Download citation
Download citation
link to html
Solvothermal reactions of Cu2(OH)2CO3 with 1,3-bis­(pyridin-4-yl)propane (bpp) in the presence of aqueous ammonia in 4-iodo­toluene/CH3CN or 1,4-diiodo­benzene/CH3CN afforded two [Cu2I2]-based coordination polymers, namely catena-poly[[[di-[mu]-iodido-dicopper(I)]-bis­[[mu]-1,3-bis­(pyridin-4-yl)propane-[kappa]2N:N']] p-toluidine tetra­solvate], {[Cu2I2(C13H14N2)2]·4C7H9N}n, (I), and the analogous 1,4-diiodo­benzene monosolvate, {[Cu2I2(C13H14N2)2]·C6H4I2}n, (II). The [Cu2I2] unit of (I) lies on a centre of symmetry at the mid-point of the two I atoms, while that of (II) has a twofold axis running through the I...I line. In (I) and (II), each Cu centre is tetra­hedrally coordinated by two [mu]-I and two N atoms from two different bpp ligands. Each rhomboid [Cu2I2] unit can be considered as a four-connecting node linked to the symmetry-related [Cu2I2] units via two pairs of bpp ligands to form a one-dimensional double chain along the c axis. The dimensions of the [Cu2I2(bpp)2]2 rings in (I) and (II) are different, which may be due to the presence of different guest solvent mol­ecules in the structures. In (I), one p-toluidine mol­ecule, derived from an Ullmann coupling reaction of 4-iodo­toluene with ammonia, inter­acts with the [Cu2I2] cluster fragment through N-H...I hydrogen bonds, while the two p-toluidine molecules interact via N-H...N hydrogen bonds. In (II), two I atoms of each 1,4-diiodo­benzene mol­ecule are linked to the I atoms of the [Cu2I2] fragments from a neighbouring chain via I...I secondary inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112025577/yf3014sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112025577/yf3014Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112025577/yf3014IIsup3.hkl
Contains datablock II

CCDC references: 893480; 893481

Comment top

In recent years, the construction of cluster-based coordination polymers has received much interest due to their structural diversity (Fujita, 1998; Blake, Champness et al., 1999; Leininger et al., 2000; Naumov et al., 2002; Tulsky et al., 2003; Wang et al., 2008), and their applications in storage and separation processes (Ma et al., 2007; Cotton et al., 2004; Chatterjee et al., 2004; Rosi et al., 2003), magnetism (Kahn, 2000), catalysis (Fujita et al., 1994; Pan et al., 2003; Hasegawa et al., 2007; Lin & Wu, 2007) and other potential uses (Beauvais et al., 2000; Horcajada et al., 2006). CuI salts are used in reactions with N-donor ligands to form cluster-based coordination polymers of various structural motifs such as rhomboid [Cu2I2] dimers (Biradha et al., 2000; Hu et al., 2006; Graham & Pike, 2000; Thébault et al., 2006; Niu et al., 2006; Araki et al., 2005), cubane [Cu4I4] tetramers (Blake et al., 2001), zigzag [CuI]n or [Cu3I4]nn- chains (Graham & Pike, 2000; Thébault et al., 2006; Cheng et al., 2004), double-stranded [Cu2I2]n ladders or ribbons (Graham & Pike, 2000; Thébault et al., 2006; Cheng et al., 2004), and two-dimensional [CuI]n layers (Thébault et al., 2006; Peng et al., 2005; Blake, Brooks et al., 1999). Many factors like reaction temperature, pH value and the symmetry of the ligands can exert great influence on the construction and structure of [CuxIx]-based coordination polymers, but solvent effects on the assembly and structure of such polymers have been less well explored (Chen et al., 2008). Herein, we report the crystal structures of two [Cu2I2]-based coordination polymers, {[Cu2I2(bpp)2].4p-toluidine}n, (I), and {[Cu2I2(bpp)2].p-diiodobenzene}n, (II), which were obtained from solvothermal reactions of Cu2(OH)2CO3 with 1,3-bis(pyridin-4-yl)propane (bpp) and aqueous ammonia in 4-iodotoluene/CH3CN and p-diiodobenzene/CH3CN, respectively.

The asymmetric unit of (I) contains half a [Cu2I2(bpp)2] dimeric molecule and two p-toluidine solvent molecules (Fig. 1), while that of (II) consists of half a [Cu2I2(bpp)2] dimeric molecule and half a p-diiodobenzene solvent molecule (Fig. 2). In the dimeric molecules of (I) and (II), each Cu atom is tetrahedrally coordinated by two µ-I and two N atoms from two different bpp ligands. The dimer of (I) lies on a centre of symmetry at the midpoint of atoms I1 and I1i [symmetry code: (i) -x, -y, -z + 1], while that of (II) has a twofold screw axis running along the I1···I2 line. Each rhomboid [Cu2I2] unit can be viewed as a four-connecting node linking symmetry-equivalent [Cu2I2] units via two pairs of bpp ligands to afford a one-dimensional double chain along the c axis. [Fig. 3 for (I) and Fig. 4 for (II)].

The mean Cu1···Cu1i distance in (I) [2.7366 (19) Å] is slightly shorter than that observed in [Cu2I2L4]n [L is 3-methylpyridine, 2.781 (2) Å; Rath et al. 1986] but longer than those found in [Cu2I2L4]n [L is pyridine, 2.699 (5) Å; Dyason et al. 1984] and [Cu2I2L4]n [L is 3,5-dimethylpyridine, 2.687 (3) Å; Healy et al. 1983]. The length of the Cu···Cu contact (3.654 Å) in (II) precludes any metal–metal interaction. The mean Cu—I bond length in (I) [2.6608 (9) Å] (Table 1) is comparable with that in {[Cu2I2(bpp)2].2aniline}n [2.6674 (19) Å; Chen et al., 2008] but shorter than those in (II) [2.7392 (8) Å] or {[Cu2I2(bpe)2].Am}n [Am is aniline, 2.7939 (15) Å; Am is p-toluidine, 2.7415 (11) Å; Yang et al. 2011]. The average Cu—N bond length of 2.051 (2) Å in (I) is longer than those observed in (II) [2.027 (4) Å] or {[Cu2I2(bpe)2].Am}n [Am is aniline, 2.006 (2) Å; Am is p-toluidine, 2.014 (3) Å], but slightly shorter than those in {[Cu2I2(bpp)2].2aniline}n [2.064 (7) Å] and [Cu2I2L4]n [L is 3,5-dimethylpyridine, 2.06 (3) Å; Healy et al. 1983].

Each bpp ligand in (I) and (II) adopts a transtrans configuration (Chen et al. 2008). However, as the pyridyl rings are rotated around the Cu—N direction, the bpp ligand in (I) is not planar, with a dihedral angle of 70.6° between the two pyridyl groups, while that of (II) is approximately planar, with a dihedral angle of 12.5° between the two pyridyl groups. The N1···N2 separation (9.595 Å) in (I) is shorter than that in (II) (10.178 Å). On the other hand, the one-dimensional chains in (I) and (II) may be viewed as a sequence of 28-membered [Cu2I2(bpp)]2 metallomacrocycle rings (Perera et al., 2010; Chan et al., 2009), which are constructed of two [Cu2I2] and two bpp ligands. The dimensions of these metallomacrocycle rings in (I) and (II) are roughly 12.96 × 8.27 Å and 13.76 × 7.79 Å, respectively. These differences may be ascribed to solvent effects, which greatly influence the structures of [Cu2I2]-based coordination polymers (Blake et al., 2001; Chen et al., 2008; Yang et al., 2011).

In the formation of (I) and (II), CuII may be reduced by bpp and/or iodide and the resulting CuI may combine iodides to produce the [Cu2I2] species (Yang et al. 2011). The latter have then been captured by bpp ligands to yield the [Cu2I2]-based frameworks of (I) and (II). In (I), the p-toluidine guest molecules have been generated in situ through an Ullmann coupling reaction of 4-iodotoluene with ammonia (Chen et al. 2008).

In (I), two p-toluidine molecules interact with each other via intermolecular hydrogen bonds between two amino groups (N4—H4···N3; Table 2). The NH2 group of one p-toluidine molecule binds the I atom of the [Cu2I2] fragment through an intermolecular hydrogen bond (N3—H3···I1), while its methyl group interacts with two pyridyl groups of the bpp ligands of a neighbouring chain via C14—H14···π interactions [H···pyridyl centroid = 2.893 and 3.225 Å; symmetry codes (-x + 1, -y, -z + 1) and (x - 1, y, z - 1), respectively] (Ciunik & Desiraju, 2001), thereby forming a two-dimensional network (Fig. 3).

In (II), the two I atoms of each p-diiodobenzene molecule interact with the I atoms of the [Cu2I2] fragments from an adjacent chain via an I···I(-x, -y + 1, -z) secondary interaction (3.620 Å). The methylene group of the bpp ligand in such a chain interacts with a pyridyl group of the bpp ligand of a neighbouring chain via C8—H8···π(1/2 - x, 3/2 - y, -z + 2) interactions (H···pyridyl centroid = 3.174 Å), affording another two-dimensional network (Fig. 4).

Related literature top

For related literature, see: Araki et al. (2005); Beauvais et al. (2000); Biradha et al. (2000); Blake et al. (2001); Blake, Brooks, Champness, Cooke, Deveson, Fenske, Hubberstey, Li & Schröder (1999); Blake, Champness, Hubberstey, Li, Withersby & Schröder (1999); Chan et al. (2009); Chatterjee et al. (2004); Chen et al. (2008); Cheng et al. (2004); Ciunik & Desiraju (2001); Cotton et al. (2004); Dyason et al. (1984); Fujita (1998); Fujita et al. (1994); Graham & Pike (2000); Hasegawa et al. (2007); Healy et al. (1983); Horcajada et al. (2006); Hu et al. (2006); Kahn (2000); Leininger et al. (2000); Lin & Wu (2007); Ma et al. (2007); Naumov et al. (2002); Niu et al. (2006); Pan et al. (2003); Peng et al. (2005); Perera et al. (2010); Rath et al. (1986); Rosi et al. (2003); Thébault et al. (2006); Tulsky et al. (2003); Wang et al. (2008); Yang et al. (2011).

Experimental top

Cu2(OH)2CO3 (22 mg, 0.1 mmol), bpp (20 mg, 0.1 mmol), 4-iodotoluene (150 mg, 0.7 mmol), aqueous ammonia (25%, 1.5 ml) and CH3CN (0.5 ml) were added to a Pyrex glass tube (15 cm in length, 7 mm in inner diameter). The tube was sealed and heated in an oven at 423 K for 70 h, and then cooled to room temperature at a rate of 5 K per 100 min to form red blocks [Yellow prism in CIF - please clarify] of {[Cu2I2(bpp)2].4p-toluidine}n, (I), which were collected by filtration, washed with CH3CN and dried in air (yield: 21 mg, 30% based on bpp). Analysis, found: C 53.59, H 5.29, N 9.20%; calculated for C27H32CuIN4: C 53.78, H 5.35, N 9.29%. Spectroscopic analysis: IR (KBr, ν, cm-1): 3427 (w), 3380 (w), 3301 (w), 3209 (w), 3022 (w), 2926 (w), 2860 (w), 1608 (s), 1514 (s), 1421(m), 1262 (m), 1220 (m), 1011 (w), 809 (s), 610 (w), 512 (m).

Cu2(OH)2CO3 (22 mg, 0.1 mmol), bpp (20 mg, 0.1 mmol), p-diiodobenzene (33 mg, 0.1 mmol), aqueous ammonia (25%, 0.2 ml) and CH3CN (1.5 ml) were added to a Pyrex glass tube (15 cm in length, 7 mm in inner diameter). The tube was sealed and heated in an oven at 423 K for 70 h, and then cooled to room temperature at a rate of 5 K per 100 min to form red [Orange in CIF - please clarify] blocks of {[Cu2I2(bpp)2].p-diiodobenzene}n (II), which were collected by filtration, washed with CH3CN, and dried in air (yield: 0.021 g, 30% based on bpp). Analysis, found: C 34.69, H 2.89, N 5.10%; calculated for C16H16CuI2N2: C 34.71, H 2.91, N 5.06%. Spectroscopic analysis: IR (KBr, ν, cm-1): 3425 (w), 3378 (w), 3206 (w), 3021 (w), 2923 (w), 2856 (w), 1602 (s), 1509 (s), 1417 (s), 1258 (m), 1218 (m), 1008 (w), 805 (s), 613 (w), 512 (m).

Refinement top

All H atoms were placed in geometrically idealized positions, with C—H = 0.98 for methyl groups, 0.99 for methylene groups and 0.95 Å for phenyl groups, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for phenyl groups and Uiso(H) = 1.5Ueq(C) for methyl groups.

Computing details top

For both compounds, data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x, -y, -z + 1; (ii) x, y, z + 1; (iii) -x, -y, -z.]
[Figure 2] Fig. 2. The molecular structure of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x, y, -z + 1/2; (ii) -x, y, -z + 3/2; (iii) x, y, z - 1.]
[Figure 3] Fig. 3. A view of the two-dimensional network of (I), extending along the ac plane. Dashed lines indicate N—H···N and N—H···I hydrogen bonds and C—H···π interactions. (In the electronic version of the journal, atom colour codes are: Cu cyan, I pink, N blue, C grey and H green.)
[Figure 4] Fig. 4. A view of the two-dimensional network of (II), extending along the ac plane. Dashed lines indicate I···I secondary interactions and C—H···π interactions. [In the electronic version of the journal, atom colour codes are: Cu cyan, I pink, N blue, C grey and H green.)
(I) catena-poly[[[di-µ-iodido-dicopper(I)]- bis[µ-1,3-bis(pyridin-4-yl)propane-κ2N:N']] p-toluidine tetrasolvate] top
Crystal data top
[Cu2I2(C13H14N2)2]·4C7H9NZ = 1
Mr = 1206.02F(000) = 608
Triclinic, P1Dx = 1.525 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 10.119 (2) ÅCell parameters from 6516 reflections
b = 12.370 (3) Åθ = 3.1–27.5°
c = 12.962 (3) ŵ = 2.03 mm1
α = 103.19 (3)°T = 223 K
β = 111.06 (3)°Prism, yellow
γ = 109.30 (3)°0.60 × 0.60 × 0.40 mm
V = 1313.4 (5) Å3
Data collection top
Rigaku Saturn 724+ CCD area-detector
diffractometer
5891 independent reflections
Radiation source: fine-focus sealed tube4782 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 1213
Tmin = 0.376, Tmax = 0.498k = 1515
12464 measured reflectionsl = 1612
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0292P)2]
where P = (Fo2 + 2Fc2)/3
5891 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Cu2I2(C13H14N2)2]·4C7H9Nγ = 109.30 (3)°
Mr = 1206.02V = 1313.4 (5) Å3
Triclinic, P1Z = 1
a = 10.119 (2) ÅMo Kα radiation
b = 12.370 (3) ŵ = 2.03 mm1
c = 12.962 (3) ÅT = 223 K
α = 103.19 (3)°0.60 × 0.60 × 0.40 mm
β = 111.06 (3)°
Data collection top
Rigaku Saturn 724+ CCD area-detector
diffractometer
5891 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
4782 reflections with I > 2σ(I)
Tmin = 0.376, Tmax = 0.498Rint = 0.035
12464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 0.95Δρmax = 0.59 e Å3
5891 reflectionsΔρmin = 0.77 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

TITL t in P-1 CELL 0.71073 10.1194 12.3695 12.9620 103.189 111.059 109.304 ZERR 2.00 0.0020 0.0025 0.0026 0.030 0.030 0.030 L A T T 1 SFAC C H N CU I UNIT 54 64 8 2 2

omit -1 - 1 2 omit -1 3 0 omit 0 1 2 omit -2 1 0 omit -1 - 2 2 omit -1 - 2 3 omit 1 - 2 1 omit -1 - 2 1 omit -3 - 3 14 omit -3 - 4 4 omit -2 - 2 2 omit -2 2 0

L.S. 10 BOND $h HTAB N3 I1 HTAB N4 N3 acta bond size 0.6 0.6 0.4 temp -50 FMAP 2 PLAN -5

WGHT 0.029200 FVAR 0.23618 CU1 4 0.128385 0.115425 0.559364 11.00000 0.03476 0.03237 = 0.02291 0.01181 0.01599 0.01367 I1 5 0.168864 - 0.088121 0.525253 11.00000 0.03066 0.03232 = 0.03433 0.01086 0.01424 0.01318 N1 3 0.233529 0.214234 0.479626 11.00000 0.02982 0.02719 = 0.02526 0.01170 0.01475 0.01205 N2 3 0.239216 0.215935 - 0.258629 11.00000 0.02742 0.02545 = 0.01932 0.00846 0.01203 0.01060 N3 3 0.619629 0.076251 0.683350 11.00000 0.04417 0.04907 = 0.05260 0.02292 0.02520 0.01992 AFIX 3 H3A 2 0.522859 0.030021 0.630840 11.00000 - 1.20000 H3B 2 0.672808 0.071091 0.646080 11.00000 - 1.20000 AFIX 0 N4 3 0.746379 0.372027 0.815126 11.00000 0.05491 0.04771 = 0.06703 0.02633 0.03337 0.02122 AFIX 3 H4B 2 0.698809 0.296777 0.765106 11.00000 - 1.20000 H4C 2 0.768909 0.388577 0.888476 11.00000 - 1.20000 AFIX 0 C1 1 0.180553 0.286942 0.433409 11.00000 0.02785 0.03772 = 0.03336 0.01885 0.01623 0.01618 AFIX 43 H1 2 0.090398 0.290614 0.435930 11.00000 - 1.20000 AFIX 0 C2 1 0.251621 0.356429 0.382483 11.00000 0.03533 0.03750 = 0.03029 0.02042 0.01536 0.01968 AFIX 43 H2 2 0.209870 0.406368 0.351659 11.00000 - 1.20000 AFIX 0 C3 1 0.383231 0.353741 0.376093 11.00000 0.03088 0.02456 = 0.01467 0.00337 0.01054 0.00467 C4 1 0.438785 0.279767 0.424049 11.00000 0.04364 0.04567 = 0.04750 0.02638 0.03187 0.02449 AFIX 43 H4A 2 0.528984 0.275187 0.422497 11.00000 - 1.20000 AFIX 0 C5 1 0.362700 0.212158 0.474486 11.00000 0.04407 0.04244 = 0.04933 0.02945 0.03042 0.02718 AFIX 43 H5 2 0.403301 0.162382 0.506707 11.00000 - 1.20000 AFIX 0 C6 1 0.459859 0.426373 0.317281 11.00000 0.03622 0.02781 = 0.02043 0.00765 0.01541 0.00513 AFIX 23 H6A 2 0.573396 0.448647 0.354524 11.00000 - 1.20000 H6B 2 0.449572 0.503763 0.330598 11.00000 - 1.20000 AFIX 0 C7 1 0.383570 0.351376 0.181923 11.00000 0.03159 0.02410 = 0.02155 0.00718 0.01378 0.00716 AFIX 23 H7A 2 0.391728 0.273116 0.168309 11.00000 - 1.20000 H7B 2 0.270596 0.330871 0.144115 11.00000 - 1.20000 AFIX 0 C8 1 0.465329 0.425309 0.124398 11.00000 0.03527 0.02737 = 0.02033 0.00685 0.01355 0.00453 AFIX 23 H8A 2 0.459703 0.504585 0.140196 11.00000 - 1.20000 H8B 2 0.577728 0.444027 0.161120 11.00000 - 1.20000 AFIX 0 C9 1 0.389385 0.354525 - 0.009385 11.00000 0.02834 0.02246 = 0.01977 0.00888 0.01175 0.00356 C10 1 0.250887 0.351323 - 0.087729 11.00000 0.03525 0.03115 = 0.02828 0.00891 0.02012 0.01571 AFIX 43 H10 2 0.204489 0.396108 - 0.057714 11.00000 - 1.20000 AFIX 0 C11 1 0.181038 0.283012 - 0.209068 11.00000 0.02876 0.03401 = 0.02337 0.01073 0.01204 0.01449 AFIX 43 H11 2 0.087656 0.283288 - 0.259993 11.00000 - 1.20000 AFIX 0 C12 1 0.373793 0.219793 - 0.183336 11.00000 0.03131 0.03207 = 0.02884 0.01140 0.01553 0.01750 AFIX 43 H12 2 0.418260 0.174622 - 0.215531 11.00000 - 1.20000 AFIX 0 C13 1 0.450274 0.286753 - 0.060959 11.00000 0.02961 0.03266 = 0.02621 0.01298 0.01026 0.01445 AFIX 43 H13 2 0.544691 0.286385 - 0.012062 11.00000 - 1.20000 AFIX 0 C14 1 0.877591 0.033769 1.136800 11.00000 0.07346 0.06191 = 0.05052 0.02022 0.02965 0.02533 AFIX 137 H14A 2 0.827712 0.060614 1.181891 11.00000 - 1.50000 H14B 2 0.991204 0.087893 1.180355 11.00000 - 1.50000 H14C 2 0.857856 - 0.051259 1.126312 11.00000 - 1.50000 AFIX 0 C15 1 0.808876 0.040105 1.014739 11.00000 0.05060 0.02926 = 0.04444 0.01106 0.02552 0.01746 C16 1 0.647155 - 0.007183 0.944339 11.00000 0.04852 0.03189 = 0.06260 0.02074 0.03850 0.01763 AFIX 43 H16 2 0.578393 - 0.046855 0.971798 11.00000 - 1.20000 AFIX 0 C17 1 0.582924 0.001892 0.834667 11.00000 0.03166 0.03971 = 0.06318 0.02355 0.02732 0.01767 AFIX 43 H17 2 0.472160 - 0.030801 0.789374 11.00000 - 1.20000 AFIX 0 C18 1 0.681326 0.059119 0.791061 11.00000 0.03635 0.02960 = 0.04767 0.01437 0.02339 0.01563 C19 1 0.843674 0.105175 0.860261 11.00000 0.03737 0.04274 = 0.05931 0.02317 0.02953 0.01378 AFIX 43 H19 2 0.912762 0.143589 0.832481 11.00000 - 1.20000 AFIX 0 C20 1 0.905649 0.095252 0.970335 11.00000 0.03270 0.04083 = 0.05358 0.01502 0.01776 0.00760 AFIX 43 H20 2 1.016252 0.126930 1.015571 11.00000 - 1.20000 AFIX 0 C21 1 1.218404 0.675724 0.722564 11.00000 0.05628 0.09080 = 0.09825 0.06395 0.04770 0.04356 AFIX 137 H21A 2 1.222247 0.625790 0.655134 11.00000 - 1.50000 H21B 2 1.322719 0.717795 0.792518 11.00000 - 1.50000 H21C 2 1.186414 0.737110 0.702525 11.00000 - 1.50000 AFIX 0 C22 1 1.100134 0.592615 0.749761 11.00000 0.03577 0.04811 = 0.06081 0.03252 0.02301 0.02765 C23 1 1.092589 0.635504 0.855409 11.00000 0.03649 0.03346 = 0.04967 0.01293 0.01009 0.01668 AFIX 43 H23 2 1.167091 0.716444 0.913021 11.00000 - 1.20000 AFIX 0 C24 1 0.979558 0.563036 0.877840 11.00000 0.04800 0.04044 = 0.03908 0.01347 0.02005 0.02557 AFIX 43 H24 2 0.977575 0.595385 0.950009 11.00000 - 1.20000 AFIX 0 C25 1 0.867926 0.442666 0.795813 11.00000 0.04072 0.03598 = 0.04766 0.01847 0.01982 0.02472 C26 1 0.875306 0.398196 0.691417 11.00000 0.04670 0.03092 = 0.04699 0.00893 0.01430 0.02183 AFIX 43 H26 2 0.801652 0.316735 0.634594 11.00000 - 1.20000 AFIX 0 C27 1 0.989904 0.471946 0.668979 11.00000 0.05863 0.05752 = 0.04231 0.02300 0.02851 0.04157 AFIX 43 H27 2 0.992724 0.439195 0.597278 11.00000 - 1.20000

HKLF 4

REM t in P-1 REM R1 = 0.0304 for 4782 Fo > 4sig(Fo) and 0.0385 for all 5891 data REM 300 parameters refined using 0 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.12838 (4)0.11542 (3)0.55936 (3)0.02952 (9)
I10.16886 (2)0.088121 (18)0.525253 (17)0.03362 (7)
N10.2335 (2)0.2142 (2)0.47963 (19)0.0268 (5)
N20.2392 (2)0.2159 (2)0.25863 (18)0.0242 (5)
N30.6196 (3)0.0763 (3)0.6833 (2)0.0476 (7)
H3A0.52290.03000.63080.057*
H3B0.67280.07110.64610.057*
N40.7464 (3)0.3720 (3)0.8151 (3)0.0549 (8)
H4B0.69880.29680.76510.066*
H4C0.76890.38860.88850.066*
C10.1806 (3)0.2869 (3)0.4334 (2)0.0310 (6)
H10.09040.29060.43590.037*
C20.2516 (3)0.3564 (3)0.3825 (2)0.0320 (6)
H20.20990.40640.35170.038*
C30.3832 (3)0.3537 (3)0.3761 (2)0.0268 (6)
C40.4388 (3)0.2798 (3)0.4240 (3)0.0392 (7)
H4A0.52900.27520.42250.047*
C50.3627 (3)0.2122 (3)0.4745 (3)0.0379 (7)
H50.40330.16240.50670.045*
C60.4599 (3)0.4264 (3)0.3173 (2)0.0307 (6)
H6A0.57340.44860.35450.037*
H6B0.44960.50380.33060.037*
C70.3836 (3)0.3514 (3)0.1819 (2)0.0274 (6)
H7A0.39170.27310.16830.033*
H7B0.27060.33090.14410.033*
C80.4653 (3)0.4253 (3)0.1244 (2)0.0310 (6)
H8A0.45970.50460.14020.037*
H8B0.57770.44400.16110.037*
C90.3894 (3)0.3545 (2)0.0094 (2)0.0257 (6)
C100.2509 (3)0.3513 (3)0.0877 (2)0.0302 (6)
H100.20450.39610.05770.036*
C110.1810 (3)0.2830 (3)0.2091 (2)0.0289 (6)
H110.08770.28330.26000.035*
C120.3738 (3)0.2198 (3)0.1833 (2)0.0295 (6)
H120.41830.17460.21550.035*
C130.4503 (3)0.2868 (3)0.0610 (2)0.0301 (6)
H130.54470.28640.01210.036*
C140.8776 (5)0.0338 (4)1.1368 (3)0.0639 (10)
H14A0.82770.06061.18190.096*
H14B0.99120.08791.18040.096*
H14C0.85790.05131.12630.096*
C150.8089 (4)0.0401 (3)1.0147 (3)0.0413 (7)
C160.6472 (4)0.0072 (3)0.9443 (3)0.0433 (8)
H160.57840.04690.97180.052*
C170.5829 (3)0.0019 (3)0.8347 (3)0.0421 (8)
H170.47220.03080.78940.051*
C180.6813 (3)0.0591 (3)0.7911 (3)0.0367 (7)
C190.8437 (3)0.1052 (3)0.8603 (3)0.0450 (8)
H190.91280.14360.83250.054*
C200.9056 (4)0.0953 (3)0.9703 (3)0.0468 (8)
H201.01630.12691.01560.056*
C211.2184 (4)0.6757 (4)0.7226 (4)0.0695 (12)
H21A1.22220.62580.65510.104*
H21B1.32270.71780.79250.104*
H21C1.18640.73710.70250.104*
C221.1001 (3)0.5926 (3)0.7498 (3)0.0433 (8)
C231.0926 (4)0.6355 (3)0.8554 (3)0.0438 (8)
H231.16710.71640.91300.053*
C240.9796 (4)0.5630 (3)0.8778 (3)0.0415 (7)
H240.97760.59540.95000.050*
C250.8679 (4)0.4427 (3)0.7958 (3)0.0392 (7)
C260.8753 (4)0.3982 (3)0.6914 (3)0.0442 (8)
H260.80170.31670.63460.053*
C270.9899 (4)0.4719 (3)0.6690 (3)0.0459 (8)
H270.99270.43920.59730.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03476 (18)0.0324 (2)0.02291 (19)0.01367 (16)0.01599 (15)0.01181 (17)
I10.03066 (10)0.03232 (12)0.03433 (12)0.01318 (9)0.01424 (8)0.01086 (9)
N10.0298 (11)0.0272 (13)0.0253 (12)0.0120 (10)0.0147 (10)0.0117 (11)
N20.0274 (11)0.0254 (13)0.0193 (12)0.0106 (10)0.0120 (9)0.0085 (10)
N30.0442 (15)0.0491 (18)0.0526 (18)0.0199 (14)0.0252 (14)0.0229 (16)
N40.0549 (17)0.0477 (19)0.067 (2)0.0212 (15)0.0334 (16)0.0263 (17)
C10.0279 (13)0.0377 (17)0.0334 (16)0.0162 (13)0.0162 (12)0.0189 (15)
C20.0353 (14)0.0375 (18)0.0303 (16)0.0197 (14)0.0154 (12)0.0204 (15)
C30.0309 (13)0.0246 (15)0.0147 (13)0.0047 (12)0.0105 (11)0.0034 (12)
C40.0436 (17)0.046 (2)0.0475 (19)0.0245 (16)0.0319 (15)0.0264 (17)
C50.0441 (16)0.0424 (19)0.0493 (19)0.0272 (15)0.0304 (15)0.0295 (17)
C60.0362 (14)0.0278 (16)0.0204 (14)0.0051 (13)0.0154 (12)0.0076 (13)
C70.0316 (13)0.0241 (15)0.0215 (14)0.0072 (12)0.0138 (11)0.0072 (13)
C80.0353 (14)0.0274 (16)0.0203 (14)0.0045 (13)0.0136 (12)0.0069 (13)
C90.0283 (13)0.0225 (15)0.0198 (14)0.0036 (11)0.0118 (11)0.0089 (12)
C100.0353 (14)0.0312 (16)0.0283 (16)0.0157 (13)0.0201 (12)0.0089 (14)
C110.0288 (13)0.0340 (17)0.0234 (15)0.0145 (13)0.0120 (11)0.0107 (14)
C120.0313 (14)0.0321 (16)0.0288 (16)0.0175 (13)0.0155 (12)0.0114 (14)
C130.0296 (13)0.0327 (17)0.0262 (15)0.0145 (13)0.0103 (12)0.0130 (14)
C140.073 (3)0.062 (3)0.051 (2)0.025 (2)0.030 (2)0.020 (2)
C150.0506 (18)0.0293 (18)0.044 (2)0.0175 (16)0.0255 (16)0.0111 (16)
C160.0485 (18)0.0319 (18)0.063 (2)0.0176 (16)0.0385 (17)0.0207 (18)
C170.0317 (15)0.0397 (19)0.063 (2)0.0177 (15)0.0273 (15)0.0235 (18)
C180.0363 (15)0.0296 (17)0.0477 (19)0.0156 (14)0.0234 (14)0.0144 (16)
C190.0374 (16)0.043 (2)0.059 (2)0.0138 (15)0.0295 (16)0.0232 (18)
C200.0327 (16)0.041 (2)0.054 (2)0.0076 (15)0.0178 (15)0.0150 (18)
C210.056 (2)0.091 (3)0.098 (3)0.044 (2)0.048 (2)0.064 (3)
C220.0358 (16)0.048 (2)0.061 (2)0.0276 (16)0.0230 (16)0.033 (2)
C230.0365 (16)0.0335 (19)0.050 (2)0.0167 (15)0.0101 (15)0.0129 (17)
C240.0480 (18)0.040 (2)0.0391 (19)0.0256 (17)0.0200 (15)0.0135 (17)
C250.0407 (16)0.0360 (19)0.048 (2)0.0247 (16)0.0198 (15)0.0185 (17)
C260.0467 (18)0.0309 (18)0.047 (2)0.0218 (16)0.0143 (16)0.0089 (17)
C270.059 (2)0.058 (2)0.042 (2)0.042 (2)0.0285 (17)0.0230 (19)
Geometric parameters (Å, º) top
Cu1—N12.050 (2)C9—C101.385 (4)
Cu1—N2i2.051 (2)C10—C111.374 (4)
Cu1—I12.6470 (7)C10—H100.9400
Cu1—I1ii2.6746 (9)C11—H110.9400
Cu1—Cu1ii2.7366 (19)C12—C131.377 (4)
I1—Cu1ii2.6746 (9)C12—H120.9400
N1—C11.338 (3)C13—H130.9400
N1—C51.341 (3)C14—C151.515 (4)
N2—C121.338 (3)C14—H14A0.9700
N2—C111.341 (3)C14—H14B0.9700
N2—Cu1iii2.051 (2)C14—H14C0.9700
N3—C181.407 (4)C15—C201.378 (4)
N3—H3A0.8499C15—C161.380 (4)
N3—H3B0.8500C16—C171.383 (4)
N4—C251.396 (4)C16—H160.9400
N4—H4B0.8500C17—C181.390 (4)
N4—H4C0.8499C17—H170.9400
C1—C21.372 (4)C18—C191.385 (4)
C1—H10.9400C19—C201.390 (4)
C2—C31.374 (4)C19—H190.9400
C2—H20.9400C20—H200.9400
C3—C41.374 (4)C21—C221.506 (5)
C3—C61.505 (3)C21—H21A0.9700
C4—C51.380 (4)C21—H21B0.9700
C4—H4A0.9400C21—H21C0.9700
C5—H50.9400C22—C271.384 (5)
C6—C71.531 (4)C22—C231.390 (5)
C6—H6A0.9800C23—C241.370 (4)
C6—H6B0.9800C23—H230.9400
C7—C81.527 (3)C24—C251.388 (5)
C7—H7A0.9800C24—H240.9400
C7—H7B0.9800C25—C261.378 (5)
C8—C91.506 (4)C26—C271.388 (5)
C8—H8A0.9800C26—H260.9400
C8—H8B0.9800C27—H270.9400
C9—C131.382 (4)
N1—Cu1—N2i110.41 (9)C11—C10—H10119.8
N1—Cu1—I1107.30 (7)C9—C10—H10119.8
N2i—Cu1—I1107.55 (7)N2—C11—C10123.4 (2)
N1—Cu1—I1ii107.16 (6)N2—C11—H11118.3
N2i—Cu1—I1ii106.24 (7)C10—C11—H11118.3
I1—Cu1—I1ii118.11 (4)N2—C12—C13123.1 (2)
N1—Cu1—Cu1ii125.17 (7)N2—C12—H12118.4
N2i—Cu1—Cu1ii124.41 (7)C13—C12—H12118.4
I1—Cu1—Cu1ii59.55 (3)C12—C13—C9120.6 (2)
I1ii—Cu1—Cu1ii58.56 (3)C12—C13—H13119.7
Cu1—I1—Cu1ii61.89 (4)C9—C13—H13119.7
C1—N1—C5116.4 (2)C15—C14—H14A109.5
C1—N1—Cu1122.11 (17)C15—C14—H14B109.5
C5—N1—Cu1121.42 (17)H14A—C14—H14B109.5
C12—N2—C11116.4 (2)C15—C14—H14C109.5
C12—N2—Cu1iii122.18 (18)H14A—C14—H14C109.5
C11—N2—Cu1iii121.38 (16)H14B—C14—H14C109.5
C18—N3—H3A120.0C20—C15—C16117.2 (3)
C18—N3—H3B111.5C20—C15—C14121.3 (3)
H3A—N3—H3B105.4C16—C15—C14121.5 (3)
C25—N4—H4B110.0C15—C16—C17122.1 (3)
C25—N4—H4C115.2C15—C16—H16118.9
H4B—N4—H4C120.3C17—C16—H16118.9
N1—C1—C2123.1 (2)C16—C17—C18120.3 (3)
N1—C1—H1118.5C16—C17—H17119.8
C2—C1—H1118.5C18—C17—H17119.8
C1—C2—C3120.7 (2)C19—C18—C17117.9 (3)
C1—C2—H2119.7C19—C18—N3120.6 (3)
C3—C2—H2119.7C17—C18—N3121.4 (3)
C4—C3—C2116.5 (2)C18—C19—C20120.8 (3)
C4—C3—C6122.1 (2)C18—C19—H19119.6
C2—C3—C6121.4 (2)C20—C19—H19119.6
C3—C4—C5120.3 (3)C15—C20—C19121.6 (3)
C3—C4—H4A119.9C15—C20—H20119.2
C5—C4—H4A119.9C19—C20—H20119.2
N1—C5—C4123.0 (2)C22—C21—H21A109.5
N1—C5—H5118.5C22—C21—H21B109.5
C4—C5—H5118.5H21A—C21—H21B109.5
C3—C6—C7111.6 (2)C22—C21—H21C109.5
C3—C6—H6A109.3H21A—C21—H21C109.5
C7—C6—H6A109.3H21B—C21—H21C109.5
C3—C6—H6B109.3C27—C22—C23116.9 (3)
C7—C6—H6B109.3C27—C22—C21121.7 (3)
H6A—C6—H6B108.0C23—C22—C21121.4 (4)
C8—C7—C6110.8 (2)C24—C23—C22121.8 (3)
C8—C7—H7A109.5C24—C23—H23119.1
C6—C7—H7A109.5C22—C23—H23119.1
C8—C7—H7B109.5C23—C24—C25121.1 (3)
C6—C7—H7B109.5C23—C24—H24119.4
H7A—C7—H7B108.1C25—C24—H24119.4
C9—C8—C7111.7 (2)C26—C25—C24117.8 (3)
C9—C8—H8A109.3C26—C25—N4121.1 (3)
C7—C8—H8A109.3C24—C25—N4121.0 (3)
C9—C8—H8B109.3C25—C26—C27120.9 (3)
C7—C8—H8B109.3C25—C26—H26119.5
H8A—C8—H8B107.9C27—C26—H26119.5
C13—C9—C10116.1 (2)C22—C27—C26121.5 (3)
C13—C9—C8122.5 (2)C22—C27—H27119.2
C10—C9—C8121.3 (2)C26—C27—H27119.2
C11—C10—C9120.3 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1; (iii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···I10.852.993.793 (3)158
N4—H4B···N30.852.413.228 (4)160
(II) catena-poly[[[di-µ-iodido-dicopper(I)]- bis[µ-1,3-bis(pyridin-4-yl)propane-κ2N:N']] 1,4-diiodobenzene monosolvate] top
Crystal data top
[Cu2I2(C13H14N2)2]·C6H4I2F(000) = 2088
Mr = 1107.30Dx = 2.195 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6485 reflections
a = 17.700 (4) Åθ = 3.1–25.4°
b = 14.604 (3) ŵ = 4.98 mm1
c = 13.757 (3) ÅT = 223 K
β = 109.53 (3)°Block, orange
V = 3351.4 (12) Å30.54 × 0.40 × 0.38 mm
Z = 4
Data collection top
Rigaku Saturn 724+ CCD area-detector
diffractometer
3058 independent reflections
Radiation source: fine-focus sealed tube2902 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 25.4°, θmin = 3.1°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 2119
Tmin = 0.174, Tmax = 0.253k = 1717
15742 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0428P)2 + 11.4239P]
where P = (Fo2 + 2Fc2)/3
3058 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 1.67 e Å3
Crystal data top
[Cu2I2(C13H14N2)2]·C6H4I2V = 3351.4 (12) Å3
Mr = 1107.30Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.700 (4) ŵ = 4.98 mm1
b = 14.604 (3) ÅT = 223 K
c = 13.757 (3) Å0.54 × 0.40 × 0.38 mm
β = 109.53 (3)°
Data collection top
Rigaku Saturn 724+ CCD area-detector
diffractometer
3058 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2902 reflections with I > 2σ(I)
Tmin = 0.174, Tmax = 0.253Rint = 0.025
15742 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0428P)2 + 11.4239P]
where P = (Fo2 + 2Fc2)/3
3058 reflectionsΔρmax = 0.84 e Å3
191 parametersΔρmin = 1.67 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.10953 (3)0.86540 (4)0.29705 (4)0.03457 (16)
I10.00000.72585 (3)0.25000.02780 (12)
I20.00001.00533 (2)0.25000.02788 (12)
I30.02316 (2)0.34964 (2)0.00902 (2)0.04574 (12)
N10.1660 (2)0.8730 (2)0.4512 (3)0.0287 (8)
C10.2453 (3)0.8665 (4)0.4956 (4)0.0512 (14)
H10.27640.85710.45290.061*
C20.2843 (3)0.8727 (4)0.6002 (4)0.0500 (14)
H20.34050.86800.62650.060*
C30.2421 (2)0.8856 (3)0.6666 (3)0.0260 (8)
C40.1604 (3)0.8928 (4)0.6214 (4)0.0413 (11)
H40.12800.90170.66260.050*
C50.1258 (3)0.8870 (4)0.5160 (3)0.0431 (12)
H50.06990.89340.48780.052*
C60.2859 (3)0.8911 (3)0.7811 (3)0.0311 (9)
H6A0.31750.94770.79530.037*
H6B0.32350.83980.80090.037*
C70.2335 (3)0.8896 (3)0.8497 (3)0.0290 (9)
H7A0.20040.94490.83760.035*
H7B0.19770.83640.83210.035*
C80.2856 (3)0.8847 (3)0.9629 (3)0.0307 (9)
H8A0.32110.83150.97220.037*
H8B0.31960.93940.97940.037*
C140.0102 (3)0.3565 (3)0.1554 (3)0.0328 (10)
C150.0055 (3)0.4391 (3)0.2027 (3)0.0361 (10)
H150.00960.49480.17050.043*
C160.0053 (3)0.2745 (3)0.2030 (4)0.0386 (10)
H160.00930.21880.17080.046*
C90.2412 (3)0.8776 (3)1.0401 (3)0.0269 (9)
C100.1592 (3)0.8817 (4)1.0146 (3)0.0392 (11)
H100.12660.88860.94540.047*
C130.2845 (3)0.8666 (3)1.1438 (4)0.0384 (11)
H130.34070.86331.16550.046*
C110.1250 (3)0.8755 (4)1.0911 (4)0.0460 (13)
H110.06890.87871.07140.055*
N20.1666 (2)0.8653 (2)1.1913 (3)0.0282 (8)
C120.2460 (3)0.8606 (3)1.2149 (3)0.0357 (11)
H120.27730.85261.28450.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0327 (3)0.0491 (4)0.0230 (3)0.0004 (2)0.0108 (2)0.0002 (2)
I10.0253 (2)0.0317 (2)0.0251 (2)0.0000.00676 (16)0.000
I20.0221 (2)0.0302 (2)0.0303 (2)0.0000.00736 (16)0.000
I30.0515 (2)0.0593 (2)0.0322 (2)0.00667 (15)0.02174 (16)0.00379 (13)
N10.0264 (19)0.0337 (19)0.0254 (19)0.0002 (14)0.0077 (15)0.0000 (14)
C10.034 (3)0.099 (4)0.024 (2)0.017 (3)0.013 (2)0.004 (2)
C20.021 (2)0.103 (5)0.024 (2)0.015 (2)0.005 (2)0.000 (2)
C30.029 (2)0.027 (2)0.024 (2)0.0036 (16)0.0112 (17)0.0020 (15)
C40.028 (2)0.071 (3)0.030 (2)0.003 (2)0.017 (2)0.001 (2)
C50.021 (2)0.081 (4)0.026 (2)0.001 (2)0.0060 (19)0.001 (2)
C60.030 (2)0.040 (2)0.022 (2)0.0036 (18)0.0078 (18)0.0012 (17)
C70.031 (2)0.037 (2)0.019 (2)0.0056 (18)0.0087 (17)0.0028 (16)
C80.030 (2)0.044 (2)0.019 (2)0.0024 (18)0.0087 (18)0.0006 (17)
C140.032 (2)0.043 (3)0.025 (2)0.0016 (18)0.0130 (19)0.0011 (17)
C150.041 (3)0.035 (2)0.032 (2)0.0001 (19)0.013 (2)0.0049 (18)
C160.040 (3)0.037 (3)0.039 (2)0.0025 (19)0.013 (2)0.0014 (19)
C90.031 (2)0.026 (2)0.024 (2)0.0023 (16)0.0103 (18)0.0001 (15)
C100.028 (2)0.068 (3)0.019 (2)0.006 (2)0.0043 (18)0.001 (2)
C130.023 (2)0.066 (3)0.025 (2)0.002 (2)0.0071 (19)0.005 (2)
C110.020 (2)0.084 (4)0.030 (3)0.005 (2)0.004 (2)0.004 (2)
N20.0256 (19)0.037 (2)0.0238 (18)0.0003 (14)0.0101 (15)0.0004 (14)
C120.031 (3)0.056 (3)0.019 (2)0.0031 (19)0.0061 (19)0.0061 (18)
Geometric parameters (Å, º) top
Cu1—N12.023 (4)C7—H7A0.9800
Cu1—N2i2.030 (4)C7—H7B0.9800
Cu1—I12.7371 (8)C8—C91.521 (6)
Cu1—I22.7412 (8)C8—H8A0.9800
I1—Cu1ii2.7371 (8)C8—H8B0.9800
I2—Cu1ii2.7412 (8)C14—C161.381 (6)
I3—C142.103 (4)C14—C151.387 (6)
N1—C51.328 (6)C15—C15ii1.378 (9)
N1—C11.335 (6)C15—H150.9400
C1—C21.375 (7)C16—C16ii1.368 (9)
C1—H10.9400C16—H160.9400
C2—C31.373 (6)C9—C101.376 (6)
C2—H20.9400C9—C131.384 (6)
C3—C41.374 (6)C10—C111.381 (7)
C3—C61.507 (6)C10—H100.9400
C4—C51.376 (6)C13—C121.369 (6)
C4—H40.9400C13—H130.9400
C5—H50.9400C11—N21.336 (6)
C6—C71.528 (6)C11—H110.9400
C6—H6A0.9800N2—C121.334 (6)
C6—H6B0.9800N2—Cu1iii2.030 (4)
C7—C81.524 (5)C12—H120.9400
N1—Cu1—N2i124.21 (15)C6—C7—H7B109.6
N1—Cu1—I1110.57 (10)H7A—C7—H7B108.1
N2i—Cu1—I1108.22 (10)C9—C8—C7116.1 (4)
N1—Cu1—I2105.60 (10)C9—C8—H8A108.3
N2i—Cu1—I2108.25 (10)C7—C8—H8A108.3
I1—Cu1—I296.32 (3)C9—C8—H8B108.3
Cu1—I1—Cu1ii83.76 (3)C7—C8—H8B108.3
Cu1ii—I2—Cu183.60 (3)H8A—C8—H8B107.4
C5—N1—C1114.9 (4)C16—C14—C15120.6 (4)
C5—N1—Cu1121.6 (3)C16—C14—I3117.2 (3)
C1—N1—Cu1123.4 (3)C15—C14—I3122.3 (3)
N1—C1—C2123.9 (4)C15ii—C15—C14119.5 (3)
N1—C1—H1118.1C15ii—C15—H15120.2
C2—C1—H1118.1C14—C15—H15120.2
C3—C2—C1120.7 (4)C16ii—C16—C14119.9 (3)
C3—C2—H2119.6C16ii—C16—H16120.0
C1—C2—H2119.6C14—C16—H16120.0
C2—C3—C4115.8 (4)C10—C9—C13116.2 (4)
C2—C3—C6119.9 (4)C10—C9—C8124.5 (4)
C4—C3—C6124.4 (4)C13—C9—C8119.3 (4)
C3—C4—C5120.1 (4)C9—C10—C11119.8 (4)
C3—C4—H4119.9C9—C10—H10120.1
C5—C4—H4119.9C11—C10—H10120.1
N1—C5—C4124.6 (4)C12—C13—C9120.5 (4)
N1—C5—H5117.7C12—C13—H13119.8
C4—C5—H5117.7C9—C13—H13119.8
C3—C6—C7116.0 (3)N2—C11—C10124.3 (4)
C3—C6—H6A108.3N2—C11—H11117.9
C7—C6—H6A108.3C10—C11—H11117.9
C3—C6—H6B108.3C12—N2—C11115.4 (4)
C7—C6—H6B108.3C12—N2—Cu1iii124.1 (3)
H6A—C6—H6B107.4C11—N2—Cu1iii120.4 (3)
C8—C7—C6110.3 (3)N2—C12—C13123.9 (4)
C8—C7—H7A109.6N2—C12—H12118.0
C6—C7—H7A109.6C13—C12—H12118.0
C8—C7—H7B109.6
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1/2; (iii) x, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu2I2(C13H14N2)2]·4C7H9N[Cu2I2(C13H14N2)2]·C6H4I2
Mr1206.021107.30
Crystal system, space groupTriclinic, P1Monoclinic, C2/c
Temperature (K)223223
a, b, c (Å)10.119 (2), 12.370 (3), 12.962 (3)17.700 (4), 14.604 (3), 13.757 (3)
α, β, γ (°)103.19 (3), 111.06 (3), 109.30 (3)90, 109.53 (3), 90
V3)1313.4 (5)3351.4 (12)
Z14
Radiation typeMo KαMo Kα
µ (mm1)2.034.98
Crystal size (mm)0.60 × 0.60 × 0.400.54 × 0.40 × 0.38
Data collection
DiffractometerRigaku Saturn 724+ CCD area-detector
diffractometer
Rigaku Saturn 724+ CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Multi-scan
(Jacobson, 1998)
Tmin, Tmax0.376, 0.4980.174, 0.253
No. of measured, independent and
observed [I > 2σ(I)] reflections
12464, 5891, 4782 15742, 3058, 2902
Rint0.0350.025
(sin θ/λ)max1)0.6490.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.069, 0.95 0.032, 0.080, 1.12
No. of reflections58913058
No. of parameters300191
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0292P)2]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0428P)2 + 11.4239P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.59, 0.770.84, 1.67

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) for (I) top
Cu1—N12.050 (2)Cu1—I1ii2.6746 (9)
Cu1—N2i2.051 (2)Cu1—Cu1ii2.7366 (19)
Cu1—I12.6470 (7)I1—Cu1ii2.6746 (9)
N1—Cu1—N2i110.41 (9)N1—Cu1—Cu1ii125.17 (7)
N1—Cu1—I1107.30 (7)N2i—Cu1—Cu1ii124.41 (7)
N2i—Cu1—I1107.55 (7)I1—Cu1—Cu1ii59.55 (3)
N1—Cu1—I1ii107.16 (6)I1ii—Cu1—Cu1ii58.56 (3)
N2i—Cu1—I1ii106.24 (7)Cu1—I1—Cu1ii61.89 (4)
I1—Cu1—I1ii118.11 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···I10.852.993.793 (3)158.3
N4—H4B···N30.852.413.228 (4)160.3
Selected geometric parameters (Å, º) for (II) top
Cu1—N12.023 (4)Cu1—I22.7412 (8)
Cu1—N2i2.030 (4)I1—Cu1ii2.7371 (8)
Cu1—I12.7371 (8)I2—Cu1ii2.7412 (8)
N1—Cu1—N2i124.21 (15)N2i—Cu1—I2108.25 (10)
N1—Cu1—I1110.57 (10)I1—Cu1—I296.32 (3)
N2i—Cu1—I1108.22 (10)Cu1—I1—Cu1ii83.76 (3)
N1—Cu1—I2105.60 (10)Cu1ii—I2—Cu183.60 (3)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds