = 10.458 (8) ÅT = 120 K
α = 109.16 (3)°0.41 × 0.25 × 0.22 mm
β = 98.19 (5)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3227 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2384 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.936Rint = 0.059
17622 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
3227 reflectionsΔρmin = 0.32 e Å3
209 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2067 (2)0.99862 (17)0.39947 (17)0.0181 (4)
C20.1344 (3)0.8952 (2)0.2717 (2)0.0178 (4)
N30.0811 (2)0.75376 (17)0.23960 (17)0.0177 (4)
C40.0706 (3)0.7141 (2)0.3481 (2)0.0171 (4)
C50.1156 (3)0.8157 (2)0.48841 (19)0.0172 (4)
C60.2032 (3)0.9578 (2)0.5067 (2)0.0178 (4)
N210.1241 (2)0.93797 (18)0.16430 (17)0.0221 (4)
H21A0.14481.03070.18570.027*
H21B0.05490.87230.08410.027*
N410.0112 (2)0.57444 (17)0.32114 (17)0.0186 (4)
H410.00860.54420.39600.022*
C420.0436 (3)0.4661 (2)0.18126 (19)0.0182 (4)
H42A0.11510.49850.11990.022*
H42B0.11920.37760.18340.022*
C430.1089 (3)0.4326 (2)0.1192 (2)0.0212 (4)
H43A0.06860.39060.01640.025*
H43B0.20360.52250.14460.025*
C440.1820 (3)0.3315 (2)0.1681 (2)0.0196 (4)
O440.10635 (19)0.20552 (14)0.12956 (14)0.0223 (3)
O450.34111 (19)0.39256 (14)0.25435 (14)0.0222 (3)
C460.4207 (3)0.2999 (2)0.3051 (2)0.0257 (5)
H46A0.41860.21440.22600.031*
H46B0.35490.26850.36790.031*
C470.6066 (3)0.3843 (2)0.3820 (3)0.0312 (5)
H47A0.60710.47130.45670.047*
H47B0.67220.40970.31740.047*
H47C0.66180.32700.42230.047*
C510.0490 (3)0.7813 (2)0.5944 (2)0.0192 (4)
H510.05960.85790.67840.023*
O510.02206 (19)0.65980 (14)0.58706 (14)0.0216 (3)
N610.2857 (2)1.05882 (17)0.63761 (17)0.0199 (4)
C620.3611 (3)1.2063 (2)0.6514 (2)0.0218 (5)
H62A0.28341.22940.58530.026*
H62B0.47691.21690.62750.026*
C630.3831 (3)1.3095 (2)0.7991 (2)0.0248 (5)
H63A0.26581.30730.81870.030*
H63B0.44191.40740.80710.030*
C640.4915 (3)1.2721 (2)0.9069 (2)0.0257 (5)
H64A0.61401.28700.89610.031*
H64B0.49351.33501.00190.031*
C650.4114 (3)1.1178 (2)0.8867 (2)0.0264 (5)
H65A0.48661.09160.95170.032*
H65B0.29411.10560.90800.032*
C660.3942 (3)1.0207 (2)0.7381 (2)0.0216 (5)
H66A0.51251.02830.71910.026*
H66B0.33960.92070.72620.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0212 (9)0.0155 (8)0.0162 (8)0.0040 (7)0.0016 (7)0.0064 (7)
C20.0191 (10)0.0160 (9)0.0169 (10)0.0048 (8)0.0016 (8)0.0059 (8)
N30.0197 (9)0.0163 (8)0.0169 (8)0.0038 (7)0.0021 (7)0.0077 (7)
C40.0170 (10)0.0168 (9)0.0184 (10)0.0061 (8)0.0021 (8)0.0078 (8)
C50.0202 (10)0.0155 (9)0.0146 (9)0.0042 (8)0.0001 (8)0.0061 (8)
C60.0186 (10)0.0161 (9)0.0186 (10)0.0062 (8)0.0015 (8)0.0066 (8)
N210.0298 (10)0.0152 (8)0.0179 (8)0.0024 (7)0.0006 (7)0.0072 (7)
N410.0266 (9)0.0144 (8)0.0144 (8)0.0053 (7)0.0021 (7)0.0063 (7)
C420.0222 (10)0.0155 (9)0.0150 (10)0.0040 (8)0.0009 (8)0.0056 (8)
C430.0290 (11)0.0174 (10)0.0165 (10)0.0048 (8)0.0034 (8)0.0075 (8)
C440.0248 (11)0.0186 (10)0.0140 (9)0.0051 (8)0.0054 (8)0.0047 (8)
O440.0281 (8)0.0156 (7)0.0195 (7)0.0038 (6)0.0004 (6)0.0057 (6)
O450.0235 (8)0.0193 (7)0.0223 (7)0.0050 (6)0.0019 (6)0.0082 (6)
C460.0277 (12)0.0228 (11)0.0271 (11)0.0087 (9)0.0009 (9)0.0112 (9)
C470.0244 (12)0.0315 (12)0.0334 (13)0.0098 (10)0.0018 (10)0.0076 (10)
C510.0210 (10)0.0188 (10)0.0166 (10)0.0066 (8)0.0017 (8)0.0059 (8)
O510.0265 (8)0.0189 (7)0.0201 (7)0.0041 (6)0.0049 (6)0.0099 (6)
N610.0244 (9)0.0140 (8)0.0172 (8)0.0025 (7)0.0005 (7)0.0050 (7)
C620.0272 (11)0.0149 (10)0.0187 (10)0.0018 (8)0.0003 (9)0.0055 (8)
C630.0299 (12)0.0166 (10)0.0209 (11)0.0027 (9)0.0007 (9)0.0032 (8)
C640.0306 (12)0.0205 (10)0.0176 (10)0.0026 (9)0.0014 (9)0.0030 (8)
C650.0327 (12)0.0242 (11)0.0183 (10)0.0042 (9)0.0006 (9)0.0078 (9)
C660.0239 (11)0.0185 (10)0.0201 (10)0.0055 (8)0.0007 (8)0.0074 (8)
Geometric parameters (Å, º) top
N1—C61.324 (3)C46—H46A0.9900
N1—C21.353 (3)C46—H46B0.9900
C2—N211.336 (3)C47—H47A0.9800
C2—N31.344 (3)C47—H47B0.9800
N3—C41.335 (3)C47—H47C0.9800
C4—N411.339 (3)C51—O511.234 (2)
C4—C51.434 (3)C51—H510.9500
C5—C511.409 (3)N61—C621.465 (3)
C5—C61.421 (3)N61—C661.481 (3)
C6—N611.378 (3)C62—C631.522 (3)
N21—H21A0.8843C62—H62A0.9900
N21—H21B0.8932C62—H62B0.9900
N41—C421.453 (3)C63—C641.530 (3)
N41—H410.9356C63—H63A0.9900
C42—C431.522 (3)C63—H63B0.9900
C42—H42A0.9900C64—C651.517 (3)
C42—H42B0.9900C64—H64A0.9900
C43—C441.502 (3)C64—H64B0.9900
C43—H43A0.9900C65—C661.516 (3)
C43—H43B0.9900C65—H65A0.9900
C44—O441.212 (2)C65—H65B0.9900
C44—O451.335 (3)C66—H66A0.9900
O45—C461.461 (2)C66—H66B0.9900
C46—C471.500 (3)
C6—N1—C2116.23 (17)C46—C47—H47A109.5
N21—C2—N3116.10 (18)C46—C47—H47B109.5
N21—C2—N1116.28 (18)H47A—C47—H47B109.5
N3—C2—N1127.51 (18)C46—C47—H47C109.5
C4—N3—C2115.03 (17)H47A—C47—H47C109.5
N3—C4—N41117.39 (18)H47B—C47—H47C109.5
N3—C4—C5122.16 (18)O51—C51—C5125.40 (19)
N41—C4—C5120.43 (18)O51—C51—H51117.3
C51—C5—C6122.24 (18)C5—C51—H51117.3
C51—C5—C4121.52 (18)C6—N61—C62118.51 (17)
C6—C5—C4115.25 (18)C6—N61—C66119.36 (16)
N1—C6—N61117.61 (18)C62—N61—C66111.47 (16)
N1—C6—C5121.51 (18)N61—C62—C63111.02 (17)
N61—C6—C5120.87 (18)N61—C62—H62A109.4
C2—N21—H21A115.9C63—C62—H62A109.4
C2—N21—H21B114.8N61—C62—H62B109.4
H21A—N21—H21B123.6C63—C62—H62B109.4
C4—N41—C42123.41 (17)H62A—C62—H62B108.0
C4—N41—H41118.7C62—C63—C64111.73 (18)
C42—N41—H41117.9C62—C63—H63A109.3
N41—C42—C43113.62 (17)C64—C63—H63A109.3
N41—C42—H42A108.8C62—C63—H63B109.3
C43—C42—H42A108.8C64—C63—H63B109.3
N41—C42—H42B108.8H63A—C63—H63B107.9
C43—C42—H42B108.8C65—C64—C63109.64 (18)
H42A—C42—H42B107.7C65—C64—H64A109.7
C44—C43—C42112.97 (17)C63—C64—H64A109.7
C44—C43—H43A109.0C65—C64—H64B109.7
C42—C43—H43A109.0C63—C64—H64B109.7
C44—C43—H43B109.0H64A—C64—H64B108.2
C42—C43—H43B109.0C66—C65—C64110.45 (18)
H43A—C43—H43B107.8C66—C65—H65A109.6
O44—C44—O45122.99 (19)C64—C65—H65A109.6
O44—C44—C43123.36 (19)C66—C65—H65B109.6
O45—C44—C43113.62 (17)C64—C65—H65B109.6
C44—O45—C46116.48 (16)H65A—C65—H65B108.1
O45—C46—C47107.34 (18)N61—C66—C65111.06 (17)
O45—C46—H46A110.2N61—C66—H66A109.4
C47—C46—H46A110.2C65—C66—H66A109.4
O45—C46—H46B110.2N61—C66—H66B109.4
C47—C46—H46B110.2C65—C66—H66B109.4
H46A—C46—H46B108.5H66A—C66—H66B108.0
C6—N1—C2—N21174.38 (18)C42—C43—C44—O4472.8 (3)
C6—N1—C2—N39.8 (3)C42—C43—C44—O45109.4 (2)
N21—C2—N3—C4171.57 (18)O44—C44—O45—C461.7 (3)
N1—C2—N3—C412.6 (3)C43—C44—O45—C46179.55 (17)
C2—N3—C4—N41177.37 (17)C44—O45—C46—C47171.90 (18)
C2—N3—C4—C50.8 (3)C6—C5—C51—O51177.03 (19)
N3—C4—C5—C51157.28 (19)C4—C5—C51—O5114.9 (3)
N41—C4—C5—C5120.9 (3)N1—C6—N61—C624.2 (3)
N3—C4—C5—C611.6 (3)C5—C6—N61—C62174.97 (18)
N41—C4—C5—C6170.27 (18)N1—C6—N61—C66137.42 (19)
C2—N1—C6—N61175.91 (17)C5—C6—N61—C6643.4 (3)
C2—N1—C6—C55.0 (3)C6—N61—C62—C63158.54 (18)
C51—C5—C6—N1154.2 (2)C66—N61—C62—C6357.0 (2)
C4—C5—C6—N114.6 (3)N61—C62—C63—C6455.0 (2)
C51—C5—C6—N6124.9 (3)C62—C63—C64—C6553.9 (3)
C4—C5—C6—N61166.31 (18)C63—C64—C65—C6655.0 (3)
N3—C4—N41—C420.9 (3)C6—N61—C66—C65156.94 (19)
C5—C4—N41—C42177.40 (18)C62—N61—C66—C6559.0 (2)
C4—N41—C42—C4378.2 (2)C64—C65—C66—N6158.0 (2)
N41—C42—C43—C4481.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21A···O44i0.882.152.951 (3)150
N21—H21B···O44ii0.892.203.036 (3)156
N41—H41···O510.942.052.700 (3)125
N41—H41···O51iii0.942.212.909 (3)131
C43—H43A···N3ii0.992.553.524 (4)169
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x, y+1, z+1.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC16H19N5O3C14H16N6O2C17H21N5O3C16H19N5O3
Mr329.36300.33343.39329.36
Crystal system, space groupTriclinic, P1Monoclinic, C2/cMonoclinic, C2/cMonoclinic, P21/c
Temperature (K)293120120120
a, b, c (Å)7.3990 (5), 9.609 (3), 12.449 (3)20.045 (4), 8.6868 (7), 17.990 (3)16.707 (6), 10.218 (2), 20.733 (5)15.636 (4), 6.5674 (18), 17.336 (5)
α, β, γ (°)73.30 (2), 82.680 (14), 72.693 (13)90, 114.064 (11), 9090, 105.929 (19), 9090, 113.440 (18), 90
V3)808.5 (3)2860.3 (8)3403.5 (16)1633.3 (8)
Z2884
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.100.100.100.10
Crystal size (mm)0.41 × 0.25 × 0.220.32 × 0.20 × 0.110.29 × 0.22 × 0.100.29 × 0.27 × 0.15
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.885, 0.9360.969, 0.9890.973, 0.9910.973, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
18365, 3006, 2054 32858, 2657, 1993 21914, 3160, 2239 21188, 3013, 2209
Rint0.0420.0680.0630.072
(sin θ/λ)max1)0.6060.6060.6060.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.120, 1.02 0.049, 0.119, 1.12 0.044, 0.095, 1.09 0.059, 0.165, 1.09
No. of reflections3006265731603013
No. of parameters220200228219
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.170.34, 0.260.17, 0.230.35, 0.36


(V)(VI)
Crystal data
Chemical formulaC18H23N5O3C15H23N5O3
Mr357.41321.38
Crystal system, space groupMonoclinic, C2/cTriclinic, P1
Temperature (K)120120
a, b, c (Å)24.8226 (5), 7.1379 (14), 20.601 (2)8.040 (4), 10.391 (3), 10.458 (8)
α, β, γ (°)90, 106.213 (8), 90109.16 (3), 98.19 (5), 103.10 (3)
V3)3505.0 (8)781.2 (8)
Z82
Radiation typeMo KαMo Kα
µ (mm1)0.100.10
Crystal size (mm)0.26 × 0.21 × 0.140.41 × 0.25 × 0.22
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.976, 0.9870.885, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
22384, 3269, 2276 17622, 3227, 2384
Rint0.0730.059
(sin θ/λ)max1)0.6060.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.104, 1.06 0.051, 0.134, 1.05
No. of reflections32693227
No. of parameters237209
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.250.25, 0.32

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, °) for compounds (I)–(VI) top
(i)Bond lengths
Parameter(I)(II)(III)(IV)(V)(VI)
N1—C21.353 (2)1.350 (3)1.361 (2)1.353 (3)1.346 (2)1.353 (3)
C2—N31.340 (2)1.352 (3)1.341 (2)1.342 (3)1.346 (2)1.344 (2)
N3—C41.335 (2)1.336 (3)1.346 (2)1.339 (3)1.346 (2)1.335 (3)
C4—C51.430 (2)1.436 (3)1.433 (2)1.436 (3)1.441 (3)1.434 (3)
C5—C61.418 (2)1.438 (3)1.428 (2)1.429 (3)1.430 (3)1.421 (3)
C6—N11.335 (2)1.336 (3)1.339 (2)1.331 (3)1.351 (2)1.324 (3)
C2—N211.342 (2)1.337 (3)1.340 (2)1.340 (3)1.345 (2)1.336 (3)
C4—N411.336 (2)1.352 (3)1.343 (2)1.334 (3)1.343 (2)1.339 (3)
C5—C511.426 (3)1.426 (3)1.432 (3)1.420 (3)1.426 (3)1.409 (3)
C51—O511.232 (2)1.247 (3)1.239 (2)1.239 (3)1.241 (2)1.234 (2)
C6—N611.380 (2)1.371 (3)1.381 (2)1.381 (3)1.359 (2)1.378 (3)
(ii)Torsion angles
N3—C4—N41—C42-4.8 (2)7.0 (3)3.2 (3)-2.4 (3)11.0 (3)-0.9 (3)
C4—N41—C42—C43-196.15 (17)-88.6 (3)114.35 (19)-178.5 (2)-138.69 (18)78.2 (2)
N41—C42—C43—C4474.4 (2)-63.1 (2)81.2 (2)
N41—C42—C43—N441.3 (3)
N41—C42—C43—O44-172.71 (17)170.47 (19)
C42—C43—C44—O45-68.3 (2)-174.63 (16)-109.4 (2)
C43—C44—O45—C46179.43 (16)-177.40 (16)-179.55 (17)
C44—O45—C46—C47-174.16 (16)-147.25 (18)171.90 (18)
C42—C43—O44—C45178.29 (17)177.2 (2)
C43—O44—C45—C46170.04 (19)
C4—C5—C51—O5113.1 (3)8.3 (4)13.2 (3)15.3 (4)11.5 (3)14.9 (3)
C5—C6—N61—C6142.6 (3)35.4 (3)39.4 (2)
C5—C6—N61—C62-174.97 (18)
C5—C6—N61—C6643.4 (3)
C5—C6—N61—C67-161.27 (18)-175.8 (2)-171.57 (16)46.0 (3)-170.05 (17)
C5—C6—C61—C68-169.3 (2)22.5 (3)
(iii)Substituent displacement from mean pyrimidine plane
CompoundN21N41C51O51N61
(I)0.077 (2)-0.015 (2)0.319 (2)0.334 (2)-0.071 (2)
(II)0.132 (2)-0.035 (2)0.321 (2)0.391 (2)-0.101 (2)
(III)0.106 (2)-0.162 (2)0.353 (2)0.331 (2)-0.084 (2)
(IV)0.161 (2)-0.037 (2)0.444 (3)0.487 (2)-0.190 (2)
(V)0.300 (2)-0.172 (2)0.493 (2)0.548 (2)-0.256 (2)
(VI)0.245 (2)-0.104 (2)0.564 (2)0.670 (2)-0.251 (2)
(iv)Ring-puckering parameters
CompoundQθϕ
(IV)0.100 (3)97.0 (17)76.9 (14)
(V)0.156 (3)98.5 (7)59.8 (7)
(VI)0.149 (2)96.9 (8)71.8 (8)
Idealized boat90.060n
Hydrogen bonds and short intramolecular contacts (Å, °) for compounds (I)–(VI) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)N21—H21A···N1i0.922.223.125 (2)167
N41—H41···O510.941.902.675 (2)138
(II)N21—H21A···O43ii0.942.022.933 (2)166
N41—H41···O510.901.982.689 (2)135
N44—H44A···O51iii0.952.142.949 (2)143
N44—H44B···O43iv0.982.053.006 (3)164
C62—H62···O43v0.952.453.280 (3)146
(III)N21—H21A···N1iii0.902.143.027 (2)169
N21—H21B···O44v0.972.143.054 (2)158
N41—H41···O510.961.952.683 (2)131
(IV)N21—H21A···O51vi1.001.892.860 (3)163
N21—H21B···O43vii0.892.383.085 (3)136
N41—H41···O510.961.922.682 (3)135
(V)N21—H21A···N3viii0.962.073.008 (2)168
N21—H21B···N1ix0.952.303.199 (2)158
N41—H41···O441.012.272.891 (2)119
N41—H41···O511.011.922.666 (2)128
C46—H46A···O51x0.992.543.528 (3)172
(VI)N21—H21A···O44ii0.882.152.951 (3)150
N21—H21B···O44xi0.892.203.036 (3)156
N41—H41···O510.942.052.700 (3)125
N41—H41···O51i0.942.212.909 (3)131
C43—H43A···N3xi0.992.553.524 (4)169
Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x, y + 1, z; (iii) -x + 1, y, -z + 1/2; (iv) -x + 3/2, -y + 1/2, -z + 1; (v) -x + 1, -y + 1, -z + 1; (vi) x, -y + 3/2, z + 1/2; (vii) x, -y + 1/2, z + 1/2; (viii) -x + 3/2, y + 1/2, -z + 3/2; (ix) -x + 3/2, y - 1/2, -z + 3/2; (x) -x + 1, -y, -z + 1; (xi) -x, -y + 1, -z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds