Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Six closely related pyrazolo­[3,4-b]pyridine derivatives, namely 6-chloro-3-methyl-1,4-diphenyl­pyrazolo­[3,4-b]pyridine-5-carbaldehyde, C20H14ClN3O, (I), 6-chloro-3-methyl-4-(4-methyl­phenyl)-1-phenylpyrazolo­[3,4-b]pyridine-5-carbaldehyde, C21H16ClN3O, (II), 6-chloro-4-(4-chloro­phenyl)-3-methyl-1-phenyl­pyrazolo­[3,4-b]pyridine-5-carbaldehyde, C20H13Cl2N3O, (III), 4-(4-bromo­phenyl)-6-chloro-3-methyl-1-phenyl­pyrazolo­[3,4-b]pyridine-5-carbaldehyde, C20H13BrClN3O, (IV), 6-chloro-4-(4-meth­oxy­phenyl)-3-methyl-1-phenyl­pyrazolo­[3,4-b]pyridine-5-carbaldehyde, C21H16ClN3O2, (V), and 6-chloro-3-methyl-4-(4-nitro­phenyl)-1-phenyl­pyrazolo[3,4-b]pyridine-5-carbaldehyde, C20H13ClN4O3, (VI), which differ only in the identity of a single small substituent on one of the aryl rings, crystallize in four different space groups spanning three crystal systems. The mol­ecules of (I) are linked into a chain of rings by a combination of C-H...N and C-H...[pi](arene) hydrogen bonds; those of (II), (IV) and (V), which all crystallize in the space group P\overline{1}, are each linked by two independent C-H...O hydrogen bonds to form chains of edge-fused rings running in different directions through the three unit cells; the mol­ecules of (III) are linked into complex sheets by a combination of two C-H...O hydrogen bonds and one C-H...[pi](arene) hydrogen bond; finally, the mol­ecules of (VI) are linked by a single C-H...O hydrogen bond to form a simple chain.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111050207/yf3009sup1.cif
Contains datablocks global, I, II, III, IV, V, VI

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111050207/yf3009Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111050207/yf3009IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111050207/yf3009IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111050207/yf3009IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111050207/yf3009Vsup6.hkl
Contains datablock V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111050207/yf3009VIsup7.hkl
Contains datablock VI

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111050207/yf3009Isup8.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111050207/yf3009IIsup9.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111050207/yf3009IIIsup10.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111050207/yf3009IVsup11.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111050207/yf3009Vsup12.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111050207/yf3009VIsup13.cml
Supplementary material

CCDC references: 866751; 866752; 866753; 866754; 866755; 866756

Comment top

We have recently described the preparation of a series of 6-chloropyrazolo[3,4-b]pyridine-5-carbaldehydes via tandem chlorination-formylation of pyrazolopyridinones under Vilsmeier–Haack conditions (Quiroga et al., 2010). These compounds are intended for use as precursors in the synthesis of new fused heterocyclic systems with potential bioactivity. Here we report the molecular and supramolecular structures of six closely-related 4-aryl-6-chloro-3-methyl-1-phenyl-pyrazolo[3,4-b]pyridine-5-carbaldehydes, (I)–(VI) (Figs. 1–6).

Despite differing by only the single substituent R at atom C44 (see scheme and Figs. 1–6), compounds (I)–(VI) show some interesting variation in their crystallization characteristics. Compound (III), where R = Cl, might well be expected to be isomorphous either with (II), where R = Me, or with (IV), where R = Br. In the event, (III) crystallizes in the orthorhombic space group Pbcn, while (II) and (IV) both crystallize in the triclinic space group P1, as does (V), where R = OMe, while the nitro derivative (VI) crystallizes in the monoclinic space group P21/c. Thus, these six rather similar compounds crystallize in no fewer than four different space groups (P1, P21/c, C2/c and Pbcn) spanning three crystal systems. Despite their common space group, the unit-cell dimensions of (II) and (IV) differ in that (II) has all the unit-cell angles less than 90° and quite similar in value, while (IV) has all the unit-cell angles greater than 90° and spanning a range of ca 17°. Despite their different space groups, the effective molecular volumes for (II), R = Me, and (III), R = Cl, as calculated from Vcell/Z (see Crystal data), are identical within experimental uncertainty, while the molecular volume of (IV), R = Br, is greater by only ca 2.4%.

None of the molecules of (I)–(VI) exhibit any internal symmetry and all of them are conformationally chiral. However, the centrosymmetric space groups all accommodate equal numbers of the two conformational enantiomers. The reference molecules of (I)–(VI) were selected to have the same sign for the torsion angles N2—N1—C11—C12 defining the orientation of the C11–C16 ring relative to the fused ring system (Table 1 and Figs. 1–6), where the individual values span a range of ca 40°. Similarly, the torsion angles C3A—C4—C41—C42, defining the orientation of the C41–C46 ring relative to the fused ring system, vary quite widely, spanning a range of ca 60°. While it is perhaps tempting to associate the variable orientation of the substituted C41–C46 aryl ring with the fact that donors forming part of this ring participate in hydrogen bonding in each of (I)–(VI), such an interpretation could not be convincingly applied to the orientation of the unsubstituted C11–C16 aryl ring, since the location of the donor unit C14—H14, active in (II), (IV) and (V), is unaffected by the value of the torsion angle N2—N1—C11—C12.

Perhaps the most striking feature of the molecular conformations in (I)–(VI) concerns the orientation of the formyl group (Table 1 and Figs. 1–6), where the formyl O atom is directed towards atom Cl61 in (II) and (V) but away from it in all the other compounds. This type of behaviour has been noted previously in a series of N6-substituted 2-amino-4-chloro-5-formylpyrimidines (Cobo et al., 2008). A number of factors, including intra- and intermolecular hydrogen bonds and electrostatic factors, were considered as possibly underlying the occurrence of the two different formyl conformations, but no single factor was regarded in that work as providing a fully satisfactory interpretation of the observed behaviour. Likewise for (I)–(VI) here, no clear and simple interpretation of the formyl orientation presents itself.

The supramolecular assembly in (I)–(VI) is dominated by C—H···O hydrogen bonds (Table 2), but there is a C—H···N hydrogen bond in (I) and there are C—H···π(arene) hydrogen bonds in (I) and (III), where both compounds utilize the aryl ring (C11—C16) as the acceptor. Intermolecular contacts of C—H···O type have been regarded as structurally insignificant if: (a) the H···O distance exceeds 2.60 Å (cf. Bondi, 1964; Rowland & Taylor, 1996); (b) the C—H···O angle is less than 130° (cf. Wood et al., 2009); or (c) if the C—H bond concerned forms part of a methyl group. Such C—H bonds are of low acidity, and methyl groups H3C—E are likely to be undergoing very rapid rotation about the C—E bonds (Riddell & Rogerson, 1996, 1997), particularly when bonded to aryl rings where the sixfold rotational barriers are typically only a few J mol-1 (Tannenbaum et al., 1956; Naylor & Wilson, 1957). For compounds crystallizing in different space groups, very different patterns of supramolecular assembly are observed, but the three compounds which crystallize in space group P1, (II), (IV) and (V), all have rather similar hydrogen-bonded structures, albeit with differences in detail.

In the structure of (I), in space group C2/c, a combination of one C—H···N and one C—H···π(arene) hydrogen bonds links molecules related by the 21 screw axis along (3/4, y, 1/4) to form a chain of rings running parallel to the [010] direction (Fig. 7). Four chains of the type, each containing molecules related to one another by one of the four screw axes along (1/4, y, 1/4), (1/4, y, 3/4), (3/4, y, 1/4) and (3/4, y, 3/4), pass through each unit cell, but there are no direction-specific interactions between adjacent chains.

There are two C—H···O hydrogen bonds in the structures of each of (II), (IV) and (V) (Table 2). One of these hydrogen bonds, where the donor forms part of the C41–C46 ring, links pairs of molecules related by inversion, forming centrosymmetric R22(14) (Bernstein et al., 1995) rings in each of (II) and (V) (Figs. 8 and 12) and a centrosymmetric R22(16) ring in (IV) (Fig. 11). The second hydrogen bond, which utilizes the same donor atom in each of the three compounds, links molecules related by translation into C(12) chains running parallel to the [101], [110] and [110] directions in (II), (IV) and (V), respectively. The combination of the two C—H···O hydrogen bonds leads in each case to the formation of a chain of edge-fused rings. In (II), this chain of rings contains R22(14) rings centred at (1/2 + n, 1/2, 1 - n), where n represents an integer, alternating with R42(26) rings centred at (n, 1/2, 3/2 - n) (Fig. 8); in (IV), R22(16) rings centred at (n, n, 0) alternate with R42(28) rings centred at (1/2 + n, 1/2 + n, 1/2) (Fig. 11); and in (V), R22(14) rings centred at (1/2 + n, -n, 0) alternate with R42(26) rings centred at (n, 1/2 - n, 1/2) (Fig. 12), where in every case n represents an integer.

The hydrogen-bonded assembly in (III) is two-dimensional and of considerably greater complexity than the other hydrogen-bonded structures reported here. However, it can be straightforwardly analysed in terms of a one-dimensional sub-structure. Atom C15 in the molecule at (x, y, z) acts as hydrogen-bond donor to atom O51 in the molecule at (-x + 1, y - 1, -z + 3/2), while atom C15 at (-x + 1, y - 1, -z + 3/2) in turn acts as donor to atom O51 at (x, y - 2, z), so forming a C(11) chain running parallel to the [010] direction. There are, in fact, two such chains around the 21 screw axis along (1/2, y, 3/4), related to one another by a unit translation along [010], and these two chains are linked to one another by a C—H···π(arene)(-x + 1, y, -z + 3/2) hydrogen bond to form a one-dimensional substructure (Fig. 9).

The action of the second C—H···O hydrogen bond in (III) is to link the double chains which run parallel to [010] into a sheet. Atoms C43 in the molecules at (x, y, z) and (-x + 1, y - 1, -z + 3/2), which are both components of a chain along (1/2, y, 1/2), act as hydrogen-bond donors to atoms O51 in the molecules at (-x + 3/2, y - 1/2, z) and (x - 1/2, y - 3/2, -z + 3/2), respectively, which themselves form parts of C(11) chains along (1, y, 3/4) and (0, y, 3/4), respectively, so leading to the formation of a sheet lying parallel to (001) (Fig. 10). This sheet lies in the domain 0.5 < z < 1.0, and a second sheet, related to the first by inversion, lies in the domain 0 < z < 1/2, but there are no direction-specific interactions between adjacent sheets. Thus, in (III), despite having a constitution and steric properties, as manifested by the molecular volume, very similar to those of (II) and (IV), not only crystallizes in a different crystal system but also adopts a very different, and much more complex, pattern of supramolecular assembly.

In the structure of (VI), in space group P21/c, a single C—H···O hydrogen bond links molecules related by the 21 screw axis along (0, y, 1/4) into a simple C(8) chain. Two such chains, related to one another by inversion, pass through each unit cell, but there are no direction-specific interactions between adjacent chains. It is interesting to note that (VI), where R = NO2 and thus having the largest number of potential hydrogen-bond acceptors within each molecule, in fact has the simplest hydrogen-bonded structure in this series.

The wide range of space groups observed here, together with the different modes of hydrogen-bonded assembly, certainly suggest that series of this type might provide an interesting challenge for structure-prediction algorithms (Day et al., 2005, 2009).

Related literature top

For related literature, see: Bernstein et al. (1995); Bondi (1964); Cobo et al. (2008); Day (2005, 2009); Naylor & Wilson (1957); Quiroga et al. (2010); Riddell & Rogerson (1996, 1997); Rowland & Taylor (1996); Tannenbaum et al. (1956); Wood et al. (2009).

Experimental top

A suspension of the appropriate 4-aryl-3-methyl-1-phenyl-4,5-dihydro-1H-pyrazolo[3,4-b]pyridin-6(7H)-one (1 mmol) in dimethylformamide (2 ml) was cooled using an ice–water bath, and then phosphoryl chloride (0.2 ml, 2.1 mmol) was added dropwise. Each reaction mixture was stirred for 30 min at ambient temperature and subsequently heated at 373 K for 5 h. After cooling to ambient temperature by the addition of ice, the reaction mixture was neutralized using sodium hydrogencarbonate solution with vigorous stirring. In each case, the resulting yellow precipitate was collected by filtration, dried and recrystallized from dimethylformamide to afford yellow crystals suitable for single-crystal X-ray diffraction.

Refinement top

All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions, with C—H = 0.95 Å (aromatic and formyl H) or 0.98 Å (methyl H), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (R = H), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of (II) (R = Me), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The molecular structure of (III) (R = Cl), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. The molecular structure of (IV) (R = Br), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5] Fig. 5. The molecular structure of (V) (R = OMe), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6] Fig. 6. The molecular structure of (VI) (R = NO2), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 7] Fig. 7. Part of the crystal structure of (I), showing the formation of a chain of rings along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*), hash (#), dollar sign ($) or ampersand (&) are at the symmetry positions (-x + 3/2, y - 1/2, -z + 1/2), (x, y - 1, z), (-x + 3/2, y + 1/2, -z + 1/2) and (x, y + 1, z), respectively.
[Figure 8] Fig. 8. A stereoview of part of the crystal structure of (II), showing the formation of a chain of edge-fused R22(14) and R42(26) rings along [101]. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 9] Fig. 9. A stereoview of part of the crystal structure of (III), showing the formation of two translation-related C(11) chains around (1/2, y, 3/4), built from C—H···O hydrogen bonds and linked by a C—H···π(arene) hydrogen bond. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 10] Fig. 10. A stereoview of part of the crystal structure of (III), showing the linking of the chains along [010] to form a sheet lying parallel to (001). For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 11] Fig. 11. A stereoview of part of the crystal structure of (IV), showing the formation of a chain of edge-fused R22(16) and R42(28) rings along [110]. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 12] Fig. 12. A stereoview of part of the crystal structure of (V), showing the formation of a chain of edge-fused R22(14) and R42(26) rings along [110]. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
(I) 6-Chloro-3-methyl-1,4-diphenylpyrazolo[3,4-b]pyridine-5-carbaldehyde top
Crystal data top
C20H14ClN3OF(000) = 1440
Mr = 347.79Dx = 1.391 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3829 reflections
a = 16.784 (3) Åθ = 2.8–27.5°
b = 9.6380 (8) ŵ = 0.24 mm1
c = 21.699 (4) ÅT = 120 K
β = 108.820 (12)°Plate, yellow
V = 3322.5 (9) Å30.36 × 0.32 × 0.12 mm
Z = 8
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3829 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2899 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.8°
ϕ and ω scansh = 2121
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.918, Tmax = 0.972l = 2826
24328 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0385P)2 + 3.9079P]
where P = (Fo2 + 2Fc2)/3
3829 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C20H14ClN3OV = 3322.5 (9) Å3
Mr = 347.79Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.784 (3) ŵ = 0.24 mm1
b = 9.6380 (8) ÅT = 120 K
c = 21.699 (4) Å0.36 × 0.32 × 0.12 mm
β = 108.820 (12)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3829 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2899 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.972Rint = 0.042
24328 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.05Δρmax = 0.49 e Å3
3829 reflectionsΔρmin = 0.37 e Å3
227 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.61518 (9)0.77753 (14)0.30751 (6)0.0203 (3)
N20.62845 (9)0.87541 (14)0.26471 (7)0.0208 (3)
C30.63645 (10)0.80687 (17)0.21430 (8)0.0192 (3)
C3A0.62744 (10)0.66021 (17)0.22259 (7)0.0181 (3)
C40.62831 (10)0.53953 (17)0.18655 (8)0.0184 (3)
C50.62021 (10)0.41257 (17)0.21619 (8)0.0206 (3)
C60.60951 (10)0.41769 (17)0.27884 (8)0.0207 (3)
N70.60520 (9)0.52877 (14)0.31282 (6)0.0202 (3)
C7A0.61528 (10)0.64769 (17)0.28342 (8)0.0185 (3)
C110.60653 (10)0.82139 (17)0.36809 (8)0.0192 (3)
C120.64242 (10)0.74385 (18)0.42428 (8)0.0215 (3)
H120.67220.66070.42280.026*
C130.63403 (11)0.78982 (19)0.48259 (8)0.0248 (4)
H130.65690.73650.52110.030*
C140.59240 (11)0.9133 (2)0.48478 (9)0.0270 (4)
H140.58790.94520.52490.032*
C150.55732 (11)0.99015 (19)0.42837 (9)0.0265 (4)
H150.52931.07490.43020.032*
C160.56308 (10)0.94364 (17)0.36920 (8)0.0222 (4)
H160.53780.99450.33030.027*
C310.65590 (11)0.88296 (18)0.16076 (8)0.0240 (4)
H31A0.66670.98080.17280.036*
H31B0.60790.87580.12060.036*
H31C0.70580.84210.15380.036*
C410.63590 (10)0.55640 (17)0.12031 (8)0.0187 (3)
C420.56670 (11)0.60427 (19)0.07000 (8)0.0250 (4)
H420.51410.61630.07700.030*
C430.57428 (12)0.63463 (19)0.00944 (8)0.0277 (4)
H430.52670.66660.02490.033*
C440.65076 (12)0.61841 (19)0.00092 (9)0.0288 (4)
H440.65590.63940.04230.035*
C450.72012 (12)0.5714 (2)0.04917 (9)0.0293 (4)
H450.77280.56080.04210.035*
C460.71279 (11)0.53974 (18)0.10968 (8)0.0237 (4)
H460.76030.50680.14370.028*
C510.62123 (13)0.27727 (19)0.18430 (9)0.0299 (4)
H510.62490.19660.21030.036*
O510.61791 (11)0.25957 (14)0.12891 (7)0.0459 (4)
Cl610.59974 (3)0.26249 (4)0.31752 (2)0.02823 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0289 (8)0.0157 (7)0.0183 (7)0.0022 (6)0.0103 (6)0.0012 (5)
N20.0263 (7)0.0166 (7)0.0206 (7)0.0013 (6)0.0093 (6)0.0014 (6)
C30.0210 (8)0.0183 (8)0.0184 (8)0.0013 (6)0.0066 (6)0.0012 (6)
C3A0.0199 (8)0.0181 (8)0.0166 (8)0.0007 (6)0.0063 (6)0.0002 (6)
C40.0174 (8)0.0197 (8)0.0169 (8)0.0017 (6)0.0040 (6)0.0001 (6)
C50.0253 (9)0.0183 (8)0.0176 (8)0.0005 (7)0.0061 (7)0.0005 (6)
C60.0248 (9)0.0176 (8)0.0191 (8)0.0005 (7)0.0066 (7)0.0027 (7)
N70.0246 (7)0.0170 (7)0.0197 (7)0.0020 (6)0.0081 (6)0.0006 (6)
C7A0.0212 (8)0.0163 (8)0.0180 (8)0.0014 (6)0.0062 (6)0.0011 (6)
C110.0221 (8)0.0201 (8)0.0174 (8)0.0054 (7)0.0092 (6)0.0041 (6)
C120.0219 (8)0.0213 (8)0.0224 (8)0.0009 (7)0.0084 (7)0.0020 (7)
C130.0244 (9)0.0319 (10)0.0190 (8)0.0054 (7)0.0084 (7)0.0017 (7)
C140.0268 (9)0.0330 (10)0.0269 (9)0.0084 (8)0.0166 (7)0.0100 (8)
C150.0269 (9)0.0230 (9)0.0351 (10)0.0027 (7)0.0175 (8)0.0072 (8)
C160.0232 (8)0.0203 (9)0.0246 (9)0.0035 (7)0.0099 (7)0.0016 (7)
C310.0301 (9)0.0203 (9)0.0234 (9)0.0011 (7)0.0113 (7)0.0010 (7)
C410.0242 (9)0.0154 (8)0.0172 (8)0.0001 (6)0.0077 (6)0.0018 (6)
C420.0228 (9)0.0302 (10)0.0219 (9)0.0029 (7)0.0069 (7)0.0006 (7)
C430.0312 (10)0.0303 (10)0.0180 (8)0.0032 (8)0.0031 (7)0.0037 (7)
C440.0416 (11)0.0277 (10)0.0196 (9)0.0001 (8)0.0134 (8)0.0010 (7)
C450.0302 (10)0.0345 (10)0.0283 (9)0.0040 (8)0.0165 (8)0.0002 (8)
C460.0234 (9)0.0251 (9)0.0226 (8)0.0061 (7)0.0073 (7)0.0013 (7)
C510.0467 (12)0.0196 (9)0.0259 (9)0.0022 (8)0.0153 (8)0.0004 (7)
O510.0934 (13)0.0231 (7)0.0288 (7)0.0026 (8)0.0303 (8)0.0054 (6)
Cl610.0447 (3)0.0174 (2)0.0234 (2)0.00270 (19)0.01203 (18)0.00244 (17)
Geometric parameters (Å, º) top
N1—C7A1.356 (2)C14—C151.389 (3)
N1—N21.3911 (19)C14—H140.9500
N1—C111.432 (2)C15—C161.392 (2)
N2—C31.321 (2)C15—H150.9500
C3—C3A1.439 (2)C16—H160.9500
C3—C311.496 (2)C31—H31A0.9800
C3A—C41.404 (2)C31—H31B0.9800
C3A—C7A1.404 (2)C31—H31C0.9800
C4—C51.409 (2)C41—C421.391 (2)
C4—C411.492 (2)C41—C461.392 (2)
C5—C61.428 (2)C42—C431.392 (2)
C5—C511.479 (2)C42—H420.9500
C6—N71.315 (2)C43—C441.382 (3)
C6—Cl611.7486 (17)C43—H430.9500
N7—C7A1.349 (2)C44—C451.388 (3)
C11—C161.390 (2)C44—H440.9500
C11—C121.391 (2)C45—C461.391 (2)
C12—C131.390 (2)C45—H450.9500
C12—H120.9500C46—H460.9500
C13—C141.388 (3)C51—O511.197 (2)
C13—H130.9500C51—H510.9500
C7A—N1—N2110.38 (13)C15—C14—H14119.9
C7A—N1—C11129.72 (14)C14—C15—C16120.34 (17)
N2—N1—C11119.87 (13)C14—C15—H15119.8
C3—N2—N1107.13 (13)C16—C15—H15119.8
N2—C3—C3A110.16 (14)C11—C16—C15118.79 (16)
N2—C3—C31120.25 (15)C11—C16—H16120.6
C3A—C3—C31129.54 (15)C15—C16—H16120.6
C4—C3A—C7A118.88 (15)C3—C31—H31A109.5
C4—C3A—C3136.35 (15)C3—C31—H31B109.5
C7A—C3A—C3104.77 (14)H31A—C31—H31B109.5
C3A—C4—C5116.44 (14)C3—C31—H31C109.5
C3A—C4—C41117.75 (14)H31A—C31—H31C109.5
C5—C4—C41125.81 (14)H31B—C31—H31C109.5
C4—C5—C6117.69 (15)C42—C41—C46119.49 (15)
C4—C5—C51122.32 (15)C42—C41—C4118.87 (14)
C6—C5—C51119.99 (15)C46—C41—C4121.26 (14)
N7—C6—C5127.46 (15)C41—C42—C43120.21 (16)
N7—C6—Cl61113.37 (12)C41—C42—H42119.9
C5—C6—Cl61119.17 (12)C43—C42—H42119.9
C6—N7—C7A112.87 (13)C44—C43—C42120.17 (16)
N7—C7A—N1125.87 (14)C44—C43—H43119.9
N7—C7A—C3A126.58 (15)C42—C43—H43119.9
N1—C7A—C3A107.55 (14)C43—C44—C45119.88 (16)
C16—C11—C12121.44 (15)C43—C44—H44120.1
C16—C11—N1118.37 (14)C45—C44—H44120.1
C12—C11—N1120.18 (15)C44—C45—C46120.23 (17)
C13—C12—C11118.97 (16)C44—C45—H45119.9
C13—C12—H12120.5C46—C45—H45119.9
C11—C12—H12120.5C45—C46—C41120.01 (16)
C14—C13—C12120.28 (17)C45—C46—H46120.0
C14—C13—H13119.9C41—C46—H46120.0
C12—C13—H13119.9O51—C51—C5126.26 (17)
C13—C14—C15120.14 (16)O51—C51—H51116.9
C13—C14—H14119.9C5—C51—H51116.9
C7A—N1—N2—C30.20 (18)C3—C3A—C7A—N7178.79 (16)
C11—N1—N2—C3178.24 (14)C4—C3A—C7A—N1178.70 (14)
N1—N2—C3—C3A0.73 (18)C3—C3A—C7A—N11.41 (18)
N1—N2—C3—C31176.85 (14)C7A—N1—C11—C16144.49 (17)
N2—C3—C3A—C4178.80 (18)N2—N1—C11—C1637.9 (2)
C31—C3—C3A—C43.9 (3)C7A—N1—C11—C1236.7 (3)
N2—C3—C3A—C7A1.34 (19)N2—N1—C11—C12140.93 (16)
C31—C3—C3A—C7A175.94 (17)C16—C11—C12—C130.3 (2)
C7A—C3A—C4—C52.6 (2)N1—C11—C12—C13179.13 (15)
C3—C3A—C4—C5177.25 (18)C11—C12—C13—C141.7 (2)
C7A—C3A—C4—C41176.22 (14)C12—C13—C14—C151.4 (3)
C3—C3A—C4—C413.9 (3)C13—C14—C15—C160.5 (3)
C3A—C4—C5—C61.7 (2)C12—C11—C16—C151.4 (2)
C41—C4—C5—C6176.96 (15)N1—C11—C16—C15177.38 (15)
C3A—C4—C5—C51179.17 (16)C14—C15—C16—C111.8 (3)
C41—C4—C5—C512.1 (3)C3A—C4—C41—C4273.6 (2)
C4—C5—C6—N70.9 (3)C5—C4—C41—C42105.1 (2)
C51—C5—C6—N7178.24 (17)C3A—C4—C41—C4699.36 (19)
C4—C5—C6—Cl61179.69 (12)C5—C4—C41—C4682.0 (2)
C51—C5—C6—Cl611.2 (2)C46—C41—C42—C430.3 (3)
C5—C6—N7—C7A2.4 (2)C4—C41—C42—C43173.40 (16)
Cl61—C6—N7—C7A178.17 (12)C41—C42—C43—C440.5 (3)
C6—N7—C7A—N1178.88 (16)C42—C43—C44—C450.2 (3)
C6—N7—C7A—C3A1.4 (2)C43—C44—C45—C460.4 (3)
N2—N1—C7A—N7179.15 (15)C44—C45—C46—C410.6 (3)
C11—N1—C7A—N71.4 (3)C42—C41—C46—C450.2 (3)
N2—N1—C7A—C3A1.05 (18)C4—C41—C46—C45172.69 (16)
C11—N1—C7A—C3A178.84 (15)C4—C5—C51—O5110.2 (3)
C4—C3A—C7A—N71.1 (3)C6—C5—C51—O51168.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C46—H46···N2i0.952.583.515 (2)169
C45—H45···Cg1i0.952.763.508 (2)136
Symmetry code: (i) x+3/2, y1/2, z+1/2.
(II) 6-Chloro-3-methyl-4-(4-methylphenyl)-1-phenyl- pyrazolo[3,4-b]pyridine-5-carbaldehyde top
Crystal data top
C21H16ClN3OZ = 2
Mr = 361.82F(000) = 376
Triclinic, P1Dx = 1.419 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2898 (8) ÅCell parameters from 3880 reflections
b = 9.9191 (14) Åθ = 2.8–27.5°
c = 10.3666 (10) ŵ = 0.24 mm1
α = 87.108 (11)°T = 120 K
β = 86.808 (8)°Block, yellow
γ = 85.088 (12)°0.31 × 0.26 × 0.20 mm
V = 847.08 (17) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3880 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2544 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.8°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.929, Tmax = 0.953l = 1313
21387 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.3061P]
where P = (Fo2 + 2Fc2)/3
3880 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C21H16ClN3Oγ = 85.088 (12)°
Mr = 361.82V = 847.08 (17) Å3
Triclinic, P1Z = 2
a = 8.2898 (8) ÅMo Kα radiation
b = 9.9191 (14) ŵ = 0.24 mm1
c = 10.3666 (10) ÅT = 120 K
α = 87.108 (11)°0.31 × 0.26 × 0.20 mm
β = 86.808 (8)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3880 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2544 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.953Rint = 0.074
21387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
3880 reflectionsΔρmin = 0.30 e Å3
237 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8216 (2)0.36034 (18)0.45983 (18)0.0202 (4)
N20.8403 (2)0.22014 (19)0.47406 (18)0.0231 (5)
C30.7378 (3)0.1833 (2)0.5691 (2)0.0221 (5)
C3A0.6477 (3)0.3001 (2)0.6208 (2)0.0198 (5)
C40.5268 (3)0.3271 (2)0.7190 (2)0.0195 (5)
C50.4905 (3)0.4637 (2)0.7485 (2)0.0193 (5)
C60.5670 (3)0.5641 (2)0.6709 (2)0.0204 (5)
N70.6692 (2)0.54259 (18)0.57091 (17)0.0199 (4)
C7A0.7098 (3)0.4109 (2)0.5509 (2)0.0194 (5)
C110.9124 (3)0.4268 (2)0.3586 (2)0.0210 (5)
C120.9105 (3)0.5677 (2)0.3491 (2)0.0236 (5)
H120.85060.62130.41150.028*
C130.9975 (3)0.6285 (3)0.2469 (2)0.0260 (5)
H130.99640.72450.24000.031*
C141.0859 (3)0.5521 (3)0.1548 (2)0.0280 (6)
H141.14410.59490.08510.034*
C151.0878 (3)0.4122 (3)0.1663 (2)0.0291 (6)
H151.14850.35900.10400.035*
C161.0022 (3)0.3484 (3)0.2675 (2)0.0255 (5)
H161.00480.25240.27460.031*
C310.7374 (3)0.0363 (2)0.6096 (2)0.0309 (6)
H31A0.63640.00210.58540.046*
H31B0.74570.02520.70360.046*
H31C0.82990.01450.56650.046*
C410.4377 (3)0.2165 (2)0.7840 (2)0.0207 (5)
C420.3615 (3)0.1310 (2)0.7071 (2)0.0249 (5)
H420.37050.14310.61560.030*
C430.2731 (3)0.0290 (2)0.7637 (2)0.0264 (6)
H430.22160.02750.71020.032*
C440.2585 (3)0.0080 (2)0.8977 (2)0.0260 (6)
C450.3322 (3)0.0944 (2)0.9731 (2)0.0260 (6)
H450.32180.08291.06460.031*
C460.4208 (3)0.1972 (2)0.9177 (2)0.0228 (5)
H460.47020.25470.97160.027*
C470.1682 (3)0.1078 (2)0.9582 (3)0.0353 (7)
H47A0.16580.10461.05260.053*
H47B0.22350.19410.93170.053*
H47C0.05710.09970.92940.053*
C510.3683 (3)0.4986 (2)0.8547 (2)0.0205 (5)
H510.28050.44330.86940.025*
O510.3734 (2)0.59303 (16)0.92369 (16)0.0276 (4)
Cl610.51892 (7)0.73502 (6)0.69788 (6)0.02657 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0215 (10)0.0189 (10)0.0202 (10)0.0022 (8)0.0017 (8)0.0015 (8)
N20.0260 (11)0.0199 (10)0.0230 (11)0.0005 (8)0.0003 (9)0.0009 (8)
C30.0245 (13)0.0208 (12)0.0209 (12)0.0021 (10)0.0003 (10)0.0018 (10)
C3A0.0203 (12)0.0193 (12)0.0198 (12)0.0010 (9)0.0021 (9)0.0007 (9)
C40.0189 (12)0.0201 (12)0.0203 (12)0.0042 (9)0.0036 (9)0.0012 (9)
C50.0188 (12)0.0199 (12)0.0197 (12)0.0037 (9)0.0010 (9)0.0021 (9)
C60.0202 (12)0.0212 (12)0.0201 (12)0.0018 (9)0.0030 (10)0.0016 (9)
N70.0199 (10)0.0199 (10)0.0202 (10)0.0023 (8)0.0013 (8)0.0024 (8)
C7A0.0189 (12)0.0206 (12)0.0190 (12)0.0027 (9)0.0013 (9)0.0018 (9)
C110.0190 (12)0.0265 (13)0.0179 (12)0.0043 (10)0.0013 (9)0.0007 (10)
C120.0230 (12)0.0254 (13)0.0221 (12)0.0017 (10)0.0003 (10)0.0002 (10)
C130.0223 (13)0.0283 (14)0.0277 (13)0.0047 (10)0.0039 (10)0.0033 (11)
C140.0223 (13)0.0392 (15)0.0222 (13)0.0059 (11)0.0011 (10)0.0043 (11)
C150.0282 (14)0.0369 (15)0.0218 (13)0.0024 (11)0.0043 (10)0.0028 (11)
C160.0254 (13)0.0277 (13)0.0230 (13)0.0017 (10)0.0031 (10)0.0016 (10)
C310.0389 (15)0.0211 (13)0.0309 (14)0.0004 (11)0.0092 (12)0.0015 (11)
C410.0203 (12)0.0181 (11)0.0231 (12)0.0005 (9)0.0029 (10)0.0005 (9)
C420.0293 (13)0.0209 (12)0.0248 (13)0.0028 (10)0.0001 (10)0.0040 (10)
C430.0261 (13)0.0203 (12)0.0335 (14)0.0052 (10)0.0024 (11)0.0074 (11)
C440.0205 (12)0.0191 (12)0.0373 (15)0.0010 (10)0.0072 (11)0.0003 (11)
C450.0292 (14)0.0224 (13)0.0251 (13)0.0023 (10)0.0058 (11)0.0034 (10)
C460.0251 (13)0.0179 (12)0.0257 (13)0.0014 (10)0.0002 (10)0.0041 (10)
C470.0323 (15)0.0211 (13)0.0514 (17)0.0042 (11)0.0096 (13)0.0003 (12)
C510.0201 (12)0.0186 (12)0.0224 (12)0.0006 (9)0.0011 (10)0.0005 (10)
O510.0311 (10)0.0252 (9)0.0267 (9)0.0037 (7)0.0044 (7)0.0067 (7)
Cl610.0322 (3)0.0184 (3)0.0286 (3)0.0021 (2)0.0044 (3)0.0020 (2)
Geometric parameters (Å, º) top
N1—C7A1.369 (3)C15—C161.389 (3)
N1—N21.387 (3)C15—H150.9500
N1—C111.425 (3)C16—H160.9500
N2—C31.323 (3)C31—H31A0.9800
C3—C3A1.433 (3)C31—H31B0.9800
C3—C311.497 (3)C31—H31C0.9800
C3A—C7A1.404 (3)C41—C461.390 (3)
C3A—C41.408 (3)C41—C421.404 (3)
C4—C51.407 (3)C42—C431.386 (3)
C4—C411.488 (3)C42—H420.9500
C5—C61.418 (3)C43—C441.394 (3)
C5—C511.488 (3)C43—H430.9500
C6—N71.316 (3)C44—C451.389 (3)
C6—Cl611.741 (2)C44—C471.515 (3)
N7—C7A1.344 (3)C45—C461.390 (3)
C11—C121.394 (3)C45—H450.9500
C11—C161.396 (3)C46—H460.9500
C12—C131.390 (3)C47—H47A0.9800
C12—H120.9500C47—H47B0.9800
C13—C141.386 (3)C47—H47C0.9800
C13—H130.9500C51—O511.211 (3)
C14—C151.386 (3)C51—H510.9500
C14—H140.9500
C7A—N1—N2109.91 (17)C16—C15—H15119.5
C7A—N1—C11131.02 (19)C15—C16—C11119.3 (2)
N2—N1—C11119.06 (17)C15—C16—H16120.3
C3—N2—N1107.36 (18)C11—C16—H16120.3
N2—C3—C3A110.3 (2)C3—C31—H31A109.5
N2—C3—C31118.8 (2)C3—C31—H31B109.5
C3A—C3—C31130.8 (2)H31A—C31—H31B109.5
C7A—C3A—C4117.9 (2)C3—C31—H31C109.5
C7A—C3A—C3104.83 (19)H31A—C31—H31C109.5
C4—C3A—C3137.3 (2)H31B—C31—H31C109.5
C5—C4—C3A116.8 (2)C46—C41—C42118.4 (2)
C5—C4—C41122.06 (19)C46—C41—C4123.0 (2)
C3A—C4—C41121.1 (2)C42—C41—C4118.5 (2)
C4—C5—C6118.29 (19)C43—C42—C41120.5 (2)
C4—C5—C51119.44 (19)C43—C42—H42119.7
C6—C5—C51122.2 (2)C41—C42—H42119.7
N7—C6—C5126.2 (2)C42—C43—C44121.1 (2)
N7—C6—Cl61113.51 (17)C42—C43—H43119.4
C5—C6—Cl61120.22 (17)C44—C43—H43119.4
C6—N7—C7A113.97 (19)C45—C44—C43117.9 (2)
N7—C7A—N1126.1 (2)C45—C44—C47121.4 (2)
N7—C7A—C3A126.5 (2)C43—C44—C47120.7 (2)
N1—C7A—C3A107.44 (19)C44—C45—C46121.5 (2)
C12—C11—C16120.3 (2)C44—C45—H45119.2
C12—C11—N1121.0 (2)C46—C45—H45119.2
C16—C11—N1118.8 (2)C45—C46—C41120.4 (2)
C13—C12—C11119.1 (2)C45—C46—H46119.8
C13—C12—H12120.5C41—C46—H46119.8
C11—C12—H12120.5C44—C47—H47A109.5
C14—C13—C12121.3 (2)C44—C47—H47B109.5
C14—C13—H13119.3H47A—C47—H47B109.5
C12—C13—H13119.3C44—C47—H47C109.5
C15—C14—C13118.9 (2)H47A—C47—H47C109.5
C15—C14—H14120.6H47B—C47—H47C109.5
C13—C14—H14120.6O51—C51—C5124.3 (2)
C14—C15—C16121.1 (2)O51—C51—H51117.8
C14—C15—H15119.5C5—C51—H51117.8
C7A—N1—N2—C32.2 (2)C4—C3A—C7A—N1178.64 (19)
C11—N1—N2—C3176.78 (19)C3—C3A—C7A—N13.3 (2)
N1—N2—C3—C3A0.0 (3)C7A—N1—C11—C128.1 (4)
N1—N2—C3—C31177.3 (2)N2—N1—C11—C12173.2 (2)
N2—C3—C3A—C7A2.1 (3)C7A—N1—C11—C16171.1 (2)
C31—C3—C3A—C7A174.7 (2)N2—N1—C11—C167.7 (3)
N2—C3—C3A—C4179.5 (3)C16—C11—C12—C130.8 (3)
C31—C3—C3A—C42.7 (5)N1—C11—C12—C13178.3 (2)
C7A—C3A—C4—C56.7 (3)C11—C12—C13—C140.1 (4)
C3—C3A—C4—C5170.5 (3)C12—C13—C14—C150.5 (4)
C7A—C3A—C4—C41170.9 (2)C13—C14—C15—C160.4 (4)
C3—C3A—C4—C4112.0 (4)C14—C15—C16—C110.3 (4)
C3A—C4—C5—C65.2 (3)C12—C11—C16—C150.9 (4)
C41—C4—C5—C6172.2 (2)N1—C11—C16—C15178.2 (2)
C3A—C4—C5—C51177.7 (2)C5—C4—C41—C4653.5 (3)
C41—C4—C5—C514.8 (3)C3A—C4—C41—C46129.1 (2)
C4—C5—C6—N70.9 (4)C5—C4—C41—C42123.8 (2)
C51—C5—C6—N7176.0 (2)C3A—C4—C41—C4253.6 (3)
C4—C5—C6—Cl61176.80 (17)C46—C41—C42—C430.7 (3)
C51—C5—C6—Cl610.2 (3)C4—C41—C42—C43178.1 (2)
C5—C6—N7—C7A5.2 (3)C41—C42—C43—C440.4 (4)
Cl61—C6—N7—C7A178.65 (16)C42—C43—C44—C451.4 (4)
C6—N7—C7A—N1175.2 (2)C42—C43—C44—C47177.1 (2)
C6—N7—C7A—C3A3.6 (3)C43—C44—C45—C461.3 (4)
N2—N1—C7A—N7175.5 (2)C47—C44—C45—C46177.3 (2)
C11—N1—C7A—N75.7 (4)C44—C45—C46—C410.1 (4)
N2—N1—C7A—C3A3.5 (2)C42—C41—C46—C450.8 (3)
C11—N1—C7A—C3A175.3 (2)C4—C41—C46—C45178.1 (2)
C4—C3A—C7A—N72.4 (4)C4—C5—C51—O51147.5 (2)
C3—C3A—C7A—N7175.7 (2)C6—C5—C51—O5135.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O51i0.952.463.319 (3)150
C46—H46···O51ii0.952.413.348 (3)170
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+1, z+2.
(III) 6-Chloro-4-(4-chlorophenyl)-3-methyl-1- phenylpyrazolo[3,4-b]pyridine-5-carbaldehyde top
Crystal data top
C20H13Cl2N3OF(000) = 1568
Mr = 382.23Dx = 1.497 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 3898 reflections
a = 20.868 (3) Åθ = 2.6–27.5°
b = 9.603 (4) ŵ = 0.40 mm1
c = 16.924 (9) ÅT = 120 K
V = 3391 (2) Å3Block, yellow
Z = 80.40 × 0.37 × 0.28 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3898 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2444 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.6°
ϕ and ω scansh = 2627
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.857, Tmax = 0.897l = 2121
34307 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0644P)2 + 2.799P]
where P = (Fo2 + 2Fc2)/3
3898 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C20H13Cl2N3OV = 3391 (2) Å3
Mr = 382.23Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 20.868 (3) ŵ = 0.40 mm1
b = 9.603 (4) ÅT = 120 K
c = 16.924 (9) Å0.40 × 0.37 × 0.28 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3898 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2444 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.897Rint = 0.080
34307 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.08Δρmax = 0.62 e Å3
3898 reflectionsΔρmin = 0.46 e Å3
236 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.43927 (11)0.4788 (2)0.66113 (14)0.0232 (6)
N20.47888 (11)0.3796 (3)0.62658 (14)0.0264 (6)
C30.52893 (13)0.4473 (3)0.59765 (17)0.0246 (6)
C3A0.52391 (13)0.5935 (3)0.61389 (16)0.0234 (6)
C40.55968 (13)0.7145 (3)0.59974 (17)0.0240 (6)
C50.53149 (14)0.8418 (3)0.62180 (17)0.0267 (7)
C60.46982 (14)0.8384 (3)0.65700 (17)0.0255 (6)
N70.43615 (11)0.7264 (3)0.67574 (13)0.0227 (5)
C7A0.46463 (13)0.6076 (3)0.65297 (17)0.0227 (6)
C110.38016 (13)0.4364 (3)0.69734 (17)0.0241 (6)
C120.32457 (14)0.5114 (3)0.68410 (17)0.0256 (6)
H120.32520.59240.65180.031*
C130.26811 (14)0.4671 (3)0.71837 (18)0.0278 (7)
H130.22970.51800.70970.033*
C140.26690 (14)0.3485 (3)0.76548 (18)0.0304 (7)
H140.22790.31870.78890.036*
C150.32279 (14)0.2740 (3)0.77806 (18)0.0290 (7)
H150.32200.19250.80990.035*
C160.37991 (14)0.3179 (3)0.74446 (17)0.0263 (6)
H160.41840.26750.75350.032*
C310.57808 (14)0.3692 (3)0.55090 (18)0.0277 (7)
H31A0.61660.35560.58320.042*
H31B0.58910.42240.50340.042*
H31C0.56070.27830.53550.042*
C410.62387 (13)0.7041 (3)0.56150 (17)0.0239 (6)
C420.67115 (13)0.6204 (3)0.59601 (18)0.0278 (7)
H420.66230.57370.64420.033*
C430.73058 (14)0.6049 (3)0.56092 (18)0.0285 (7)
H430.76270.54870.58470.034*
C440.74209 (14)0.6729 (3)0.49054 (17)0.0264 (7)
Cl440.81663 (3)0.65380 (9)0.44439 (4)0.0317 (2)
C450.69610 (14)0.7551 (3)0.45423 (18)0.0274 (7)
H450.70500.80000.40550.033*
C460.63714 (14)0.7706 (3)0.49004 (17)0.0274 (7)
H460.60530.82700.46580.033*
C510.56620 (16)0.9771 (3)0.6167 (2)0.0366 (8)
H510.54141.05950.61160.044*
O510.62385 (11)0.9889 (3)0.61878 (15)0.0447 (6)
Cl610.43227 (3)0.99479 (8)0.68206 (5)0.0307 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0223 (13)0.0221 (14)0.0252 (13)0.0003 (10)0.0022 (10)0.0020 (10)
N20.0250 (13)0.0255 (14)0.0287 (14)0.0038 (10)0.0012 (10)0.0034 (11)
C30.0242 (15)0.0261 (16)0.0234 (15)0.0008 (12)0.0035 (12)0.0015 (13)
C3A0.0240 (15)0.0292 (16)0.0169 (14)0.0008 (12)0.0030 (11)0.0008 (12)
C40.0221 (15)0.0298 (17)0.0200 (14)0.0009 (12)0.0026 (11)0.0025 (12)
C50.0252 (16)0.0268 (17)0.0279 (16)0.0041 (12)0.0013 (12)0.0020 (13)
C60.0273 (16)0.0238 (16)0.0252 (15)0.0009 (12)0.0051 (12)0.0039 (12)
N70.0222 (12)0.0234 (13)0.0226 (13)0.0002 (10)0.0023 (10)0.0012 (10)
C7A0.0230 (15)0.0214 (15)0.0237 (15)0.0012 (12)0.0037 (12)0.0012 (12)
C110.0227 (15)0.0242 (16)0.0253 (15)0.0037 (12)0.0009 (12)0.0038 (12)
C120.0284 (15)0.0245 (16)0.0240 (15)0.0001 (12)0.0036 (12)0.0017 (13)
C130.0237 (15)0.0303 (18)0.0294 (16)0.0007 (12)0.0001 (12)0.0051 (13)
C140.0276 (16)0.0319 (18)0.0317 (17)0.0076 (13)0.0051 (13)0.0011 (14)
C150.0344 (17)0.0251 (16)0.0276 (17)0.0056 (13)0.0003 (13)0.0004 (13)
C160.0271 (16)0.0259 (16)0.0260 (15)0.0012 (12)0.0033 (12)0.0029 (13)
C310.0280 (16)0.0263 (17)0.0287 (16)0.0024 (12)0.0011 (12)0.0036 (13)
C410.0203 (15)0.0270 (16)0.0245 (15)0.0038 (12)0.0006 (12)0.0003 (12)
C420.0246 (16)0.0348 (18)0.0239 (16)0.0035 (13)0.0022 (12)0.0023 (13)
C430.0229 (15)0.0355 (18)0.0270 (16)0.0025 (13)0.0039 (12)0.0017 (14)
C440.0229 (15)0.0299 (17)0.0263 (16)0.0059 (12)0.0011 (12)0.0053 (13)
Cl440.0241 (4)0.0390 (5)0.0319 (4)0.0015 (3)0.0050 (3)0.0020 (3)
C450.0284 (16)0.0289 (17)0.0250 (16)0.0026 (13)0.0035 (12)0.0013 (13)
C460.0299 (16)0.0242 (16)0.0280 (17)0.0004 (13)0.0030 (12)0.0011 (13)
C510.0342 (19)0.031 (2)0.045 (2)0.0048 (14)0.0085 (15)0.0004 (15)
O510.0371 (14)0.0469 (16)0.0501 (15)0.0153 (11)0.0119 (11)0.0122 (12)
Cl610.0292 (4)0.0236 (4)0.0393 (4)0.0019 (3)0.0033 (3)0.0033 (3)
Geometric parameters (Å, º) top
N1—C7A1.352 (4)C14—C151.385 (4)
N1—N21.390 (3)C14—H140.9500
N1—C111.436 (4)C15—C161.386 (4)
N2—C31.324 (4)C15—H150.9500
C3—C3A1.435 (4)C16—H160.9500
C3—C311.497 (4)C31—H31A0.9800
C3A—C41.402 (4)C31—H31B0.9800
C3A—C7A1.409 (4)C31—H31C0.9800
C4—C51.407 (4)C41—C461.395 (4)
C4—C411.491 (4)C41—C421.400 (4)
C5—C61.419 (4)C42—C431.383 (4)
C5—C511.490 (4)C42—H420.9500
C6—N71.323 (4)C43—C441.380 (4)
C6—Cl611.746 (3)C43—H430.9500
N7—C7A1.343 (4)C44—C451.386 (4)
C11—C121.384 (4)C44—Cl441.750 (3)
C11—C161.390 (4)C45—C461.380 (4)
C12—C131.381 (4)C45—H450.9500
C12—H120.9500C46—H460.9500
C13—C141.390 (4)C51—O511.209 (4)
C13—H130.9500C51—H510.9500
C7A—N1—N2110.6 (2)C13—C14—H14120.1
C7A—N1—C11129.7 (2)C14—C15—C16120.3 (3)
N2—N1—C11119.7 (2)C14—C15—H15119.9
C3—N2—N1106.7 (2)C16—C15—H15119.9
N2—C3—C3A110.6 (2)C15—C16—C11119.2 (3)
N2—C3—C31119.3 (3)C15—C16—H16120.4
C3A—C3—C31129.9 (3)C11—C16—H16120.4
C4—C3A—C7A117.9 (3)C3—C31—H31A109.5
C4—C3A—C3137.7 (3)C3—C31—H31B109.5
C7A—C3A—C3104.3 (2)H31A—C31—H31B109.5
C3A—C4—C5116.9 (3)C3—C31—H31C109.5
C3A—C4—C41119.8 (3)H31A—C31—H31C109.5
C5—C4—C41123.3 (3)H31B—C31—H31C109.5
C4—C5—C6118.1 (3)C46—C41—C42119.0 (3)
C4—C5—C51122.6 (3)C46—C41—C4121.6 (3)
C6—C5—C51119.0 (3)C42—C41—C4119.4 (3)
N7—C6—C5127.0 (3)C43—C42—C41121.0 (3)
N7—C6—Cl61113.7 (2)C43—C42—H42119.5
C5—C6—Cl61119.3 (2)C41—C42—H42119.5
C6—N7—C7A112.7 (2)C44—C43—C42118.4 (3)
N7—C7A—N1125.1 (3)C44—C43—H43120.8
N7—C7A—C3A127.2 (3)C42—C43—H43120.8
N1—C7A—C3A107.7 (2)C43—C44—C45122.1 (3)
C12—C11—C16121.1 (3)C43—C44—Cl44119.4 (2)
C12—C11—N1120.2 (3)C45—C44—Cl44118.5 (2)
C16—C11—N1118.7 (3)C46—C45—C44119.0 (3)
C13—C12—C11119.1 (3)C46—C45—H45120.5
C13—C12—H12120.4C44—C45—H45120.5
C11—C12—H12120.4C45—C46—C41120.5 (3)
C12—C13—C14120.6 (3)C45—C46—H46119.7
C12—C13—H13119.7C41—C46—H46119.7
C14—C13—H13119.7O51—C51—C5124.3 (3)
C15—C14—C13119.7 (3)O51—C51—H51117.8
C15—C14—H14120.1C5—C51—H51117.8
C7A—N1—N2—C30.5 (3)C4—C3A—C7A—N1179.2 (2)
C11—N1—N2—C3179.4 (2)C3—C3A—C7A—N12.3 (3)
N1—N2—C3—C3A1.0 (3)C7A—N1—C11—C1243.0 (4)
N1—N2—C3—C31175.3 (2)N2—N1—C11—C12135.7 (3)
N2—C3—C3A—C4179.8 (3)C7A—N1—C11—C16138.1 (3)
C31—C3—C3A—C44.4 (6)N2—N1—C11—C1643.2 (4)
N2—C3—C3A—C7A2.1 (3)C16—C11—C12—C130.1 (4)
C31—C3—C3A—C7A173.7 (3)N1—C11—C12—C13178.8 (3)
C7A—C3A—C4—C53.6 (4)C11—C12—C13—C140.1 (4)
C3—C3A—C4—C5174.3 (3)C12—C13—C14—C150.1 (5)
C7A—C3A—C4—C41177.5 (2)C13—C14—C15—C160.5 (5)
C3—C3A—C4—C414.6 (5)C14—C15—C16—C110.7 (4)
C3A—C4—C5—C60.5 (4)C12—C11—C16—C150.5 (4)
C41—C4—C5—C6179.3 (3)N1—C11—C16—C15178.4 (3)
C3A—C4—C5—C51174.5 (3)C3A—C4—C41—C46120.3 (3)
C41—C4—C5—C516.7 (4)C5—C4—C41—C4658.5 (4)
C4—C5—C6—N73.8 (5)C3A—C4—C41—C4256.7 (4)
C51—C5—C6—N7170.4 (3)C5—C4—C41—C42124.6 (3)
C4—C5—C6—Cl61177.9 (2)C46—C41—C42—C431.0 (4)
C51—C5—C6—Cl617.9 (4)C4—C41—C42—C43178.0 (3)
C5—C6—N7—C7A4.2 (4)C41—C42—C43—C440.6 (5)
Cl61—C6—N7—C7A177.35 (19)C42—C43—C44—C450.3 (5)
C6—N7—C7A—N1176.5 (3)C42—C43—C44—Cl44179.4 (2)
C6—N7—C7A—C3A0.6 (4)C43—C44—C45—C460.7 (5)
N2—N1—C7A—N7175.8 (2)Cl44—C44—C45—C46179.9 (2)
C11—N1—C7A—N73.1 (5)C44—C45—C46—C410.3 (4)
N2—N1—C7A—C3A1.8 (3)C42—C41—C46—C450.5 (4)
C11—N1—C7A—C3A179.4 (3)C4—C41—C46—C45177.5 (3)
C4—C3A—C7A—N73.3 (4)C4—C5—C51—O5124.9 (5)
C3—C3A—C7A—N7175.2 (3)C6—C5—C51—O51149.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O51i0.952.563.433 (4)153
C43—H43···O51ii0.952.503.381 (4)154
C42—H42···Cg1iii0.952.753.653 (4)160
Symmetry codes: (i) x+1, y1, z+3/2; (ii) x+3/2, y1/2, z; (iii) x+1, y, z+3/2.
(IV) 4-(4-bromophenyl)-6-chloro-3-methyl-1- phenylpyrazolo[3,4-b]pyridine-5-carbaldehyde top
Crystal data top
C20H13BrClN3OZ = 2
Mr = 426.68F(000) = 428
Triclinic, P1Dx = 1.633 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3826 (11) ÅCell parameters from 3981 reflections
b = 9.7781 (12) Åθ = 2.8–27.5°
c = 10.1072 (6) ŵ = 2.54 mm1
α = 108.077 (10)°T = 120 K
β = 99.353 (9)°Block, yellow
γ = 90.911 (10)°0.36 × 0.27 × 0.20 mm
V = 867.61 (16) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3981 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode3098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.8°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.440, Tmax = 0.604l = 1313
23897 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0282P)2 + 0.7864P]
where P = (Fo2 + 2Fc2)/3
3981 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C20H13BrClN3Oγ = 90.911 (10)°
Mr = 426.68V = 867.61 (16) Å3
Triclinic, P1Z = 2
a = 9.3826 (11) ÅMo Kα radiation
b = 9.7781 (12) ŵ = 2.54 mm1
c = 10.1072 (6) ÅT = 120 K
α = 108.077 (10)°0.36 × 0.27 × 0.20 mm
β = 99.353 (9)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3981 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3098 reflections with I > 2σ(I)
Tmin = 0.440, Tmax = 0.604Rint = 0.048
23897 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.05Δρmax = 0.63 e Å3
3981 reflectionsΔρmin = 0.42 e Å3
236 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5591 (2)0.5642 (2)0.2414 (2)0.0219 (5)
N20.4424 (2)0.5963 (2)0.1562 (2)0.0246 (5)
C30.3337 (3)0.5050 (3)0.1457 (3)0.0208 (5)
C3A0.3758 (3)0.4078 (3)0.2234 (2)0.0189 (5)
C40.3111 (3)0.2948 (3)0.2552 (2)0.0182 (5)
C50.3977 (3)0.2322 (3)0.3460 (2)0.0194 (5)
C60.5421 (2)0.2922 (3)0.4011 (2)0.0179 (5)
N70.6066 (2)0.3995 (2)0.3760 (2)0.0193 (4)
C7A0.5224 (3)0.4528 (3)0.2853 (2)0.0189 (5)
C110.6915 (3)0.6513 (3)0.2750 (3)0.0228 (5)
C120.8222 (3)0.5968 (3)0.3124 (3)0.0252 (6)
H120.82430.50110.31680.030*
C130.9504 (3)0.6838 (3)0.3436 (3)0.0302 (6)
H131.04020.64700.36930.036*
C140.9479 (3)0.8222 (3)0.3375 (3)0.0378 (7)
H141.03530.88130.35980.045*
C150.8166 (4)0.8752 (3)0.2986 (3)0.0395 (8)
H150.81520.97060.29380.047*
C160.6875 (3)0.7912 (3)0.2667 (3)0.0315 (6)
H160.59810.82800.23980.038*
C310.1896 (3)0.5170 (3)0.0624 (3)0.0268 (6)
H31A0.19370.60300.03240.040*
H31B0.11500.52490.12140.040*
H31C0.16590.43120.02110.040*
C410.1542 (2)0.2508 (3)0.2015 (2)0.0189 (5)
C420.0599 (3)0.2681 (3)0.2984 (3)0.0230 (5)
H420.09670.30610.39680.028*
C430.0869 (3)0.2303 (3)0.2520 (3)0.0231 (5)
H430.15100.24170.31780.028*
C440.1387 (3)0.1756 (3)0.1078 (3)0.0216 (5)
Br440.34042 (3)0.12129 (3)0.04510 (3)0.03122 (10)
C450.0484 (3)0.1582 (3)0.0099 (3)0.0217 (5)
H450.08580.12050.08850.026*
C460.0987 (3)0.1969 (3)0.0581 (2)0.0199 (5)
H460.16200.18630.00830.024*
C510.3466 (3)0.1035 (3)0.3776 (3)0.0241 (6)
H510.40190.08140.45490.029*
O510.24153 (19)0.0246 (2)0.31414 (19)0.0306 (4)
Cl610.65220 (6)0.22130 (7)0.51739 (6)0.02490 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0203 (11)0.0221 (11)0.0241 (11)0.0002 (9)0.0021 (9)0.0096 (9)
N20.0251 (11)0.0259 (12)0.0255 (12)0.0053 (9)0.0054 (9)0.0116 (10)
C30.0208 (12)0.0227 (13)0.0208 (13)0.0023 (10)0.0075 (10)0.0075 (10)
C3A0.0167 (12)0.0188 (12)0.0196 (12)0.0006 (10)0.0030 (10)0.0042 (10)
C40.0164 (11)0.0208 (12)0.0149 (12)0.0002 (10)0.0038 (9)0.0016 (10)
C50.0184 (12)0.0210 (13)0.0178 (12)0.0007 (10)0.0040 (10)0.0043 (10)
C60.0167 (12)0.0195 (12)0.0161 (12)0.0027 (10)0.0027 (9)0.0036 (10)
N70.0170 (10)0.0212 (11)0.0189 (10)0.0003 (8)0.0019 (8)0.0060 (9)
C7A0.0182 (12)0.0195 (12)0.0198 (13)0.0001 (10)0.0067 (10)0.0058 (10)
C110.0259 (13)0.0225 (13)0.0196 (12)0.0060 (11)0.0078 (10)0.0046 (10)
C120.0232 (13)0.0307 (15)0.0211 (13)0.0050 (11)0.0049 (11)0.0074 (11)
C130.0250 (14)0.0435 (17)0.0210 (14)0.0114 (12)0.0041 (11)0.0096 (12)
C140.0450 (18)0.0406 (18)0.0231 (14)0.0215 (14)0.0077 (13)0.0037 (13)
C150.056 (2)0.0272 (15)0.0360 (17)0.0141 (14)0.0167 (15)0.0071 (13)
C160.0408 (17)0.0242 (14)0.0322 (15)0.0013 (12)0.0133 (13)0.0096 (12)
C310.0235 (13)0.0313 (15)0.0296 (14)0.0023 (11)0.0020 (11)0.0167 (12)
C410.0138 (11)0.0205 (12)0.0230 (13)0.0020 (10)0.0000 (10)0.0095 (10)
C420.0191 (12)0.0293 (14)0.0193 (13)0.0017 (10)0.0017 (10)0.0067 (11)
C430.0186 (12)0.0239 (13)0.0284 (14)0.0012 (10)0.0071 (11)0.0093 (11)
C440.0156 (12)0.0165 (12)0.0324 (14)0.0003 (10)0.0013 (10)0.0087 (11)
Br440.01564 (13)0.03375 (17)0.04062 (18)0.00322 (10)0.00055 (11)0.00958 (13)
C450.0222 (13)0.0196 (12)0.0207 (13)0.0007 (10)0.0021 (10)0.0055 (10)
C460.0199 (12)0.0209 (13)0.0191 (12)0.0014 (10)0.0035 (10)0.0066 (10)
C510.0221 (13)0.0269 (14)0.0245 (13)0.0002 (11)0.0011 (11)0.0112 (11)
O510.0272 (10)0.0313 (10)0.0331 (11)0.0098 (8)0.0038 (8)0.0154 (9)
Cl610.0183 (3)0.0309 (3)0.0274 (3)0.0004 (2)0.0017 (2)0.0151 (3)
Geometric parameters (Å, º) top
N1—C7A1.356 (3)C14—C151.389 (5)
N1—N21.383 (3)C14—H140.9500
N1—C111.427 (3)C15—C161.387 (4)
N2—C31.314 (3)C15—H150.9500
C3—C3A1.432 (3)C16—H160.9500
C3—C311.500 (3)C31—H31A0.9800
C3A—C41.399 (3)C31—H31B0.9800
C3A—C7A1.417 (3)C31—H31C0.9800
C4—C51.414 (3)C41—C461.387 (3)
C4—C411.490 (3)C41—C421.398 (3)
C5—C61.419 (3)C42—C431.385 (3)
C5—C511.482 (3)C42—H420.9500
C6—N71.314 (3)C43—C441.387 (4)
C6—Cl611.751 (2)C43—H430.9500
N7—C7A1.346 (3)C44—C451.378 (4)
C11—C121.388 (4)C44—Br441.907 (2)
C11—C161.397 (4)C45—C461.391 (3)
C12—C131.396 (3)C45—H450.9500
C12—H120.9500C46—H460.9500
C13—C141.374 (4)C51—O511.200 (3)
C13—H130.9500C51—H510.9500
C7A—N1—N2110.9 (2)C15—C14—H14120.2
C7A—N1—C11130.3 (2)C16—C15—C14121.2 (3)
N2—N1—C11118.7 (2)C16—C15—H15119.4
C3—N2—N1106.8 (2)C14—C15—H15119.4
N2—C3—C3A111.1 (2)C15—C16—C11118.6 (3)
N2—C3—C31118.9 (2)C15—C16—H16120.7
C3A—C3—C31130.0 (2)C11—C16—H16120.7
C4—C3A—C7A118.0 (2)C3—C31—H31A109.5
C4—C3A—C3137.7 (2)C3—C31—H31B109.5
C7A—C3A—C3104.1 (2)H31A—C31—H31B109.5
C3A—C4—C5117.4 (2)C3—C31—H31C109.5
C3A—C4—C41120.1 (2)H31A—C31—H31C109.5
C5—C4—C41122.4 (2)H31B—C31—H31C109.5
C4—C5—C6117.3 (2)C46—C41—C42119.1 (2)
C4—C5—C51122.7 (2)C46—C41—C4121.8 (2)
C6—C5—C51119.8 (2)C42—C41—C4119.1 (2)
N7—C6—C5127.4 (2)C43—C42—C41120.6 (2)
N7—C6—Cl61113.59 (17)C43—C42—H42119.7
C5—C6—Cl61119.02 (18)C41—C42—H42119.7
C6—N7—C7A113.5 (2)C42—C43—C44118.8 (2)
N7—C7A—N1126.6 (2)C42—C43—H43120.6
N7—C7A—C3A126.3 (2)C44—C43—H43120.6
N1—C7A—C3A107.0 (2)C45—C44—C43121.9 (2)
C12—C11—C16120.7 (2)C45—C44—Br44119.59 (19)
C12—C11—N1120.5 (2)C43—C44—Br44118.54 (19)
C16—C11—N1118.8 (2)C44—C45—C46118.6 (2)
C11—C12—C13119.4 (3)C44—C45—H45120.7
C11—C12—H12120.3C46—C45—H45120.7
C13—C12—H12120.3C41—C46—C45121.0 (2)
C14—C13—C12120.5 (3)C41—C46—H46119.5
C14—C13—H13119.7C45—C46—H46119.5
C12—C13—H13119.7O51—C51—C5125.8 (2)
C13—C14—C15119.6 (3)O51—C51—H51117.1
C13—C14—H14120.2C5—C51—H51117.1
C7A—N1—N2—C30.5 (3)C4—C3A—C7A—N1178.7 (2)
C11—N1—N2—C3177.7 (2)C3—C3A—C7A—N11.6 (3)
N1—N2—C3—C3A0.5 (3)C7A—N1—C11—C1227.5 (4)
N1—N2—C3—C31178.1 (2)N2—N1—C11—C12155.9 (2)
N2—C3—C3A—C4177.6 (3)C7A—N1—C11—C16153.7 (3)
C31—C3—C3A—C40.8 (5)N2—N1—C11—C1622.8 (3)
N2—C3—C3A—C7A1.3 (3)C16—C11—C12—C130.8 (4)
C31—C3—C3A—C7A177.1 (2)N1—C11—C12—C13179.5 (2)
C7A—C3A—C4—C50.8 (3)C11—C12—C13—C140.0 (4)
C3—C3A—C4—C5176.7 (3)C12—C13—C14—C150.6 (4)
C7A—C3A—C4—C41175.4 (2)C13—C14—C15—C160.5 (4)
C3—C3A—C4—C410.5 (4)C14—C15—C16—C110.3 (4)
C3A—C4—C5—C61.9 (3)C12—C11—C16—C150.9 (4)
C41—C4—C5—C6174.1 (2)N1—C11—C16—C15179.6 (2)
C3A—C4—C5—C51174.3 (2)C3A—C4—C41—C4662.7 (3)
C41—C4—C5—C519.7 (4)C5—C4—C41—C46121.4 (3)
C4—C5—C6—N71.0 (4)C3A—C4—C41—C42115.5 (3)
C51—C5—C6—N7175.4 (2)C5—C4—C41—C4260.5 (3)
C4—C5—C6—Cl61178.45 (17)C46—C41—C42—C430.8 (4)
C51—C5—C6—Cl615.2 (3)C4—C41—C42—C43179.0 (2)
C5—C6—N7—C7A1.3 (4)C41—C42—C43—C440.3 (4)
Cl61—C6—N7—C7A179.29 (17)C42—C43—C44—C450.2 (4)
C6—N7—C7A—N1179.1 (2)C42—C43—C44—Br44179.10 (18)
C6—N7—C7A—C3A2.7 (3)C43—C44—C45—C460.0 (4)
N2—N1—C7A—N7175.7 (2)Br44—C44—C45—C46179.24 (17)
C11—N1—C7A—N71.1 (4)C42—C41—C46—C451.0 (4)
N2—N1—C7A—C3A1.4 (3)C4—C41—C46—C45179.2 (2)
C11—N1—C7A—C3A178.1 (2)C44—C45—C46—C410.6 (4)
C4—C3A—C7A—N71.7 (4)C4—C5—C51—O5113.8 (4)
C3—C3A—C7A—N7175.5 (2)C6—C5—C51—O51162.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O51i0.952.553.448 (4)157
C45—H45···O51ii0.952.493.397 (3)160
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z.
(V) 6-Chloro-4-(4-methoxyphenyl)-3-methyl-1- phenylpyrazolo[3,4-b]pyridine-5-carbaldehyde top
Crystal data top
C21H16ClN3O2Z = 2
Mr = 377.82F(000) = 392
Triclinic, P1Dx = 1.449 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6972 (8) ÅCell parameters from 3975 reflections
b = 10.039 (2) Åθ = 2.9–27.5°
c = 10.090 (2) ŵ = 0.24 mm1
α = 85.23 (2)°T = 120 K
β = 80.856 (16)°Block, yellow
γ = 86.665 (16)°0.28 × 0.19 × 0.14 mm
V = 865.9 (3) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3975 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode3265 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.935, Tmax = 0.968l = 1313
21671 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0348P)2 + 0.4672P]
where P = (Fo2 + 2Fc2)/3
3975 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C21H16ClN3O2γ = 86.665 (16)°
Mr = 377.82V = 865.9 (3) Å3
Triclinic, P1Z = 2
a = 8.6972 (8) ÅMo Kα radiation
b = 10.039 (2) ŵ = 0.24 mm1
c = 10.090 (2) ÅT = 120 K
α = 85.23 (2)°0.28 × 0.19 × 0.14 mm
β = 80.856 (16)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3975 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3265 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.968Rint = 0.038
21671 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.06Δρmax = 0.30 e Å3
3975 reflectionsΔρmin = 0.34 e Å3
246 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.16793 (15)0.54294 (13)0.63866 (12)0.0194 (3)
N20.14578 (15)0.52771 (13)0.77795 (13)0.0228 (3)
C30.24644 (18)0.43253 (16)0.81293 (15)0.0223 (3)
C3A0.33834 (17)0.38108 (15)0.69550 (15)0.0190 (3)
C40.45894 (17)0.28283 (14)0.66688 (15)0.0183 (3)
C50.50117 (17)0.25515 (14)0.53084 (15)0.0179 (3)
C60.42944 (17)0.33498 (15)0.43277 (15)0.0186 (3)
N70.32598 (14)0.43468 (12)0.45534 (12)0.0186 (3)
C7A0.28076 (17)0.45262 (15)0.58685 (15)0.0180 (3)
C110.07659 (17)0.64308 (15)0.57297 (15)0.0195 (3)
C120.09100 (18)0.65774 (15)0.43325 (16)0.0219 (3)
H120.15890.59880.37960.026*
C130.00439 (19)0.76016 (16)0.37292 (17)0.0252 (3)
H130.01370.77070.27760.030*
C140.09519 (18)0.84688 (16)0.45008 (17)0.0259 (3)
H140.15240.91720.40810.031*
C150.11012 (19)0.82955 (16)0.58915 (17)0.0263 (3)
H150.17900.88800.64250.032*
C160.02577 (18)0.72775 (16)0.65167 (16)0.0232 (3)
H160.03770.71600.74710.028*
C310.2456 (2)0.39059 (19)0.95881 (16)0.0305 (4)
H31A0.33930.42110.98750.046*
H31B0.24420.29280.97250.046*
H31C0.15280.43041.01210.046*
C410.54140 (17)0.21477 (15)0.77338 (14)0.0188 (3)
C420.61300 (18)0.29186 (16)0.85291 (15)0.0218 (3)
H420.60100.38660.84240.026*
C430.70168 (18)0.23279 (16)0.94730 (15)0.0226 (3)
H430.74970.28661.00070.027*
C440.71917 (18)0.09370 (16)0.96246 (15)0.0224 (3)
C450.64676 (19)0.01550 (16)0.88497 (15)0.0239 (3)
H450.65790.07930.89630.029*
C460.55879 (18)0.07495 (15)0.79166 (15)0.0210 (3)
H460.50970.02070.73950.025*
O470.80345 (14)0.02424 (12)1.05122 (11)0.0287 (3)
C470.8873 (2)0.10160 (19)1.12636 (17)0.0314 (4)
H47A0.95900.15791.06410.047*
H47B0.94660.04141.18320.047*
H47C0.81360.15841.18320.047*
C510.62544 (17)0.15076 (15)0.49429 (15)0.0197 (3)
H510.70440.13610.54970.024*
O510.63380 (14)0.08308 (12)0.39951 (11)0.0278 (3)
Cl610.48404 (5)0.31069 (4)0.26223 (4)0.02477 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0205 (6)0.0191 (6)0.0181 (6)0.0048 (5)0.0033 (5)0.0023 (5)
N20.0251 (7)0.0243 (7)0.0180 (6)0.0045 (5)0.0027 (5)0.0015 (5)
C30.0226 (8)0.0223 (8)0.0214 (8)0.0030 (6)0.0031 (6)0.0022 (6)
C3A0.0212 (7)0.0174 (7)0.0189 (7)0.0011 (6)0.0049 (6)0.0017 (6)
C40.0199 (7)0.0159 (7)0.0198 (7)0.0008 (6)0.0047 (6)0.0018 (6)
C50.0183 (7)0.0159 (7)0.0199 (7)0.0008 (6)0.0043 (6)0.0023 (5)
C60.0199 (7)0.0181 (7)0.0183 (7)0.0004 (6)0.0037 (6)0.0034 (5)
N70.0188 (6)0.0175 (6)0.0199 (6)0.0016 (5)0.0044 (5)0.0032 (5)
C7A0.0177 (7)0.0164 (7)0.0204 (7)0.0005 (5)0.0041 (5)0.0027 (5)
C110.0176 (7)0.0161 (7)0.0249 (8)0.0008 (6)0.0051 (6)0.0005 (6)
C120.0200 (7)0.0201 (8)0.0250 (8)0.0033 (6)0.0028 (6)0.0016 (6)
C130.0251 (8)0.0236 (8)0.0266 (8)0.0008 (6)0.0057 (6)0.0024 (6)
C140.0229 (8)0.0190 (8)0.0353 (9)0.0039 (6)0.0074 (7)0.0027 (7)
C150.0254 (8)0.0187 (8)0.0342 (9)0.0059 (6)0.0034 (7)0.0046 (6)
C160.0232 (8)0.0218 (8)0.0249 (8)0.0028 (6)0.0044 (6)0.0044 (6)
C310.0329 (9)0.0348 (10)0.0209 (8)0.0119 (7)0.0017 (7)0.0003 (7)
C410.0198 (7)0.0196 (7)0.0167 (7)0.0042 (6)0.0028 (6)0.0026 (6)
C420.0243 (8)0.0193 (8)0.0218 (7)0.0039 (6)0.0048 (6)0.0029 (6)
C430.0226 (8)0.0263 (8)0.0197 (7)0.0020 (6)0.0047 (6)0.0066 (6)
C440.0201 (7)0.0291 (8)0.0168 (7)0.0062 (6)0.0031 (6)0.0005 (6)
C450.0293 (8)0.0188 (8)0.0223 (8)0.0047 (6)0.0032 (6)0.0006 (6)
C460.0242 (8)0.0197 (8)0.0191 (7)0.0009 (6)0.0034 (6)0.0022 (6)
O470.0304 (6)0.0312 (7)0.0255 (6)0.0074 (5)0.0117 (5)0.0012 (5)
C470.0277 (9)0.0447 (11)0.0227 (8)0.0057 (8)0.0095 (7)0.0023 (7)
C510.0208 (7)0.0176 (7)0.0205 (7)0.0012 (6)0.0037 (6)0.0006 (6)
O510.0318 (6)0.0252 (6)0.0275 (6)0.0086 (5)0.0079 (5)0.0096 (5)
Cl610.0307 (2)0.0246 (2)0.01870 (18)0.00654 (15)0.00483 (14)0.00329 (14)
Geometric parameters (Å, º) top
N1—C7A1.3677 (19)C15—C161.390 (2)
N1—N21.3847 (17)C15—H150.9500
N1—C111.4299 (19)C16—H160.9500
N2—C31.322 (2)C31—H31A0.9800
C3—C3A1.436 (2)C31—H31B0.9800
C3—C311.496 (2)C31—H31C0.9800
C3A—C7A1.404 (2)C41—C421.396 (2)
C3A—C41.410 (2)C41—C461.403 (2)
C4—C51.410 (2)C42—C431.393 (2)
C4—C411.484 (2)C42—H420.9500
C5—C61.420 (2)C43—C441.394 (2)
C5—C511.486 (2)C43—H430.9500
C6—N71.3158 (19)C44—O471.3678 (18)
C6—Cl611.7443 (15)C44—C451.393 (2)
N7—C7A1.3466 (19)C45—C461.382 (2)
C11—C121.392 (2)C45—H450.9500
C11—C161.395 (2)C46—H460.9500
C12—C131.395 (2)O47—C471.431 (2)
C12—H120.9500C47—H47A0.9800
C13—C141.387 (2)C47—H47B0.9800
C13—H130.9500C47—H47C0.9800
C14—C151.386 (2)C51—O511.2090 (19)
C14—H140.9500C51—H510.9500
C7A—N1—N2110.00 (12)C15—C16—C11119.37 (15)
C7A—N1—C11130.74 (13)C15—C16—H16120.3
N2—N1—C11119.26 (12)C11—C16—H16120.3
C3—N2—N1107.32 (12)C3—C31—H31A109.5
N2—C3—C3A110.44 (13)C3—C31—H31B109.5
N2—C3—C31119.35 (14)H31A—C31—H31B109.5
C3A—C3—C31130.15 (14)C3—C31—H31C109.5
C7A—C3A—C4118.09 (13)H31A—C31—H31C109.5
C7A—C3A—C3104.59 (13)H31B—C31—H31C109.5
C4—C3A—C3137.30 (14)C42—C41—C46118.43 (14)
C3A—C4—C5116.64 (13)C42—C41—C4119.15 (13)
C3A—C4—C41121.97 (13)C46—C41—C4122.30 (13)
C5—C4—C41121.36 (13)C43—C42—C41121.40 (15)
C4—C5—C6118.12 (13)C43—C42—H42119.3
C4—C5—C51119.30 (13)C41—C42—H42119.3
C6—C5—C51122.46 (13)C42—C43—C44119.19 (14)
N7—C6—C5126.51 (14)C42—C43—H43120.4
N7—C6—Cl61113.28 (11)C44—C43—H43120.4
C5—C6—Cl61120.13 (11)O47—C44—C45115.37 (14)
C6—N7—C7A113.75 (13)O47—C44—C43124.62 (14)
N7—C7A—N1125.90 (13)C45—C44—C43120.01 (14)
N7—C7A—C3A126.50 (13)C46—C45—C44120.41 (15)
N1—C7A—C3A107.59 (13)C46—C45—H45119.8
C12—C11—C16120.39 (14)C44—C45—H45119.8
C12—C11—N1120.92 (13)C45—C46—C41120.54 (14)
C16—C11—N1118.68 (14)C45—C46—H46119.7
C11—C12—C13119.12 (15)C41—C46—H46119.7
C11—C12—H12120.4C44—O47—C47116.76 (13)
C13—C12—H12120.4O47—C47—H47A109.5
C14—C13—C12120.99 (15)O47—C47—H47B109.5
C14—C13—H13119.5H47A—C47—H47B109.5
C12—C13—H13119.5O47—C47—H47C109.5
C15—C14—C13119.16 (15)H47A—C47—H47C109.5
C15—C14—H14120.4H47B—C47—H47C109.5
C13—C14—H14120.4O51—C51—C5125.05 (14)
C14—C15—C16120.93 (15)O51—C51—H51117.5
C14—C15—H15119.5C5—C51—H51117.5
C16—C15—H15119.5
C7A—N1—N2—C31.97 (17)C3—C3A—C7A—N12.36 (17)
C11—N1—N2—C3178.18 (13)C7A—N1—C11—C122.5 (2)
N1—N2—C3—C3A0.41 (18)N2—N1—C11—C12177.36 (14)
N1—N2—C3—C31177.83 (14)C7A—N1—C11—C16176.44 (15)
N2—C3—C3A—C7A1.22 (18)N2—N1—C11—C163.7 (2)
C31—C3—C3A—C7A175.84 (17)C16—C11—C12—C131.5 (2)
N2—C3—C3A—C4179.58 (17)N1—C11—C12—C13177.43 (14)
C31—C3—C3A—C42.5 (3)C11—C12—C13—C140.0 (2)
C7A—C3A—C4—C56.2 (2)C12—C13—C14—C151.0 (2)
C3—C3A—C4—C5171.99 (17)C13—C14—C15—C160.7 (2)
C7A—C3A—C4—C41171.81 (14)C14—C15—C16—C110.8 (2)
C3—C3A—C4—C4110.0 (3)C12—C11—C16—C151.8 (2)
C3A—C4—C5—C65.2 (2)N1—C11—C16—C15177.07 (14)
C41—C4—C5—C6172.87 (13)C3A—C4—C41—C4255.9 (2)
C3A—C4—C5—C51178.84 (13)C5—C4—C41—C42122.02 (16)
C41—C4—C5—C513.1 (2)C3A—C4—C41—C46128.27 (16)
C4—C5—C6—N70.3 (2)C5—C4—C41—C4653.8 (2)
C51—C5—C6—N7175.51 (14)C46—C41—C42—C430.9 (2)
C4—C5—C6—Cl61176.88 (11)C4—C41—C42—C43175.12 (14)
C51—C5—C6—Cl611.0 (2)C41—C42—C43—C440.0 (2)
C5—C6—N7—C7A4.5 (2)C42—C43—C44—O47179.83 (14)
Cl61—C6—N7—C7A178.77 (10)C42—C43—C44—C450.8 (2)
C6—N7—C7A—N1175.59 (14)O47—C44—C45—C46179.85 (14)
C6—N7—C7A—C3A3.2 (2)C43—C44—C45—C460.7 (2)
N2—N1—C7A—N7176.27 (14)C44—C45—C46—C410.1 (2)
C11—N1—C7A—N73.6 (3)C42—C41—C46—C450.9 (2)
N2—N1—C7A—C3A2.74 (17)C4—C41—C46—C45174.91 (14)
C11—N1—C7A—C3A177.43 (14)C45—C44—O47—C47176.21 (14)
C4—C3A—C7A—N72.1 (2)C43—C44—O47—C474.4 (2)
C3—C3A—C7A—N7176.64 (14)C4—C5—C51—O51150.72 (16)
C4—C3A—C7A—N1178.89 (13)C6—C5—C51—O5133.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O51i0.952.433.312 (2)154
C46—H46···O51ii0.952.363.300 (2)171
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y, z+1.
(VI) 6-Chloro-3-methyl-4-(4-nitrophenyl)-1- phenylpyrazolo[3,4-b]pyridine-5-carbaldehyde top
Crystal data top
C20H13ClN4O3F(000) = 808
Mr = 392.79Dx = 1.469 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4073 reflections
a = 11.7839 (13) Åθ = 3.3–27.5°
b = 9.9890 (4) ŵ = 0.25 mm1
c = 15.71 (2) ÅT = 120 K
β = 106.084 (8)°Plate, yellow
V = 1776 (2) Å30.39 × 0.29 × 0.14 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
4073 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2914 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.3°
ϕ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.910, Tmax = 0.966l = 2020
25554 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.8224P]
where P = (Fo2 + 2Fc2)/3
4073 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C20H13ClN4O3V = 1776 (2) Å3
Mr = 392.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7839 (13) ŵ = 0.25 mm1
b = 9.9890 (4) ÅT = 120 K
c = 15.71 (2) Å0.39 × 0.29 × 0.14 mm
β = 106.084 (8)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
4073 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2914 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.966Rint = 0.049
25554 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.09Δρmax = 0.42 e Å3
4073 reflectionsΔρmin = 0.34 e Å3
254 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.57391 (14)0.20314 (17)0.53040 (11)0.0256 (4)
N20.57099 (15)0.12065 (17)0.45850 (11)0.0268 (4)
C30.47614 (17)0.1523 (2)0.39466 (13)0.0251 (4)
C3A0.41296 (17)0.2582 (2)0.42304 (13)0.0237 (4)
C40.31283 (17)0.3357 (2)0.38427 (13)0.0229 (4)
C50.28078 (17)0.4330 (2)0.43806 (13)0.0230 (4)
C60.35375 (18)0.4473 (2)0.52615 (14)0.0251 (4)
N70.45157 (14)0.37954 (17)0.56384 (11)0.0247 (4)
C7A0.47828 (17)0.2862 (2)0.51058 (13)0.0237 (4)
C110.67273 (17)0.1966 (2)0.60716 (13)0.0255 (4)
C120.66881 (18)0.2578 (2)0.68585 (14)0.0282 (5)
H120.60010.30490.68910.034*
C130.76613 (19)0.2494 (2)0.75969 (14)0.0302 (5)
H130.76390.29230.81320.036*
C140.86635 (19)0.1794 (2)0.75659 (15)0.0321 (5)
H140.93240.17380.80740.039*
C150.86862 (19)0.1176 (2)0.67776 (15)0.0327 (5)
H150.93660.06830.67520.039*
C160.77317 (18)0.1265 (2)0.60263 (14)0.0299 (5)
H160.77630.08540.54880.036*
C310.44492 (18)0.0781 (2)0.30880 (13)0.0290 (5)
H31A0.49940.00280.31260.044*
H31B0.45090.13840.26110.044*
H31C0.36390.04420.29640.044*
C410.25175 (17)0.3180 (2)0.28819 (13)0.0232 (4)
C420.28974 (19)0.3947 (2)0.22727 (14)0.0289 (5)
H420.35090.45850.24790.035*
C430.23928 (19)0.3790 (2)0.13676 (14)0.0300 (5)
H430.26420.43180.09500.036*
C440.15134 (18)0.2836 (2)0.10952 (13)0.0271 (5)
C450.11408 (18)0.2037 (2)0.16809 (14)0.0289 (5)
H450.05500.13750.14710.035*
C460.16431 (18)0.2218 (2)0.25805 (14)0.0270 (4)
H460.13900.16840.29940.032*
N440.09402 (17)0.2684 (2)0.01403 (12)0.0339 (4)
O410.12160 (17)0.34620 (19)0.03747 (10)0.0478 (5)
O420.02258 (16)0.17746 (19)0.01044 (11)0.0512 (5)
C510.17321 (18)0.5163 (2)0.40463 (14)0.0270 (4)
H510.15670.58240.44300.032*
O510.10541 (12)0.50510 (15)0.33157 (10)0.0315 (4)
Cl610.31718 (5)0.56456 (5)0.59607 (3)0.03116 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0239 (8)0.0288 (9)0.0223 (9)0.0033 (7)0.0034 (7)0.0020 (7)
N20.0274 (9)0.0279 (9)0.0258 (9)0.0009 (7)0.0084 (7)0.0039 (7)
C30.0238 (10)0.0255 (10)0.0263 (10)0.0003 (8)0.0074 (8)0.0004 (9)
C3A0.0233 (9)0.0250 (10)0.0221 (10)0.0016 (8)0.0053 (8)0.0013 (8)
C40.0214 (9)0.0233 (10)0.0237 (10)0.0042 (8)0.0057 (8)0.0001 (8)
C50.0218 (9)0.0232 (10)0.0242 (10)0.0000 (8)0.0066 (8)0.0011 (8)
C60.0266 (10)0.0235 (10)0.0258 (10)0.0014 (8)0.0084 (8)0.0003 (8)
N70.0249 (8)0.0255 (9)0.0235 (9)0.0002 (7)0.0064 (7)0.0016 (7)
C7A0.0234 (10)0.0259 (10)0.0216 (10)0.0007 (8)0.0060 (8)0.0006 (8)
C110.0230 (10)0.0249 (10)0.0256 (10)0.0002 (8)0.0019 (8)0.0035 (8)
C120.0259 (10)0.0305 (11)0.0265 (11)0.0019 (9)0.0045 (9)0.0021 (9)
C130.0349 (11)0.0294 (11)0.0245 (11)0.0002 (9)0.0054 (9)0.0034 (9)
C140.0292 (11)0.0318 (12)0.0295 (11)0.0007 (9)0.0015 (9)0.0058 (10)
C150.0270 (11)0.0327 (12)0.0353 (12)0.0028 (9)0.0031 (9)0.0047 (10)
C160.0305 (11)0.0289 (11)0.0298 (11)0.0025 (9)0.0074 (9)0.0005 (9)
C310.0281 (10)0.0312 (11)0.0269 (11)0.0011 (9)0.0061 (9)0.0059 (9)
C410.0214 (9)0.0245 (10)0.0238 (10)0.0020 (8)0.0065 (8)0.0009 (8)
C420.0300 (11)0.0296 (11)0.0264 (11)0.0086 (9)0.0064 (9)0.0025 (9)
C430.0348 (11)0.0309 (11)0.0255 (11)0.0043 (10)0.0104 (9)0.0009 (9)
C440.0287 (10)0.0312 (11)0.0206 (10)0.0018 (9)0.0055 (8)0.0006 (9)
C450.0249 (10)0.0321 (11)0.0274 (11)0.0057 (9)0.0035 (9)0.0021 (9)
C460.0265 (10)0.0297 (11)0.0250 (10)0.0031 (9)0.0075 (9)0.0014 (9)
N440.0373 (10)0.0398 (11)0.0240 (9)0.0029 (9)0.0075 (8)0.0038 (9)
O410.0659 (12)0.0532 (11)0.0232 (8)0.0090 (9)0.0106 (8)0.0038 (8)
O420.0544 (11)0.0635 (12)0.0300 (9)0.0257 (10)0.0020 (8)0.0097 (9)
C510.0281 (10)0.0251 (11)0.0286 (11)0.0016 (9)0.0091 (9)0.0004 (9)
O510.0266 (7)0.0350 (9)0.0302 (8)0.0032 (7)0.0031 (6)0.0011 (7)
Cl610.0351 (3)0.0316 (3)0.0263 (3)0.0059 (2)0.0077 (2)0.0050 (2)
Geometric parameters (Å, º) top
N1—C7A1.364 (2)C14—H140.9500
N1—N21.391 (3)C15—C161.389 (3)
N1—C111.427 (3)C15—H150.9500
N2—C31.317 (3)C16—H160.9500
C3—C3A1.433 (3)C31—H31A0.9800
C3—C311.493 (3)C31—H31B0.9800
C3A—C41.402 (3)C31—H31C0.9800
C3A—C7A1.405 (3)C41—C461.392 (3)
C4—C51.406 (3)C41—C421.393 (3)
C4—C411.492 (3)C42—C431.390 (3)
C5—C61.419 (3)C42—H420.9500
C5—C511.485 (3)C43—C441.385 (3)
C6—N71.326 (3)C43—H430.9500
C6—Cl611.740 (2)C44—C451.378 (3)
N7—C7A1.347 (3)C44—N441.472 (3)
C11—C121.391 (3)C45—C461.384 (3)
C11—C161.394 (3)C45—H450.9500
C12—C131.389 (3)C46—H460.9500
C12—H120.9500N44—O421.226 (2)
C13—C141.385 (3)N44—O411.228 (3)
C13—H130.9500C51—O511.208 (3)
C14—C151.391 (4)C51—H510.9500
C7A—N1—N2110.01 (16)C16—C15—H15119.4
C7A—N1—C11130.54 (17)C14—C15—H15119.4
N2—N1—C11119.32 (17)C15—C16—C11119.2 (2)
C3—N2—N1107.51 (17)C15—C16—H16120.4
N2—C3—C3A110.17 (18)C11—C16—H16120.4
N2—C3—C31120.88 (18)C3—C31—H31A109.5
C3A—C3—C31128.91 (18)C3—C31—H31B109.5
C4—C3A—C7A118.79 (18)H31A—C31—H31B109.5
C4—C3A—C3136.04 (19)C3—C31—H31C109.5
C7A—C3A—C3105.10 (17)H31A—C31—H31C109.5
C3A—C4—C5117.05 (19)H31B—C31—H31C109.5
C3A—C4—C41119.06 (17)C46—C41—C42119.63 (19)
C5—C4—C41123.74 (18)C46—C41—C4122.03 (18)
C4—C5—C6117.66 (18)C42—C41—C4118.21 (18)
C4—C5—C51121.32 (18)C43—C42—C41120.8 (2)
C6—C5—C51121.02 (18)C43—C42—H42119.6
N7—C6—C5126.92 (18)C41—C42—H42119.6
N7—C6—Cl61113.48 (16)C44—C43—C42117.72 (19)
C5—C6—Cl61119.60 (16)C44—C43—H43121.1
C6—N7—C7A113.56 (18)C42—C43—H43121.1
N7—C7A—N1126.86 (18)C45—C44—C43122.8 (2)
N7—C7A—C3A125.93 (19)C45—C44—N44118.65 (19)
N1—C7A—C3A107.21 (17)C43—C44—N44118.57 (18)
C12—C11—C16120.24 (19)C44—C45—C46118.7 (2)
C12—C11—N1120.68 (19)C44—C45—H45120.6
C16—C11—N1119.07 (19)C46—C45—H45120.6
C13—C12—C11119.5 (2)C45—C46—C41120.28 (19)
C13—C12—H12120.3C45—C46—H46119.9
C11—C12—H12120.3C41—C46—H46119.9
C14—C13—C12121.1 (2)O42—N44—O41123.1 (2)
C14—C13—H13119.5O42—N44—C44118.49 (18)
C12—C13—H13119.5O41—N44—C44118.38 (19)
C13—C14—C15118.8 (2)O51—C51—C5123.97 (19)
C13—C14—H14120.6O51—C51—H51118.0
C15—C14—H14120.6C5—C51—H51118.0
C16—C15—C14121.1 (2)
C7A—N1—N2—C30.6 (2)C7A—N1—C11—C1217.0 (3)
C11—N1—N2—C3175.59 (18)N2—N1—C11—C12167.68 (18)
N1—N2—C3—C3A0.0 (2)C7A—N1—C11—C16163.7 (2)
N1—N2—C3—C31177.80 (18)N2—N1—C11—C1611.6 (3)
N2—C3—C3A—C4176.1 (2)C16—C11—C12—C130.5 (3)
C31—C3—C3A—C46.3 (4)N1—C11—C12—C13179.76 (19)
N2—C3—C3A—C7A0.6 (2)C11—C12—C13—C140.9 (3)
C31—C3—C3A—C7A177.0 (2)C12—C13—C14—C150.3 (3)
C7A—C3A—C4—C53.3 (3)C13—C14—C15—C160.9 (3)
C3—C3A—C4—C5179.7 (2)C14—C15—C16—C111.3 (3)
C7A—C3A—C4—C41172.52 (17)C12—C11—C16—C150.6 (3)
C3—C3A—C4—C413.8 (3)N1—C11—C16—C15178.68 (19)
C3A—C4—C5—C61.6 (3)C3A—C4—C41—C4687.2 (2)
C41—C4—C5—C6173.97 (18)C5—C4—C41—C4697.3 (2)
C3A—C4—C5—C51177.27 (18)C3A—C4—C41—C4288.6 (2)
C41—C4—C5—C517.1 (3)C5—C4—C41—C4287.0 (2)
C4—C5—C6—N71.1 (3)C46—C41—C42—C431.7 (3)
C51—C5—C6—N7179.94 (19)C4—C41—C42—C43177.56 (19)
C4—C5—C6—Cl61179.17 (14)C41—C42—C43—C440.8 (3)
C51—C5—C6—Cl610.3 (3)C42—C43—C44—C451.0 (3)
C5—C6—N7—C7A2.0 (3)C42—C43—C44—N44178.01 (19)
Cl61—C6—N7—C7A178.32 (14)C43—C44—C45—C461.8 (3)
C6—N7—C7A—N1178.88 (18)N44—C44—C45—C46177.24 (19)
C6—N7—C7A—C3A0.1 (3)C44—C45—C46—C410.8 (3)
N2—N1—C7A—N7179.99 (18)C42—C41—C46—C450.9 (3)
C11—N1—C7A—N74.4 (3)C4—C41—C46—C45176.60 (19)
N2—N1—C7A—C3A1.0 (2)C45—C44—N44—O426.3 (3)
C11—N1—C7A—C3A174.63 (19)C43—C44—N44—O42174.6 (2)
C4—C3A—C7A—N72.6 (3)C45—C44—N44—O41174.9 (2)
C3—C3A—C7A—N7179.99 (19)C43—C44—N44—O414.1 (3)
C4—C3A—C7A—N1176.40 (17)C4—C5—C51—O511.8 (3)
C3—C3A—C7A—N11.0 (2)C6—C5—C51—O51177.05 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C45—H45···O51i0.952.413.261 (5)150
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC20H14ClN3OC21H16ClN3OC20H13Cl2N3OC20H13BrClN3O
Mr347.79361.82382.23426.68
Crystal system, space groupMonoclinic, C2/cTriclinic, P1Orthorhombic, PbcnTriclinic, P1
Temperature (K)120120120120
a, b, c (Å)16.784 (3), 9.6380 (8), 21.699 (4)8.2898 (8), 9.9191 (14), 10.3666 (10)20.868 (3), 9.603 (4), 16.924 (9)9.3826 (11), 9.7781 (12), 10.1072 (6)
α, β, γ (°)90, 108.820 (12), 9087.108 (11), 86.808 (8), 85.088 (12)90, 90, 90108.077 (10), 99.353 (9), 90.911 (10)
V3)3322.5 (9)847.08 (17)3391 (2)867.61 (16)
Z8282
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.240.240.402.54
Crystal size (mm)0.36 × 0.32 × 0.120.31 × 0.26 × 0.200.40 × 0.37 × 0.280.36 × 0.27 × 0.20
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.918, 0.9720.929, 0.9530.857, 0.8970.440, 0.604
No. of measured, independent and
observed [I > 2σ(I)] reflections
24328, 3829, 2899 21387, 3880, 2544 34307, 3898, 2444 23897, 3981, 3098
Rint0.0420.0740.0800.048
(sin θ/λ)max1)0.6500.6490.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.100, 1.05 0.050, 0.130, 1.03 0.053, 0.147, 1.08 0.036, 0.077, 1.05
No. of reflections3829388038983981
No. of parameters227237236236
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.370.31, 0.300.62, 0.460.63, 0.42


(V)(VI)
Crystal data
Chemical formulaC21H16ClN3O2C20H13ClN4O3
Mr377.82392.79
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)120120
a, b, c (Å)8.6972 (8), 10.039 (2), 10.090 (2)11.7839 (13), 9.9890 (4), 15.71 (2)
α, β, γ (°)85.23 (2), 80.856 (16), 86.665 (16)90, 106.084 (8), 90
V3)865.9 (3)1776 (2)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.240.25
Crystal size (mm)0.28 × 0.19 × 0.140.39 × 0.29 × 0.14
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.935, 0.9680.910, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
21671, 3975, 3265 25554, 4073, 2914
Rint0.0380.049
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 1.06 0.048, 0.134, 1.09
No. of reflections39754073
No. of parameters246254
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.340.42, 0.34

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected torsion angles (°) for (I)–(VI) top
CompoundN2—N1—C11—C12C3A—C4—C41—C42C4—C5—C51—O51
(I)-140.93 (16)-73.6 (2)-10.2 (3)
(II)-173.2 (2)-53.6 (3)147.5 (2)
(III)-135.7 (3)-56.7 (4)-24.9 (5)
(IV)-155.9 (2)-115.5 (3)13.8 (4)
(V)-177.26 (14)-55.9 (2)150.72 (16)
(VI)-167.68 (18)-88.6 (2)1.8 (3)
Geometry of hydrogen bonds and short intramolecular contacts (Å, °) for (I)–(VI) top
Cg1 represents the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
Compound (I)
C46—H46···N2i0.952.583.515 (2)169
C45—H45···Cg1i0.952.763.508 (2)136
Compound (II)
C14—H14···O51ii0.952.463.319 (3)150
C46—H46···O51iii0.952.413.348 (3)170
Compound (III)
C15—H15···O51iv0.952.563.433 (4)153
C43—H43···O51v0.952.503.381 (4)154
C42—H42···Cg1vi0.952.753.653 (4)160
Compound (IV)
C14—H14···O51vii0.952.553.448 (4)157
C45—H45···O51viii0.952.493.397 (3)160
Compound (V)
C14—H14···O51ix0.952.433.312 (2)154
C46—H46···O51x0.952.363.300 (2)171
Compound (VI)
C45—H45···O51xi0.952.413.261 (2)150
Symmetry codes: (i) -x + 3/2, y - 1/2, -z + 1/2; (ii) x + 1, y, z - 1; (iii) -x + 1, -y + 1, -z + 2; (iv) -x + 1, y - 1, -z + 3/2; (v) -x + 3/2, y - 1/2, z; (vi) -x + 1, y, -z + 3/2; (vii) x + 1, y + 1, z; (viii) -x, -y, -z; (ix) x - 1, y + 1, z; (x) -x + 1, -y, -z + 1; (xi) -x, y - 1/2, -z + 1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds