Download citation
Download citation
link to html
Two mononuclear copper complexes, {bis­[(3,5-dimethyl-1H-pyrazol-1-yl-[kappa]N2)meth­yl]amine-[kappa]N}(3,5-dimethyl-1H-pyrazole-[kappa]N2)(perchlorato-[kappa]O)copper(II) perchlorate, [Cu(ClO4)(C5H8N2)(C12H19N5)]ClO4, (I), and {bis­[(3,5-dimethyl-1H-pyrazol-1-yl-[kappa]N2)meth­yl]amine-[kappa]N}­bis­(3,5-dimethyl-1H-pyrazole-[kappa]N2)copper(II) bis­(hexa­fluoridophosphate), [Cu(C5H8N2)2(C12H19N5)](PF6)2, (II), have been synthesized by the reactions of different copper salts with the tripodal ligand tris­[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]­amine (TDPA) in acetone-water solutions at room temperature. Single-crystal X-ray diffraction analysis revealed that they contain the new tridentate ligand bis­[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]­amine (BDPA), which cannot be obtained by normal organic reactions and has thus been captured in the solid state by in situ synthesis. The coordination of the CuII ion is distorted square pyramidal in (I) and distorted trigonal bipyramidal in (II). The new in situ generated tridentate BDPA ligand can act as a meridional or facial ligand during the process of coordination. The crystal structures of these two compounds are stabilized by classical hydrogen bonding as well as intricate nonclassical hydrogen-bond interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111031519/yf3005sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111031519/yf3005Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111031519/yf3005IIsup3.hkl
Contains datablock II

CCDC references: 800995; 800996

Comment top

Polydentate pyrazole ligands, which could act as terminal chelate ligands coordinated to metal ions, have been shown to be efficient in the construction of metalloenzymes (Melnik, 1982). These compounds, built of copper ions and polydentate pyrazole ligands, can also be seen as models for bioinorganic systems, as well as for the discovery of new catalyst precursors. In order to expand the range of metalloenzymes and obtain a deeper insight into the biologically interesting effects of complexes of polydentate pyrazole ligands with metal ions, it is important to design and synthesize new terminal polydentate ligands for the construction of metalloenzymes. In situ metal–ligand reactions, which have been investigated for many decades, are a very important method for the generation of novel coordination compounds with ligands that are inaccessible in normal organic reactions (Chen & Tong, 2007). To date, many kinds of functional compounds built out of in situ generated ligands and metal ions have been documented (Chen & Tong, 2007). Recently, our attempts to synthesize new types of mononuclear precursor compounds by the reaction of the CuII ion and the tripodal ligand tris[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]amine (TDPA) yielded two mononuclear CuII compounds with a new in situ generated tridentate ligand, bis[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]amine (BDPA). To the best of our knowledge, a successful synthetic route to the tridentate BDPA ligand has not been documented and synthetic attempts to obtain BDPA have failed due to the uncontrollable reaction of (pyrazol-1-yl)methanol and primary amines (Daoudi et al., 2006). Here, with the help of in situ synthesis, the BDPA ligand has been captured in the solid state and characterized by single-crystal X-ray crystallography. The crystal structures of these mononuclear copper compounds, namely {bis[(3,5-dimethyl-1H-pyrazol-1-yl-κN2)methyl]amine}(3,5-dimethyl-1H-pyrazole-κN2)(perchlorato-κO)copper(II) perchlorate, (I), and {bis[(3,5-dimethyl-1H-pyrazol-1-yl-κN2)methyl]amine}bis(3,5-dimethyl-1H-pyrazole-κN2)copper(II) bis(hexafluoridophosphate), (II), the characteristics of the new BDPA ligand and the possible mechanism of the in situ reaction are described herein.

In the process of the coordination reaction between CuII salts and the tripodal TDPA ligand in a molar ratio of 1:1 in the open air, the tripodal ligand decomposed to the tridentate BDPA ligand (L1), 3,5-dimethyl-1H-pyrazole (L2) and HCHO, as a result of C—N bond cleavage catalysed by the CuII ions in the reaction liquid (see Scheme 2; Barszcz et al., 2004). The new BDPA ligand is then stabilized via coordination with the CuII ion and is captured in the solid state. Thus, the new tridentate BDPA ligand, which could not be obtained by normal organic synthesis, has been generated in situ.

Complex (I) crystallizes in the monoclinic space group C2/c. A perspective view of its asymmetric unit is depicted in Fig. 1. The complex contains two different coordinated ligands obtained during the reaction process, viz. BDPA and L2, without the original tripodal TDPA ligand. The central CuII ion is five-coordinated by one tridentate chelate ligand (atoms N4, N6 and N7), one neutral in pyrazole ligand (N2) and one coordinated perchlorate anion (O4). The coordination geometry around the CuII ion is presented in Table 1. The bond angles indicate that the coordination geometry can be best described as distorted square pyramidal. The equatorial sites are occupied by the three N atoms from L1 and and one N atom from L2, while the apical position is occupied by an O atom from one of the two independent perchlorate anions. The other perchlorate anion is noncoordinating. The tridentate BDPA ligand acts as a meridional ligand, with a dihedral angle between the two BDPA pyrazole rings of 12.39 (3)°. The in situ-generated L2 ligand coordinates to the central CuII ion trans to the central N atom, N7, of the BDPA ligand. The Cu—N bond lengths in (I) are similar to those observed for related CuII complexes with pyrazole and pyridine donor ligands (Watson et al., 1987). There is an intramolecular hydrogen bond between the noncoordinating amine group of L2 and an O atom of the the coordinated perchlorate anion. The central amine group of the BDPA ligand also forms a hydrogen bond with the free perchlorate anion (Table 2) to form a hydrogen-bonded ion pair, but there is no extension of the classical hydrogen bonding network beyond this. Two weak C—H···.O interactions may be present (Table 2). One, involving C12—H12B is just a further interaction between the cation and free perchlorate anion involved in the described ion pair, while that involving C8—H8A links complex cations through the coordinated perchlorate ligand into extended chains which run parallel to the [010] direction.

In contrast with the crystal structure of (I), the central CuII ion in (II) is coordinated by five N atoms, three from the tridentate L1 ligand (N6, N8 and N9) and the others from two independent L2 ligands (N2 and N4) (Fig. 2). The tridentate L1 ligand coordinates in a facial mode, with a dihedral angle between the two BDPA pyrazole rings of 58.95 (2)°. The coordination geometry around the CuII ion is presented in Table 3, which indicates that the CuII ion has a slightly distorted trigonal bipyramidal geometry. The three equatorial positions are occupied by atoms N6, N8 and N2, and the axial positions are occupied by atoms N4 and N9. The two independent hexafluorophosphate anions occupy approximate columns between the cations. Several weak N—H···F interactions involving all N—H donors of the L1 and L2 ligands serve to link the ions into extended chains which run parallel to the [010] direction (Table 4). N3—H of one L2 ligand has a bifurcated interaction with two F atoms of the same anion, while N9—H of the other L2 ligand also has bifurcated interactions with two F atoms of the other independent cation. This latter anion also accepts the N1—H interaction and a very weak C4—H interaction from the central amine group of the BDPA ligand of a different cation, thereby forming the link that leads to the extended chain.

Related literature top

For related literature, see: Barszcz et al. (2004); Chen & Tong (2007); Daoudi et al. (2006); Melnik (1982); Watson et al. (1987).

Experimental top

An acetone solution (5 ml) of the tripodal ligand TDPA (0.1 mmol) was added to aqueous solutions (10 ml) of different copper salts [0.1 mmol Cu(ClO4)2 for (I) and (II)], and after stirring the mixture at room temperature for 30 min the counterions were added [0.5 mmol NaClO4 for (I) and 0.5 mmol KPF6 for (II)]. The resulting solutions were filtered and allowed to stand at room temperature, and two similar mononuclear single-crystal samples were obtained after one week (yields 40–45%).

Refinement top

All H atoms were placed geometrically, with C—H = 0.93 (aromatic) or 0.96 Å (CH2) and N—H = 0.86–0.91 Å, and refined using a riding-atom model, with Uiso(H) = 1.2Ueq(C). The remaining H atoms were located in difference Fourier maps. For (II), disordered atoms F5 and F6 were set as two sites with the respective occupancies summing to one [final refined occupancies 0.53 (3):0.47 (3) for F5 and 0.546 (16):0.454 (16) for F6]. [Please check added text]

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atomic-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The asymmetric unit of (II), showing the atomic-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms and hexafluoridophosphate counterions have been omitted for clarity.
(I) {bis[(3,5-dimethyl-1H-pyrazol-1-yl-κN2)methyl]amine}(3,5- dimethyl-1H-pyrazole-κN2)(perchlorato-κO)copper(II) perchlorate top
Crystal data top
[Cu(ClO4)(C5H8N2)(C12H19N5)]ClO4F(000) = 2440
Mr = 591.91Dx = 1.620 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3113 reflections
a = 37.574 (3) Åθ = 2.3–28.9°
b = 8.5769 (4) ŵ = 1.18 mm1
c = 15.661 (1) ÅT = 293 K
β = 105.938 (8)°Block-like, blue
V = 4853.0 (5) Å30.30 × 0.20 × 0.20 mm
Z = 8
Data collection top
Oxford Gemini S Ultra
diffractometer
4701 independent reflections
Radiation source: fine-focus sealed tube2699 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 0 pixels mm-1θmax = 26.0°, θmin = 2.4°
ω scansh = 4643
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 710
Tmin = 0.719, Tmax = 0.799l = 1919
11887 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0319P)2]
where P = (Fo2 + 2Fc2)/3
4701 reflections(Δ/σ)max = 0.001
322 parametersΔρmax = 1.07 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Cu(ClO4)(C5H8N2)(C12H19N5)]ClO4V = 4853.0 (5) Å3
Mr = 591.91Z = 8
Monoclinic, C2/cMo Kα radiation
a = 37.574 (3) ŵ = 1.18 mm1
b = 8.5769 (4) ÅT = 293 K
c = 15.661 (1) Å0.30 × 0.20 × 0.20 mm
β = 105.938 (8)°
Data collection top
Oxford Gemini S Ultra
diffractometer
4701 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2699 reflections with I > 2σ(I)
Tmin = 0.719, Tmax = 0.799Rint = 0.060
11887 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 0.88Δρmax = 1.07 e Å3
4701 reflectionsΔρmin = 0.50 e Å3
322 parameters
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.4 (release 27-04-2006 CrysAlis171 .NET) (compiled Apr 27 2007,17:53:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.381241 (15)0.62688 (5)0.74971 (3)0.02052 (14)
Cl20.45687 (3)0.37363 (13)0.59411 (7)0.0338 (3)
N70.42188 (10)0.5478 (3)0.8541 (2)0.0264 (9)
H7A0.41640.58140.90410.032*
O40.35312 (9)0.7270 (3)0.8566 (2)0.0387 (8)
O80.44379 (12)0.3828 (4)0.6705 (2)0.0608 (11)
C120.42169 (11)0.3778 (4)0.8565 (3)0.0230 (9)
H12A0.43650.33600.82010.028*
H12B0.43180.34110.91690.028*
N60.41760 (10)0.7998 (3)0.7556 (2)0.0209 (8)
O70.45817 (9)0.5258 (3)0.5589 (2)0.0343 (8)
N50.44949 (10)0.7745 (3)0.8220 (2)0.0201 (8)
C10.42064 (12)0.9464 (4)0.7267 (3)0.0206 (10)
C60.45695 (12)0.6162 (4)0.8546 (3)0.0299 (10)
H6A0.46850.55730.81650.036*
H6B0.47340.61640.91430.036*
C20.45443 (12)1.0073 (4)0.7752 (3)0.0236 (10)
H2A0.46331.10650.76840.028*
O60.49283 (11)0.3060 (3)0.6153 (3)0.0639 (12)
N30.38399 (10)0.3290 (3)0.8230 (2)0.0212 (8)
N40.36107 (10)0.4142 (3)0.7574 (2)0.0215 (8)
C30.47256 (11)0.8973 (4)0.8347 (3)0.0201 (9)
N20.34318 (10)0.7034 (3)0.6478 (2)0.0218 (8)
O50.43179 (10)0.2788 (3)0.5275 (2)0.0472 (9)
C40.39161 (13)1.0220 (4)0.6561 (3)0.0283 (11)
H4A0.38080.94690.61110.042*
H4B0.40231.10520.63040.042*
H4C0.37291.06330.68080.042*
Cl10.31775 (3)0.74134 (12)0.87480 (8)0.0339 (3)
O30.29686 (10)0.8551 (4)0.8143 (2)0.0564 (10)
C130.29814 (12)0.8574 (5)0.5706 (3)0.0285 (10)
N10.31712 (10)0.8120 (3)0.6516 (2)0.0259 (9)
H1A0.31340.84660.70000.031*
C80.33191 (13)0.2052 (4)0.7879 (3)0.0273 (11)
H8A0.31340.13210.78560.033*
C90.36677 (13)0.2006 (4)0.8427 (3)0.0242 (11)
C50.50922 (12)0.8959 (4)0.9014 (3)0.0308 (11)
H5A0.50630.86430.95790.046*
H5B0.51980.99840.90640.046*
H5C0.52530.82380.88310.046*
C150.33962 (12)0.6833 (4)0.5613 (3)0.0230 (10)
O20.30002 (11)0.5962 (3)0.8612 (3)0.0647 (12)
C110.38637 (14)0.0878 (4)0.9119 (3)0.0344 (12)
H11A0.40050.14380.96310.052*
H11B0.40270.02460.88890.052*
H11C0.36860.02240.92830.052*
C140.31226 (13)0.7780 (4)0.5125 (3)0.0301 (11)
H14A0.30470.78630.45100.036*
C70.32868 (13)0.3388 (4)0.7356 (3)0.0267 (11)
O10.32281 (12)0.7927 (4)0.9626 (2)0.0616 (12)
C100.29569 (13)0.3961 (5)0.6666 (3)0.0368 (12)
H10A0.28980.49970.68130.055*
H10B0.27510.32830.66390.055*
H10C0.30090.39720.60990.055*
C160.26878 (14)0.9803 (5)0.5581 (3)0.0448 (13)
H16A0.26110.99000.61150.067*
H16B0.24790.95130.50990.067*
H16C0.27851.07820.54500.067*
C170.36449 (14)0.5706 (4)0.5325 (3)0.0361 (12)
H17A0.36330.47100.55950.054*
H17B0.38950.60860.55060.054*
H17C0.35670.56000.46910.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0197 (3)0.0177 (3)0.0227 (3)0.0024 (2)0.0036 (2)0.0020 (2)
Cl20.0325 (7)0.0327 (6)0.0328 (7)0.0001 (6)0.0035 (6)0.0083 (6)
N70.023 (2)0.0207 (18)0.033 (2)0.0036 (16)0.0037 (19)0.0040 (16)
O40.037 (2)0.0416 (17)0.043 (2)0.0017 (15)0.0205 (19)0.0115 (15)
O80.092 (3)0.065 (2)0.032 (2)0.010 (2)0.028 (2)0.0026 (19)
C120.027 (2)0.014 (2)0.025 (2)0.006 (2)0.003 (2)0.0000 (19)
N60.025 (2)0.0176 (18)0.021 (2)0.0038 (15)0.0081 (19)0.0015 (15)
O70.033 (2)0.0219 (15)0.044 (2)0.0056 (14)0.0041 (18)0.0094 (14)
N50.022 (2)0.0146 (18)0.024 (2)0.0008 (16)0.0067 (18)0.0031 (15)
C10.026 (3)0.018 (2)0.023 (2)0.0003 (19)0.015 (2)0.0038 (19)
C60.033 (3)0.025 (2)0.031 (3)0.005 (2)0.008 (2)0.009 (2)
C20.026 (3)0.014 (2)0.035 (3)0.0047 (19)0.015 (2)0.0000 (19)
O60.040 (3)0.0357 (18)0.103 (3)0.0117 (17)0.001 (2)0.007 (2)
N30.027 (2)0.0143 (18)0.023 (2)0.0029 (15)0.0084 (19)0.0000 (15)
N40.023 (2)0.0155 (18)0.025 (2)0.0021 (15)0.0057 (18)0.0009 (15)
C30.023 (2)0.013 (2)0.026 (2)0.0054 (18)0.009 (2)0.0049 (19)
N20.024 (2)0.0178 (17)0.023 (2)0.0010 (15)0.0057 (18)0.0017 (15)
O50.054 (3)0.0420 (18)0.038 (2)0.0196 (17)0.000 (2)0.0032 (16)
C40.036 (3)0.018 (2)0.033 (3)0.001 (2)0.013 (3)0.006 (2)
Cl10.0376 (7)0.0316 (6)0.0395 (7)0.0007 (5)0.0227 (7)0.0026 (5)
O30.061 (3)0.055 (2)0.062 (2)0.027 (2)0.031 (2)0.026 (2)
C130.018 (2)0.030 (2)0.037 (3)0.000 (2)0.007 (2)0.004 (2)
N10.023 (2)0.0238 (18)0.031 (2)0.0019 (16)0.006 (2)0.0002 (16)
C80.030 (3)0.022 (2)0.034 (3)0.012 (2)0.016 (3)0.008 (2)
C90.035 (3)0.016 (2)0.027 (3)0.009 (2)0.018 (3)0.0087 (19)
C50.029 (3)0.024 (2)0.038 (3)0.007 (2)0.008 (2)0.001 (2)
C150.022 (3)0.021 (2)0.026 (3)0.0026 (18)0.006 (2)0.0028 (19)
O20.057 (3)0.045 (2)0.100 (3)0.0247 (18)0.034 (3)0.003 (2)
C110.046 (3)0.023 (2)0.037 (3)0.006 (2)0.016 (3)0.007 (2)
C140.029 (3)0.040 (3)0.020 (2)0.004 (2)0.004 (2)0.003 (2)
C70.028 (3)0.026 (2)0.029 (3)0.006 (2)0.013 (2)0.006 (2)
O10.080 (3)0.075 (2)0.041 (2)0.014 (2)0.036 (2)0.0064 (19)
C100.023 (3)0.035 (3)0.046 (3)0.011 (2)0.001 (2)0.001 (2)
C160.031 (3)0.044 (3)0.057 (4)0.012 (2)0.008 (3)0.008 (3)
C170.041 (3)0.034 (3)0.037 (3)0.003 (2)0.016 (3)0.000 (2)
Geometric parameters (Å, º) top
Cu1—N21.941 (4)C4—H4B0.9600
Cu1—N41.991 (3)C4—H4C0.9600
Cu1—N62.001 (3)Cl1—O21.400 (3)
Cu1—N72.023 (4)Cl1—O11.406 (3)
Cu1—O42.373 (3)Cl1—O31.434 (3)
Cl2—O81.415 (3)C13—N11.332 (5)
Cl2—O71.423 (3)C13—C141.356 (5)
Cl2—O61.423 (4)C13—C161.499 (6)
Cl2—O51.448 (3)N1—H1A0.8600
N7—C61.440 (5)C8—C91.355 (6)
N7—C121.459 (4)C8—C71.394 (5)
N7—H7A0.9100C8—H8A0.9300
O4—Cl11.439 (3)C9—C111.488 (6)
C12—N31.432 (5)C5—H5A0.9600
C12—H12A0.9700C5—H5B0.9600
C12—H12B0.9700C5—H5C0.9600
N6—C11.352 (4)C15—C141.367 (6)
N6—N51.371 (5)C15—C171.497 (5)
N5—C31.344 (4)C11—H11A0.9600
N5—C61.451 (4)C11—H11B0.9600
C1—C21.390 (6)C11—H11C0.9600
C1—C41.473 (6)C14—H14A0.9300
C6—H6A0.9700C7—C101.487 (6)
C6—H6B0.9700C10—H10A0.9600
C2—C31.368 (5)C10—H10B0.9600
C2—H2A0.9300C10—H10C0.9600
N3—C91.355 (4)C16—H16A0.9600
N3—N41.359 (5)C16—H16B0.9600
N4—C71.337 (5)C16—H16C0.9600
C3—C51.483 (6)C17—H17A0.9600
N2—C151.335 (5)C17—H17B0.9600
N2—N11.365 (4)C17—H17C0.9600
C4—H4A0.9600
N2—Cu1—N498.76 (14)H4A—C4—H4B109.5
N2—Cu1—N697.31 (14)C1—C4—H4C109.5
N4—Cu1—N6160.43 (14)H4A—C4—H4C109.5
N2—Cu1—N7178.50 (14)H4B—C4—H4C109.5
N4—Cu1—N781.93 (14)O2—Cl1—O1111.0 (2)
N6—Cu1—N781.75 (14)O2—Cl1—O3110.7 (3)
N2—Cu1—O495.03 (13)O1—Cl1—O3109.6 (2)
N4—Cu1—O492.21 (11)O2—Cl1—O4108.71 (19)
N6—Cu1—O497.44 (11)O1—Cl1—O4109.6 (2)
N7—Cu1—O486.27 (13)O3—Cl1—O4107.14 (19)
O8—Cl2—O7109.48 (19)N1—C13—C14106.6 (4)
O8—Cl2—O6110.7 (3)N1—C13—C16120.8 (4)
O7—Cl2—O6109.45 (19)C14—C13—C16132.5 (5)
O8—Cl2—O5109.4 (2)C13—N1—N2111.1 (3)
O7—Cl2—O5108.74 (19)C13—N1—H1A124.4
O6—Cl2—O5109.1 (2)N2—N1—H1A124.4
C6—N7—C12114.7 (3)C9—C8—C7108.0 (4)
C6—N7—Cu1110.7 (2)C9—C8—H8A126.0
C12—N7—Cu1110.4 (3)C7—C8—H8A126.0
C6—N7—H7A106.9N3—C9—C8105.8 (4)
C12—N7—H7A106.9N3—C9—C11121.5 (4)
Cu1—N7—H7A106.9C8—C9—C11132.7 (4)
Cl1—O4—Cu1141.7 (2)C3—C5—H5A109.5
N3—C12—N7107.1 (3)C3—C5—H5B109.5
N3—C12—H12A110.3H5A—C5—H5B109.5
N7—C12—H12A110.3C3—C5—H5C109.5
N3—C12—H12B110.3H5A—C5—H5C109.5
N7—C12—H12B110.3H5B—C5—H5C109.5
H12A—C12—H12B108.5N2—C15—C14110.0 (4)
C1—N6—N5105.3 (3)N2—C15—C17119.4 (4)
C1—N6—Cu1142.5 (3)C14—C15—C17130.6 (4)
N5—N6—Cu1111.2 (2)C9—C11—H11A109.5
C3—N5—N6112.5 (3)C9—C11—H11B109.5
C3—N5—C6128.9 (4)H11A—C11—H11B109.5
N6—N5—C6117.3 (3)C9—C11—H11C109.5
N6—C1—C2108.3 (4)H11A—C11—H11C109.5
N6—C1—C4123.2 (4)H11B—C11—H11C109.5
C2—C1—C4128.4 (4)C13—C14—C15107.2 (4)
N7—C6—N5106.9 (3)C13—C14—H14A126.4
N7—C6—H6A110.3C15—C14—H14A126.4
N5—C6—H6A110.3N4—C7—C8108.8 (4)
N7—C6—H6B110.3N4—C7—C10123.0 (4)
N5—C6—H6B110.3C8—C7—C10128.3 (4)
H6A—C6—H6B108.6C7—C10—H10A109.5
C3—C2—C1108.8 (3)C7—C10—H10B109.5
C3—C2—H2A125.6H10A—C10—H10B109.5
C1—C2—H2A125.6C7—C10—H10C109.5
C9—N3—N4111.5 (4)H10A—C10—H10C109.5
C9—N3—C12129.9 (4)H10B—C10—H10C109.5
N4—N3—C12118.5 (3)C13—C16—H16A109.5
C7—N4—N3106.0 (3)C13—C16—H16B109.5
C7—N4—Cu1139.7 (3)H16A—C16—H16B109.5
N3—N4—Cu1111.5 (3)C13—C16—H16C109.5
N5—C3—C2105.0 (4)H16A—C16—H16C109.5
N5—C3—C5122.3 (3)H16B—C16—H16C109.5
C2—C3—C5132.7 (4)C15—C17—H17A109.5
C15—N2—N1105.0 (3)C15—C17—H17B109.5
C15—N2—Cu1129.5 (3)H17A—C17—H17B109.5
N1—N2—Cu1124.7 (3)C15—C17—H17C109.5
C1—C4—H4A109.5H17A—C17—H17C109.5
C1—C4—H4B109.5H17B—C17—H17C109.5
N2—Cu1—N7—C630 (5)N2—Cu1—N4—N3177.1 (2)
N4—Cu1—N7—C6148.0 (3)N6—Cu1—N4—N332.2 (5)
N6—Cu1—N7—C621.2 (3)N7—Cu1—N4—N31.6 (2)
O4—Cu1—N7—C6119.2 (3)O4—Cu1—N4—N387.5 (2)
N2—Cu1—N7—C1298 (5)N6—N5—C3—C21.2 (4)
N4—Cu1—N7—C1219.9 (2)C6—N5—C3—C2167.4 (3)
N6—Cu1—N7—C12149.3 (3)N6—N5—C3—C5178.5 (3)
O4—Cu1—N7—C12112.6 (2)C6—N5—C3—C512.3 (6)
N2—Cu1—O4—Cl143.6 (3)C1—C2—C3—N50.8 (4)
N4—Cu1—O4—Cl155.4 (3)C1—C2—C3—C5178.8 (4)
N6—Cu1—O4—Cl1141.7 (3)N4—Cu1—N2—C1583.4 (3)
N7—Cu1—O4—Cl1137.1 (3)N6—Cu1—N2—C1585.4 (3)
C6—N7—C12—N3158.8 (3)N7—Cu1—N2—C1534 (5)
Cu1—N7—C12—N332.9 (4)O4—Cu1—N2—C15176.4 (3)
N2—Cu1—N6—C116.4 (4)N4—Cu1—N2—N1107.6 (3)
N4—Cu1—N6—C1161.4 (4)N6—Cu1—N2—N183.6 (3)
N7—Cu1—N6—C1164.8 (4)N7—Cu1—N2—N1135 (5)
O4—Cu1—N6—C179.7 (4)O4—Cu1—N2—N114.6 (3)
N2—Cu1—N6—N5177.6 (2)Cu1—O4—Cl1—O247.6 (4)
N4—Cu1—N6—N532.6 (5)Cu1—O4—Cl1—O1169.1 (3)
N7—Cu1—N6—N51.3 (2)Cu1—O4—Cl1—O372.1 (3)
O4—Cu1—N6—N586.4 (2)C14—C13—N1—N20.5 (5)
C1—N6—N5—C31.2 (4)C16—C13—N1—N2178.0 (3)
Cu1—N6—N5—C3172.4 (2)C15—N2—N1—C130.0 (4)
C1—N6—N5—C6169.0 (3)Cu1—N2—N1—C13171.2 (3)
Cu1—N6—N5—C619.7 (4)N4—N3—C9—C80.1 (4)
N5—N6—C1—C20.6 (4)C12—N3—C9—C8175.8 (4)
Cu1—N6—C1—C2167.1 (3)N4—N3—C9—C11179.3 (3)
N5—N6—C1—C4178.7 (3)C12—N3—C9—C113.6 (6)
Cu1—N6—C1—C412.1 (6)C7—C8—C9—N30.2 (4)
C12—N7—C6—N5160.9 (3)C7—C8—C9—C11179.5 (4)
Cu1—N7—C6—N535.2 (4)N1—N2—C15—C140.5 (4)
C3—N5—C6—N7157.7 (4)Cu1—N2—C15—C14170.1 (3)
N6—N5—C6—N736.7 (4)N1—N2—C15—C17179.7 (3)
N6—C1—C2—C30.2 (4)Cu1—N2—C15—C179.1 (5)
C4—C1—C2—C3179.3 (4)N1—C13—C14—C150.8 (5)
N7—C12—N3—C9150.0 (3)C16—C13—C14—C15177.9 (4)
N7—C12—N3—N434.5 (4)N2—C15—C14—C130.8 (5)
C9—N3—N4—C70.4 (4)C17—C15—C14—C13179.9 (4)
C12—N3—N4—C7176.6 (3)N3—N4—C7—C80.5 (4)
C9—N3—N4—Cu1165.2 (2)Cu1—N4—C7—C8158.4 (3)
C12—N3—N4—Cu118.5 (4)N3—N4—C7—C10179.0 (3)
N2—Cu1—N4—C725.8 (4)Cu1—N4—C7—C1021.1 (7)
N6—Cu1—N4—C7170.6 (4)C9—C8—C7—N40.5 (4)
N7—Cu1—N4—C7155.6 (4)C9—C8—C7—C10179.0 (4)
O4—Cu1—N4—C769.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.862.052.876 (5)161
N1—H1A···Cl10.862.843.541 (4)139
N7—H7A···O5i0.912.213.029 (5)149
N7—H7A···Cl2i0.912.973.688 (4)137
C8—H8A···O3ii0.932.533.350 (5)148
C12—H12B···O7i0.972.453.198 (5)133
C16—H16C···O1iii0.962.623.438 (6)144
C4—H4B···O5iv0.962.653.585 (5)165
C12—H12A···O6v0.972.583.180 (5)120
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y1, z; (iii) x, y+2, z1/2; (iv) x, y+1, z; (v) x+1, y, z+3/2.
(II) {bis[(3,5-dimethyl-1H-pyrazol-1-yl-κN2)methyl]amine}bis(3,5- dimethyl-1H-pyrazole-κN2)copper(II) bis(hexafluoridophosphate) top
Crystal data top
[Cu(C5H8N2)2(C12H19N5)](PF6)2F(000) = 3176
Mr = 779.07Dx = 1.575 Mg m3
Dm = 1.575 Mg m3
Dm measured by not measured
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 44134 reflections
a = 16.498 (3) Åθ = 6.0–55.0°
b = 16.912 (3) ŵ = 0.86 mm1
c = 23.552 (5) ÅT = 293 K
V = 6571 (2) Å3Block, blue
Z = 80.35 × 0.20 × 0.20 mm
Data collection top
Oxford Gemini S Ultra
diffractometer
6441 independent reflections
Radiation source: fine-focus sealed tube5187 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 0 pixels mm-1θmax = 26.0°, θmin = 3.0°
ω scansh = 1920
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 2020
Tmin = 0.753, Tmax = 0.847l = 2929
54743 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1026P)2 + 3.353P]
where P = (Fo2 + 2Fc2)/3
6441 reflections(Δ/σ)max = 0.038
443 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu(C5H8N2)2(C12H19N5)](PF6)2V = 6571 (2) Å3
Mr = 779.07Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.498 (3) ŵ = 0.86 mm1
b = 16.912 (3) ÅT = 293 K
c = 23.552 (5) Å0.35 × 0.20 × 0.20 mm
Data collection top
Oxford Gemini S Ultra
diffractometer
6441 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
5187 reflections with I > 2σ(I)
Tmin = 0.753, Tmax = 0.847Rint = 0.033
54743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.10Δρmax = 0.68 e Å3
6441 reflectionsΔρmin = 0.47 e Å3
443 parameters
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.4 (release 27-04-2006 CrysAlis171 .NET) (compiled Apr 27 2007,17:53:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.88192 (2)0.23401 (2)0.373961 (14)0.04191 (15)
N60.85786 (16)0.29499 (16)0.44978 (11)0.0476 (6)
N40.87871 (15)0.32368 (17)0.31952 (11)0.0489 (6)
N90.90837 (15)0.14711 (15)0.43292 (10)0.0459 (6)
H9D0.89410.09920.41850.055*
N80.98932 (15)0.19338 (15)0.34320 (10)0.0467 (6)
N50.86289 (16)0.24591 (16)0.49586 (11)0.0495 (6)
N71.03085 (15)0.15281 (16)0.38407 (11)0.0476 (6)
N10.70384 (15)0.19856 (16)0.39186 (12)0.0511 (6)
H1A0.70230.23660.41610.061*
N30.94704 (17)0.36853 (15)0.31760 (11)0.0522 (6)
H3A0.98700.36370.34080.063*
C150.8624 (3)0.2483 (3)0.60248 (18)0.0799 (12)
H15A0.91030.21650.60590.120*
H15B0.81530.21550.60680.120*
H15C0.86250.28830.63140.120*
C220.99674 (19)0.1496 (2)0.44028 (13)0.0524 (7)
H22A1.01240.19580.46200.063*
H22B1.01550.10270.46010.063*
N20.76912 (15)0.18173 (16)0.35929 (11)0.0488 (6)
C160.8627 (2)0.1612 (2)0.48559 (14)0.0530 (7)
H16A0.80760.14210.48170.064*
H16B0.88810.13360.51710.064*
C191.1011 (2)0.1240 (2)0.36347 (17)0.0581 (8)
C10.6418 (2)0.1490 (2)0.38208 (14)0.0524 (8)
C110.8548 (2)0.3682 (2)0.47113 (15)0.0540 (8)
C130.8607 (2)0.2870 (2)0.54487 (14)0.0583 (9)
C30.74810 (18)0.11922 (18)0.32819 (13)0.0478 (7)
C70.8724 (2)0.4105 (2)0.24882 (16)0.0670 (10)
H7A0.85300.43860.21770.080*
C80.8325 (2)0.3500 (2)0.27674 (14)0.0583 (8)
C120.8559 (2)0.3648 (2)0.53003 (16)0.0622 (9)
H12A0.85370.40770.55470.075*
C171.0346 (2)0.18763 (19)0.29597 (14)0.0527 (7)
C50.8050 (2)0.0839 (2)0.28605 (16)0.0656 (9)
H5A0.85970.09700.29620.098*
H5B0.79320.10450.24900.098*
H5C0.79860.02750.28580.098*
C181.1042 (2)0.1452 (2)0.30798 (16)0.0604 (9)
H18A1.14560.13340.28260.072*
C60.9446 (2)0.4214 (2)0.27495 (15)0.0618 (9)
C211.1582 (3)0.0778 (3)0.4006 (2)0.0874 (14)
H21A1.17420.10970.43240.131*
H21B1.20540.06330.37910.131*
H21C1.13160.03090.41400.131*
C20.6687 (2)0.0973 (2)0.34124 (15)0.0568 (8)
H2A0.63960.05570.32540.068*
C201.0075 (3)0.2218 (3)0.24066 (16)0.0751 (11)
H20A0.95070.23380.24260.113*
H20B1.01690.18420.21080.113*
H20C1.03740.26930.23300.113*
C140.8513 (3)0.4389 (2)0.43388 (18)0.0743 (11)
H14A0.82440.42550.39900.112*
H14B0.90540.45660.42580.112*
H14C0.82190.48020.45270.112*
C100.7511 (3)0.3158 (3)0.26306 (18)0.0808 (12)
H10A0.72300.30370.29770.121*
H10B0.75800.26840.24120.121*
H10C0.72030.35340.24150.121*
C91.0134 (3)0.4769 (3)0.2644 (2)0.0880 (13)
H9A1.02390.50720.29810.132*
H9B0.99970.51200.23380.132*
H9C1.06100.44730.25440.132*
C40.5633 (2)0.1552 (3)0.41285 (19)0.0799 (12)
H4A0.57200.14540.45250.120*
H4B0.52600.11680.39800.120*
H4C0.54130.20720.40780.120*
P11.08942 (7)0.08319 (6)0.59198 (4)0.0667 (3)
P21.14233 (7)0.37825 (8)0.41456 (5)0.0768 (3)
F31.0535 (4)0.0110 (2)0.62689 (14)0.162 (2)
F21.1299 (4)0.1486 (2)0.55730 (19)0.176 (2)
F81.05370 (19)0.3484 (3)0.42685 (18)0.1534 (16)
F71.1264 (3)0.3459 (3)0.3534 (2)0.180 (2)
F11.1060 (4)0.0299 (2)0.54009 (17)0.188 (2)
F41.0723 (4)0.1354 (2)0.64386 (18)0.176 (2)
F121.1095 (3)0.4598 (3)0.3918 (3)0.190 (2)
F111.2292 (2)0.4033 (3)0.3976 (3)0.189 (2)
F101.1722 (3)0.3000 (3)0.4390 (3)0.201 (3)
F91.1543 (5)0.4167 (3)0.4718 (2)0.228 (3)
F61.1723 (4)0.0916 (10)0.6228 (4)0.163 (6)0.551 (16)
F6A1.1565 (6)0.0239 (7)0.6078 (5)0.138 (5)0.449 (16)
F51.0091 (7)0.0715 (13)0.5612 (5)0.124 (6)0.48 (3)
F5A1.0201 (10)0.1329 (14)0.5707 (4)0.166 (8)0.52 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0408 (2)0.0434 (2)0.0416 (2)0.00138 (14)0.00008 (13)0.00370 (14)
N60.0531 (14)0.0469 (14)0.0430 (13)0.0015 (11)0.0023 (11)0.0018 (11)
N40.0513 (14)0.0501 (15)0.0454 (14)0.0052 (11)0.0006 (10)0.0051 (11)
N90.0502 (13)0.0418 (13)0.0456 (13)0.0004 (11)0.0012 (10)0.0033 (10)
N80.0489 (13)0.0472 (14)0.0440 (13)0.0067 (11)0.0032 (10)0.0027 (11)
N50.0508 (14)0.0561 (15)0.0415 (14)0.0025 (12)0.0040 (11)0.0001 (11)
N70.0424 (13)0.0491 (14)0.0513 (14)0.0056 (11)0.0006 (10)0.0006 (11)
N10.0452 (14)0.0535 (15)0.0545 (14)0.0014 (11)0.0004 (11)0.0070 (12)
N30.0560 (15)0.0460 (14)0.0545 (15)0.0016 (12)0.0051 (12)0.0074 (12)
C150.078 (3)0.114 (4)0.047 (2)0.017 (2)0.0022 (19)0.002 (2)
C220.0528 (17)0.0585 (19)0.0460 (17)0.0063 (14)0.0050 (13)0.0045 (14)
N20.0425 (13)0.0506 (15)0.0533 (14)0.0006 (11)0.0016 (11)0.0067 (12)
C160.0561 (18)0.0540 (18)0.0489 (17)0.0042 (15)0.0060 (14)0.0089 (14)
C190.0437 (16)0.060 (2)0.071 (2)0.0079 (15)0.0026 (15)0.0064 (17)
C10.0451 (16)0.0572 (19)0.0549 (18)0.0018 (14)0.0044 (13)0.0111 (15)
C110.0501 (16)0.0529 (18)0.0590 (19)0.0003 (14)0.0056 (14)0.0098 (15)
C130.0469 (16)0.085 (3)0.0432 (17)0.0091 (17)0.0047 (13)0.0099 (16)
C30.0514 (17)0.0420 (15)0.0501 (16)0.0052 (13)0.0114 (13)0.0008 (13)
C70.090 (3)0.059 (2)0.052 (2)0.0182 (19)0.0010 (18)0.0143 (17)
C80.069 (2)0.059 (2)0.0469 (17)0.0191 (17)0.0028 (15)0.0034 (15)
C120.0565 (19)0.071 (2)0.059 (2)0.0046 (17)0.0052 (15)0.0212 (18)
C170.0564 (18)0.0504 (18)0.0514 (17)0.0026 (14)0.0111 (14)0.0043 (14)
C50.064 (2)0.070 (2)0.063 (2)0.0115 (18)0.0060 (16)0.0145 (18)
C180.0527 (18)0.064 (2)0.065 (2)0.0037 (16)0.0129 (15)0.0088 (17)
C60.079 (2)0.0486 (18)0.0581 (19)0.0108 (17)0.0167 (17)0.0096 (15)
C210.060 (2)0.113 (4)0.089 (3)0.035 (2)0.010 (2)0.002 (3)
C20.0573 (18)0.0487 (18)0.064 (2)0.0088 (15)0.0119 (16)0.0020 (15)
C200.094 (3)0.082 (3)0.049 (2)0.021 (2)0.0168 (19)0.0053 (18)
C140.094 (3)0.0442 (19)0.084 (3)0.0069 (19)0.004 (2)0.0092 (18)
C100.075 (3)0.092 (3)0.075 (3)0.006 (2)0.026 (2)0.016 (2)
C90.100 (3)0.069 (3)0.096 (3)0.009 (2)0.021 (2)0.027 (2)
C40.054 (2)0.102 (3)0.084 (3)0.001 (2)0.0115 (19)0.016 (2)
P10.0848 (7)0.0531 (5)0.0622 (6)0.0020 (5)0.0180 (5)0.0011 (4)
P20.0635 (6)0.0837 (8)0.0832 (8)0.0021 (5)0.0095 (5)0.0219 (6)
F30.284 (6)0.101 (3)0.100 (3)0.052 (3)0.040 (3)0.0060 (18)
F20.295 (6)0.100 (3)0.133 (3)0.091 (3)0.044 (3)0.007 (2)
F80.0728 (19)0.224 (4)0.163 (3)0.007 (2)0.010 (2)0.015 (3)
F70.203 (5)0.199 (5)0.138 (3)0.050 (4)0.046 (3)0.090 (4)
F10.368 (7)0.084 (2)0.113 (3)0.019 (3)0.081 (4)0.023 (2)
F40.323 (7)0.106 (3)0.100 (2)0.024 (4)0.041 (4)0.035 (2)
F120.225 (6)0.115 (3)0.230 (5)0.051 (3)0.073 (4)0.027 (4)
F110.103 (3)0.169 (4)0.295 (6)0.051 (3)0.013 (3)0.039 (4)
F100.108 (3)0.128 (3)0.368 (8)0.002 (2)0.031 (4)0.089 (4)
F90.364 (8)0.191 (5)0.128 (3)0.048 (5)0.037 (4)0.071 (4)
F60.096 (5)0.222 (15)0.172 (8)0.023 (6)0.049 (4)0.048 (7)
F6A0.134 (8)0.103 (8)0.176 (10)0.021 (6)0.052 (7)0.048 (7)
F50.114 (6)0.164 (13)0.094 (6)0.029 (6)0.053 (5)0.014 (6)
F5A0.130 (9)0.212 (17)0.155 (7)0.103 (11)0.059 (6)0.048 (8)
Geometric parameters (Å, º) top
Cu1—N41.987 (3)C8—C101.497 (5)
Cu1—N82.034 (2)C12—H12A0.9300
Cu1—N92.068 (2)C17—C181.383 (5)
Cu1—N22.089 (3)C17—C201.494 (5)
Cu1—N62.100 (3)C5—H5A0.9600
N6—C111.337 (4)C5—H5B0.9600
N6—N51.369 (4)C5—H5C0.9600
N4—C81.340 (4)C18—H18A0.9300
N4—N31.360 (4)C6—C91.494 (6)
N9—C221.469 (4)C21—H21A0.9600
N9—C161.471 (4)C21—H21B0.9600
N9—H9D0.9100C21—H21C0.9600
N8—C171.344 (4)C2—H2A0.9300
N8—N71.366 (3)C20—H20A0.9600
N5—C131.348 (4)C20—H20B0.9600
N5—C161.453 (4)C20—H20C0.9600
N7—C191.347 (4)C14—H14A0.9600
N7—C221.440 (4)C14—H14B0.9600
N1—C11.343 (4)C14—H14C0.9600
N1—N21.352 (4)C10—H10A0.9600
N1—H1A0.8600C10—H10B0.9600
N3—C61.345 (4)C10—H10C0.9600
N3—H3A0.8600C9—H9A0.9600
C15—C131.507 (5)C9—H9B0.9600
C15—H15A0.9600C9—H9C0.9600
C15—H15B0.9600C4—H4A0.9600
C15—H15C0.9600C4—H4B0.9600
C22—H22A0.9700C4—H4C0.9600
C22—H22B0.9700P1—F5A1.506 (7)
N2—C31.332 (4)P1—F51.522 (7)
C16—H16A0.9700P1—F21.529 (4)
C16—H16B0.9700P1—F41.534 (4)
C19—C181.356 (5)P1—F6A1.540 (7)
C19—C211.505 (5)P1—F11.543 (4)
C1—C21.374 (5)P1—F61.555 (6)
C1—C41.487 (5)P1—F31.586 (4)
C11—C121.388 (5)P2—F91.510 (4)
C11—C141.484 (5)P2—F101.524 (4)
C13—C121.364 (5)P2—F111.546 (4)
C3—C21.396 (5)P2—F71.563 (5)
C3—C51.490 (5)P2—F81.574 (4)
C7—C61.354 (5)P2—F121.576 (5)
C7—C81.382 (5)F3—F6A1.772 (12)
C7—H7A0.9300
N4—Cu1—N892.93 (10)C19—C18—C17107.6 (3)
N4—Cu1—N9168.90 (10)C19—C18—H18A126.2
N8—Cu1—N979.36 (10)C17—C18—H18A126.2
N4—Cu1—N2101.10 (11)N3—C6—C7106.0 (3)
N8—Cu1—N2125.04 (11)N3—C6—C9121.3 (4)
N9—Cu1—N289.90 (10)C7—C6—C9132.7 (4)
N4—Cu1—N699.73 (11)C19—C21—H21A109.5
N8—Cu1—N6129.31 (10)C19—C21—H21B109.5
N9—Cu1—N679.51 (10)H21A—C21—H21B109.5
N2—Cu1—N6100.37 (10)C19—C21—H21C109.5
C11—N6—N5105.4 (3)H21A—C21—H21C109.5
C11—N6—Cu1141.4 (2)H21B—C21—H21C109.5
N5—N6—Cu1111.40 (19)C1—C2—C3106.8 (3)
C8—N4—N3105.1 (3)C1—C2—H2A126.6
C8—N4—Cu1139.0 (3)C3—C2—H2A126.6
N3—N4—Cu1115.16 (19)C17—C20—H20A109.5
C22—N9—C16113.8 (2)C17—C20—H20B109.5
C22—N9—Cu1105.58 (18)H20A—C20—H20B109.5
C16—N9—Cu1110.08 (19)C17—C20—H20C109.5
C22—N9—H9D109.1H20A—C20—H20C109.5
C16—N9—H9D109.1H20B—C20—H20C109.5
Cu1—N9—H9D109.1C11—C14—H14A109.5
C17—N8—N7105.6 (2)C11—C14—H14B109.5
C17—N8—Cu1143.5 (2)H14A—C14—H14B109.5
N7—N8—Cu1110.83 (18)C11—C14—H14C109.5
C13—N5—N6111.4 (3)H14A—C14—H14C109.5
C13—N5—C16130.6 (3)H14B—C14—H14C109.5
N6—N5—C16117.8 (2)C8—C10—H10A109.5
C19—N7—N8111.0 (3)C8—C10—H10B109.5
C19—N7—C22130.8 (3)H10A—C10—H10B109.5
N8—N7—C22118.1 (2)C8—C10—H10C109.5
C1—N1—N2112.3 (3)H10A—C10—H10C109.5
C1—N1—H1A123.9H10B—C10—H10C109.5
N2—N1—H1A123.9C6—C9—H9A109.5
C6—N3—N4111.8 (3)C6—C9—H9B109.5
C6—N3—H3A124.1H9A—C9—H9B109.5
N4—N3—H3A124.1C6—C9—H9C109.5
C13—C15—H15A109.5H9A—C9—H9C109.5
C13—C15—H15B109.5H9B—C9—H9C109.5
H15A—C15—H15B109.5C1—C4—H4A109.5
C13—C15—H15C109.5C1—C4—H4B109.5
H15A—C15—H15C109.5H4A—C4—H4B109.5
H15B—C15—H15C109.5C1—C4—H4C109.5
N7—C22—N9106.3 (2)H4A—C4—H4C109.5
N7—C22—H22A110.5H4B—C4—H4C109.5
N9—C22—H22A110.5F5A—P1—F541.7 (5)
N7—C22—H22B110.5F5A—P1—F275.5 (10)
N9—C22—H22B110.5F5—P1—F2102.7 (5)
H22A—C22—H22B108.7F5A—P1—F478.7 (6)
C3—N2—N1105.8 (3)F5—P1—F4107.1 (9)
C3—N2—Cu1131.2 (2)F2—P1—F495.1 (2)
N1—N2—Cu1121.8 (2)F5A—P1—F6A172.2 (10)
N5—C16—N9107.4 (2)F5—P1—F6A131.0 (10)
N5—C16—H16A110.2F2—P1—F6A106.7 (5)
N9—C16—H16A110.2F4—P1—F6A108.3 (6)
N5—C16—H16B110.2F5A—P1—F1101.4 (6)
N9—C16—H16B110.2F5—P1—F172.6 (9)
H16A—C16—H16B108.5F2—P1—F185.6 (2)
N7—C19—C18106.5 (3)F4—P1—F1179.3 (3)
N7—C19—C21121.2 (4)F6A—P1—F171.6 (6)
C18—C19—C21132.3 (4)F5A—P1—F6140.5 (12)
N1—C1—C2105.7 (3)F5—P1—F6177.7 (11)
N1—C1—C4122.5 (3)F2—P1—F678.4 (6)
C2—C1—C4131.8 (4)F4—P1—F674.7 (5)
N6—C11—C12109.7 (3)F6A—P1—F646.7 (5)
N6—C11—C14121.7 (3)F1—P1—F6105.5 (5)
C12—C11—C14128.6 (3)F5A—P1—F3108.6 (10)
N5—C13—C12106.2 (3)F5—P1—F379.7 (5)
N5—C13—C15123.1 (4)F2—P1—F3175.5 (3)
C12—C13—C15130.6 (4)F4—P1—F387.8 (2)
N2—C3—C2109.5 (3)F6A—P1—F369.0 (5)
N2—C3—C5121.3 (3)F1—P1—F391.6 (2)
C2—C3—C5129.1 (3)F6—P1—F399.0 (6)
C6—C7—C8107.7 (3)F9—P2—F1089.7 (4)
C6—C7—H7A126.2F9—P2—F1189.6 (4)
C8—C7—H7A126.2F10—P2—F1192.1 (3)
N4—C8—C7109.5 (3)F9—P2—F7174.7 (4)
N4—C8—C10122.9 (3)F10—P2—F795.6 (4)
C7—C8—C10127.6 (3)F11—P2—F790.8 (3)
C13—C12—C11107.2 (3)F9—P2—F895.5 (3)
C13—C12—H12A126.4F10—P2—F887.3 (2)
C11—C12—H12A126.4F11—P2—F8175.0 (3)
N8—C17—C18109.2 (3)F7—P2—F884.3 (2)
N8—C17—C20121.8 (3)F9—P2—F1288.4 (3)
C18—C17—C20128.9 (3)F10—P2—F12177.6 (4)
C3—C5—H5A109.5F11—P2—F1289.5 (3)
C3—C5—H5B109.5F7—P2—F1286.3 (3)
H5A—C5—H5B109.5F8—P2—F1291.4 (3)
C3—C5—H5C109.5P1—F3—F6A54.2 (3)
H5A—C5—H5C109.5P1—F6A—F356.7 (4)
H5B—C5—H5C109.5
N4—Cu1—N6—C1113.8 (4)C22—N9—C16—N578.8 (3)
N8—Cu1—N6—C1188.2 (4)Cu1—N9—C16—N539.5 (3)
N9—Cu1—N6—C11154.9 (4)N8—N7—C19—C181.1 (4)
N2—Cu1—N6—C11117.1 (4)C22—N7—C19—C18178.6 (3)
N4—Cu1—N6—N5175.32 (19)N8—N7—C19—C21179.3 (3)
N8—Cu1—N6—N573.3 (2)C22—N7—C19—C211.7 (6)
N9—Cu1—N6—N56.57 (19)N2—N1—C1—C20.3 (4)
N2—Cu1—N6—N581.4 (2)N2—N1—C1—C4179.7 (3)
N8—Cu1—N4—C8117.4 (3)N5—N6—C11—C121.5 (4)
N9—Cu1—N4—C8163.0 (5)Cu1—N6—C11—C12163.6 (3)
N2—Cu1—N4—C89.2 (4)N5—N6—C11—C14178.3 (3)
N6—Cu1—N4—C8111.9 (3)Cu1—N6—C11—C1416.1 (6)
N8—Cu1—N4—N351.1 (2)N6—N5—C13—C121.2 (4)
N9—Cu1—N4—N35.5 (7)C16—N5—C13—C12175.5 (3)
N2—Cu1—N4—N3177.7 (2)N6—N5—C13—C15177.9 (3)
N6—Cu1—N4—N379.6 (2)C16—N5—C13—C153.6 (5)
N4—Cu1—N9—C2210.3 (6)N1—N2—C3—C20.5 (3)
N8—Cu1—N9—C2236.24 (19)Cu1—N2—C3—C2167.4 (2)
N2—Cu1—N9—C22162.0 (2)N1—N2—C3—C5179.1 (3)
N6—Cu1—N9—C2297.4 (2)Cu1—N2—C3—C513.9 (5)
N4—Cu1—N9—C16112.9 (6)N3—N4—C8—C70.1 (4)
N8—Cu1—N9—C16159.5 (2)Cu1—N4—C8—C7169.1 (3)
N2—Cu1—N9—C1674.7 (2)N3—N4—C8—C10179.3 (3)
N6—Cu1—N9—C1625.9 (2)Cu1—N4—C8—C1010.1 (6)
N4—Cu1—N8—C1731.7 (4)C6—C7—C8—N40.1 (4)
N9—Cu1—N8—C17156.4 (4)C6—C7—C8—C10179.1 (4)
N2—Cu1—N8—C1774.1 (4)N5—C13—C12—C110.3 (4)
N6—Cu1—N8—C17136.8 (4)C15—C13—C12—C11178.7 (4)
N4—Cu1—N8—N7153.2 (2)N6—C11—C12—C130.8 (4)
N9—Cu1—N8—N718.74 (19)C14—C11—C12—C13178.9 (4)
N2—Cu1—N8—N7101.0 (2)N7—N8—C17—C181.2 (4)
N6—Cu1—N8—N748.1 (2)Cu1—N8—C17—C18176.4 (3)
C11—N6—N5—C131.7 (3)N7—N8—C17—C20177.2 (3)
Cu1—N6—N5—C13169.8 (2)Cu1—N8—C17—C202.0 (6)
C11—N6—N5—C16176.7 (3)N7—C19—C18—C170.3 (4)
Cu1—N6—N5—C1615.1 (3)C21—C19—C18—C17179.9 (4)
C17—N8—N7—C191.4 (4)N8—C17—C18—C190.6 (4)
Cu1—N8—N7—C19178.4 (2)C20—C17—C18—C19177.7 (4)
C17—N8—N7—C22179.3 (3)N4—N3—C6—C70.3 (4)
Cu1—N8—N7—C223.7 (3)N4—N3—C6—C9179.7 (3)
C8—N4—N3—C60.3 (3)C8—C7—C6—N30.2 (4)
Cu1—N4—N3—C6172.0 (2)C8—C7—C6—C9179.7 (4)
C19—N7—C22—N9148.2 (3)N1—C1—C2—C30.0 (4)
N8—N7—C22—N934.4 (4)C4—C1—C2—C3179.3 (4)
C16—N9—C22—N7167.3 (3)N2—C3—C2—C10.3 (4)
Cu1—N9—C22—N746.4 (3)C5—C3—C2—C1178.8 (3)
C1—N1—N2—C30.5 (4)F5A—P1—F3—F6A172.1 (9)
C1—N1—N2—Cu1169.0 (2)F5—P1—F3—F6A141.6 (11)
N4—Cu1—N2—C399.1 (3)F2—P1—F3—F6A19 (3)
N8—Cu1—N2—C32.5 (3)F4—P1—F3—F6A110.6 (7)
N9—Cu1—N2—C379.4 (3)F1—P1—F3—F6A69.6 (7)
N6—Cu1—N2—C3158.7 (3)F6—P1—F3—F6A36.4 (6)
N4—Cu1—N2—N195.7 (2)F5A—P1—F6A—F374 (7)
N8—Cu1—N2—N1162.7 (2)F5—P1—F6A—F354.1 (8)
N9—Cu1—N2—N185.8 (2)F2—P1—F6A—F3178.5 (2)
N6—Cu1—N2—N16.5 (3)F4—P1—F6A—F380.2 (4)
C13—N5—C16—N9149.6 (3)F1—P1—F6A—F399.1 (4)
N6—N5—C16—N936.5 (4)F6—P1—F6A—F3126.3 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···F80.862.323.136 (5)158
N3—H3A···F70.862.343.101 (6)148
C22—H22A···F80.972.793.506 (6)131
C9—H9A···F120.962.743.407 (7)127
N9—H9D···F3i0.912.323.088 (5)142
N9—H9D···F1i0.912.393.069 (5)131
N1—H1A···F2ii0.862.363.099 (5)144
C9—H9B···F3iii0.962.703.311 (6)122
C20—H20C···F4iii0.962.713.489 (6)139
C10—H10C···F7iv0.962.723.466 (6)135
C10—H10A···F6ii0.962.713.371 (10)127
C4—H4A···F9ii0.962.473.333 (8)149
Symmetry codes: (i) x+2, y, z+1; (ii) x1/2, y+1/2, z+1; (iii) x, y+1/2, z1/2; (iv) x1/2, y, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(ClO4)(C5H8N2)(C12H19N5)]ClO4[Cu(C5H8N2)2(C12H19N5)](PF6)2
Mr591.91779.07
Crystal system, space groupMonoclinic, C2/cOrthorhombic, Pbca
Temperature (K)293293
a, b, c (Å)37.574 (3), 8.5769 (4), 15.661 (1)16.498 (3), 16.912 (3), 23.552 (5)
α, β, γ (°)90, 105.938 (8), 9090, 90, 90
V3)4853.0 (5)6571 (2)
Z88
Radiation typeMo KαMo Kα
µ (mm1)1.180.86
Crystal size (mm)0.30 × 0.20 × 0.200.35 × 0.20 × 0.20
Data collection
DiffractometerOxford Gemini S Ultra
diffractometer
Oxford Gemini S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.719, 0.7990.753, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
11887, 4701, 2699 54743, 6441, 5187
Rint0.0600.033
(sin θ/λ)max1)0.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.088, 0.88 0.053, 0.169, 1.10
No. of reflections47016441
No. of parameters322443
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 0.500.68, 0.47

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (I) top
Cu1—N21.941 (4)Cl2—O81.415 (3)
Cu1—N41.991 (3)Cl2—O71.423 (3)
Cu1—N62.001 (3)Cl2—O61.423 (4)
Cu1—N72.023 (4)Cl2—O51.448 (3)
Cu1—O42.373 (3)
N2—Cu1—N498.76 (14)N6—Cu1—N781.75 (14)
N2—Cu1—N697.31 (14)N2—Cu1—O495.03 (13)
N4—Cu1—N6160.43 (14)N4—Cu1—O492.21 (11)
N2—Cu1—N7178.50 (14)N6—Cu1—O497.44 (11)
N4—Cu1—N781.93 (14)N7—Cu1—O486.27 (13)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.862.052.876 (5)160.5
N7—H7A···O5i0.912.213.029 (5)149.0
C8—H8A···O3ii0.932.533.350 (5)147.7
C12—H12B···O7i0.972.453.198 (5)133.3
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y1, z.
Selected geometric parameters (Å, º) for (II) top
Cu1—N41.987 (3)Cu1—N22.089 (3)
Cu1—N82.034 (2)Cu1—N62.100 (3)
Cu1—N92.068 (2)
N4—Cu1—N892.93 (10)N9—Cu1—N289.90 (10)
N4—Cu1—N9168.90 (10)N4—Cu1—N699.73 (11)
N8—Cu1—N979.36 (10)N8—Cu1—N6129.31 (10)
N4—Cu1—N2101.10 (11)N9—Cu1—N679.51 (10)
N8—Cu1—N2125.04 (11)N2—Cu1—N6100.37 (10)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···F80.862.323.136 (5)158.3
N3—H3A···F70.862.343.101 (6)147.8
N9—H9D···F3i0.912.323.088 (5)142.4
N9—H9D···F1i0.912.393.069 (5)131.3
N1—H1A···F2ii0.862.363.099 (5)143.7
C4—H4A···F9ii0.962.473.333 (8)148.8
Symmetry codes: (i) x+2, y, z+1; (ii) x1/2, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds