Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Reactions of (Et4N)[Tp*WS3] [Tp* is hydridotris(3,5-di­methyl­pyrazol-1-yl)borate] with CuSCN in MeCN in the presence of melamine afforded the title neutral dimeric cluster [Cu4W2(C15H22BN6)2(NCS)2S6(C2H3N)2] or [Tp*W([mu]2-S)2([mu]3-S)Cu([mu]2-SCN)(CuMeCN)]2, which has two butterfly-shaped [Tp*WS3Cu2] cores bridged across a centre of inversion by two (CuSCN)- anions. The S atoms of the bridging thio­cyanate ligands inter­act with the H atoms of the methyl groups of the Tp* units of a neighbouring dimer to form a C-H...S hydrogen-bonded chain. The N atoms of the thio­cyanate anions inter­act with the H atoms of the methyl groups of the Tp* units of neighbouring chains, affording a two-dimensional hydrogen-bonded network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111022347/yf3004sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111022347/yf3004Isup2.hkl
Contains datablock I

CCDC reference: 838136

Comment top

In recent years, the chemistry of the Mo/W/Cu/S clusters derived from reactions of metal sulfide synthons {e.g. [MS4]2- (M = Mo, W) (Müller et al., 1981, 1989; Howard et al., 1986; Holm et al., 1995; Ansari et al., 1990; Hou et al., 1996; Wu et al., 2004; Niu et al., 2004; Zhang, Song, Ren et al., 2007 or Zhang, Song & Wang, 2007?); [Cp*MS3]- (Cp* = pentamethylcyclopentadienyl; M = Mo, W) (Kawaguchi et al., 1995, 1997; Lang, Kawaguchi, Ohnishi et al., 1997 or Lang, Kawaguchi & Tatsumi, 1997?; Lang et al., 1998, 1999); [Tp*MS3]- [Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate; M = Mo, W] (Seino et al., 2001, 2003; Wang et al., 2007; Wei et al., 2009)} with CuX (X = Cl, Br, I, SCN, CN) has been extensively investigated because of their structural variety, their potential applications in biological systems (Chan et al., 1995; Che et al., 2001; Eldredge et al., 1990; Stiefel et al., 1993, 1996; George et al., 2000, 2003; Dobbek et al., 2002; Ginda et al., 2003) and as opto-electronic materials (Shi et al., 1994, 1998; Zheng et al., 1997; Zhang et al., 2000; Che et al., 2001; Coe et al., 2004). Currently we are interested in using (Et4N)[Tp*WS3] (Seino et al., 2001, 2003) for the construction of new W/Cu/S clusters, because this synthon can generate more soluble W/Cu/S cluster precursors and some resulting clusters were [found to be] topologically unique in the chemistry of the tetrathiometallates and showed relatively good third-order nonlinear optical performances in solution (Lang, Kawaguchi, Ohnishi et al., 1997 or Lang, Kawaguchi & Tatsumi, 1997?; Lang et al., 1999, 2003; Xu et al., 2006; Zhang, Song, Ren et al., 2007 or Zhang, Song & Wang, 2007?). In our previous studies, stepwise addition reactions between (Et4N)[Tp*WS3] and CuSCN have been completed in the systems with different molar ratios, which led to the formation of the [1 + 1], [1 + 2], [1 + 3] and [1 + 4] addition products (Wei et al., 2009). As an extension of this study, we carried out reactions of (Et4N)[Tp*WS3] with CuSCN in the presence of melamine (MA) from which a hexanuclear W/Cu/S cluster [Tp*W(µ2-S)23-S)Cu(µ2-SCN)(CuMeCN)]2, (I), was isolated. Herein we report the crystal structure of (I).

The asymmetric unit of compound (I) contains half of a [Tp*W(µ2-S)23-S)Cu(µ2-SCN)(CuMeCN)]2 molecule. It contains two [Tp*W(µ2-S)23-S)Cu(CuMeCN)]+ fragments, which are linked via a pair of NCS bridges (Fig. 1). A crystallographic center of symmetry is located at the middle of the W1—W1i bond [symmetry code: (i) -x, -y, -z]. The double butterfly-shaped hexanuclear structure of (I) is unprecedented in Mo(W)/Cu/S cluster chemistry. Each fragment may be viewed as a butterfly-shaped [Tp*WS3Cu2] core, which is similar to those found in [Tp*W(µ3-S)(µ-S)2Cu2(MeCN)(µ-CN)] (Wang et al., 2007) and (Et4N)[Tp*W(µ-S)3(CuNCS)2].ClCH2CH2Cl. The two Cu atoms in each fragment are not equivalent. Cu1 is coordinated by one N of the terminal MeCN molecule, two sulfur atoms and one N atom of the thiocyanate anion, forming a tetrahedral coordination geometry. Cu2 is coordinated by two sulfur atoms and one S atom of the thiocyanate anion, forming an approximately trigonal–planar geometry. Because of the different coordination geometries of the Cu atoms, the W···Cu separations are different. The trigonally coordinated W1···Cu2 [2.6354 (9) Å] contact (Table 1) is shorter than the corresponding ones in [Tp*W(µ3-S)(µ-S)2Cu2(MeCN)(µ-CN)] [2.6560 (9) Å] and (Et4N)[Tp*W(µ-S)3(CuNCS)2].ClCH2CH2Cl [2.6404 (11) Å] (Wei et al., 2009). The tetrahedrally coordinated W1···Cu1 [2.6737 (14) Å] contact is longer than those of the corresponding ones in [Tp*W(µ3-S)(µ-S)2Cu2(MeCN)(µ-CN)] [2.6694 (10) Å]. The Cu—S bond lengths also reflect the different coordination modes of the copper atoms [on average 2.2086 (14) Å for a trigonal geometry and on average 2.2475 (14) Å for a tetrahedral environment]. The Cu—N(NCS) bond length [1.931 (4) Å] is almost the same as those of the copper(I) complexes containing bridging thiocyanates and coordinated MeCN in [Tp*W(µ3-S)(µ-S)2Cu2(MeCN)(µ-CN)] [1.930 (7) Å]. The Cu—N(MeCN) bond length [2.213 (5) Å] is shorter than those of [Tp*W(µ3-S)(µ-S)2Cu2(MeCN)(µ-CN)] [2.425 (7) Å]. It should be noted that the Cu1—µ3-S2—Cu2 angle [78.26 (5)°] is 17.7° smaller than that of the cationic cluster [PPh4][Cp*WS3(CuCN)2] (Lang et al., 2004) and slightly smaller than that in [Tp*W(µ3-S)(µ-S)2Cu2(MeCN)(µ-CN)] [79.68 (6)°].

The S atoms of each cluster core in (I) interact with the hydrogen atoms of the methyl groups of the Tp* units to form four intramolecular C—H···S contacts (C5···S2, C5···S1, C10···S2, C15···S1) (Table 2). The S atoms of the bridged thiocyanate anion interact with the hydrogen atoms of the methyl groups of the Tp* units of the neighboring dimer to form one intermolecular hydrogen bond [C5···S4 (-1 + x, y, z)], forming a C—H···S-bonded chain. The N atoms of the thiocyanate anion interact with the hydrogen atoms of the methyl groups of the Tp* units of the neighboring chains to form one intermolecular contact [C8···N8 (2 - x, 1 - y, 1 - z)]. Together these interactions afford a two-dimensional hydrogen-bonded network extednded along the ab plane (Fig. 2).

Related literature top

For related literature, see: Ansari & Ibers (1990); Chan et al. (1995); Che et al. (2001); Coe (2004); Dobbek et al. (2002); Eldredge & Averill (1990); George et al. (2000, 2003); Ginda et al. (2003); Holm (1995); Hou et al. (1996); Howard et al. (1986); Kawaguchi & Tatsumi (1995); Kawaguchi et al. (1997); Lang & Tatsumi (1998); Lang et al. (1999, 2003, 2004); Lang, Kawaguchi & Tatsumi (1997); Lang, Kawaguchi, Ohnishi & Tatsumi (1997); Müller et al. (1981, 1989); Niu et al. (2004); Seino et al. (2001, 2003); Shi (1998); Shi et al. (1994); Stiefel & Matsumoto (1996); Stiefel et al. (1993); Wang et al. (2007); Wei et al. (2009); Wu (2004); Xu et al. (2006); Zhang et al. (2000); Zhang, Song & Wang (2007); Zhang, Song, Ren, Li, Li, Zhang & Lang (2007); Zheng et al. (1997).

Experimental top

To a red solution containing (Et4N)[Tp*WS3] (19 mg, 0.025 mmol) in MeCN (5 ml) was added CuNCS (6 mg, 0.050 mmol) and excess MA. The resulting mixture was stirred for 5 min to form a dark red solution and filtered. Diethyl ether (20 ml) was carefully layered onto the filtrate to form black block crystals, which were collected by filtration, washed with Et2O, and dried in vacuo. Yield: 15 mg (75% based on W). Analysis calculated for C36H50B2Cu4N16S8W2: C 26.91, H 3.14, N 13.95; found: C 23.78, H 3.25, N 13.82. IR (KBr disc): 2564 (w), 2122 (s), 2062 (m), 2090 (s), 1631 (w), 1546 (m), 1451 (m), 1439 (m), 1414 (m), 1347 (m), 1221 (m), 1072 (w), 1034 (w), 860 (w), 822 (w), 798 (w), 691 (w), 650 (w), 479 (w), 418 (w) cm-1. 1H NMR (400 MHz, DMSO-d6): δ 2.04 (s, 6H, CH3CN), 2.33 (s, 18H, CH3 in Tp*), 2.72 (s, 18H, CH3 in Tp*), 6.08 (s, 6H, CH in Tp*). The B—H proton was not located.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H = 0.98 Å for methyl groups; C—H = 0.99 Å for methylene groups; C—H = 0.95 Å for phenyl groups) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for phenyl groups and Uiso(H) = 1.5Ueq(C) for methyl groups.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title cluster, (I), with ellipsoids drawn at the 30% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry code: (i) -x + 1, -y, -z + 1.]
[Figure 2] Fig. 2. View of the two-dimensional network of the title clusters. Dashed lines indicate C5—H5B···S4 interactions (green in the electronic version of the paper) and C8—H8···N8 interactions (blue).
Bis(acetonitrile-κN)bis[hydridotris(3,5-dimethylpyrazol-1-yl- κN2)borato]di-µ3-sulfido-tetra-µ2-sulfido-di-µ2- thiocyanato-κ2N:S;κ2S:N- tetracopper(I)ditungsten(VI) top
Crystal data top
[Cu4W2(C15H22BN6)2(NCS)2S6(C2H3N)2]Z = 1
Mr = 1606.88F(000) = 780
Triclinic, P1Dx = 2.006 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3349 (19) ÅCell parameters from 6589 reflections
b = 9.954 (2) Åθ = 3.3–27.5°
c = 15.547 (3) ŵ = 6.24 mm1
α = 92.21 (3)°T = 223 K
β = 93.73 (3)°Block, black
γ = 112.33 (3)°0.17 × 0.15 × 0.12 mm
V = 1330.3 (5) Å3
Data collection top
Rigaku Mercury
diffractometer
5976 independent reflections
Radiation source: fine-focus sealed tube5024 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1012
Tmin = 0.417, Tmax = 0.522k = 1212
12835 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0328P)2]
where P = (Fo2 + 2Fc2)/3
5976 reflections(Δ/σ)max = 0.001
318 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 1.14 e Å3
Crystal data top
[Cu4W2(C15H22BN6)2(NCS)2S6(C2H3N)2]γ = 112.33 (3)°
Mr = 1606.88V = 1330.3 (5) Å3
Triclinic, P1Z = 1
a = 9.3349 (19) ÅMo Kα radiation
b = 9.954 (2) ŵ = 6.24 mm1
c = 15.547 (3) ÅT = 223 K
α = 92.21 (3)°0.17 × 0.15 × 0.12 mm
β = 93.73 (3)°
Data collection top
Rigaku Mercury
diffractometer
5976 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
5024 reflections with I > 2σ(I)
Tmin = 0.417, Tmax = 0.522Rint = 0.035
12835 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.96 e Å3
5976 reflectionsΔρmin = 1.14 e Å3
318 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.69500 (2)0.341798 (19)0.751384 (11)0.01945 (7)
Cu10.49365 (8)0.11341 (6)0.65306 (4)0.03033 (15)
Cu20.81606 (7)0.22955 (6)0.63367 (4)0.02770 (14)
S10.49778 (16)0.15630 (12)0.79559 (8)0.0282 (3)
S20.64272 (14)0.32686 (12)0.60211 (7)0.0233 (2)
S30.89767 (16)0.27450 (14)0.77082 (8)0.0292 (3)
S40.94078 (16)0.14121 (15)0.54485 (8)0.0338 (3)
B10.7508 (7)0.6627 (6)0.8632 (3)0.0244 (11)
H1B10.767 (6)0.773 (5)0.898 (3)0.028 (13)*
N10.5431 (5)0.4753 (4)0.7617 (2)0.0222 (8)
N20.5961 (5)0.6092 (4)0.8086 (2)0.0229 (8)
N30.8691 (5)0.5764 (4)0.7409 (2)0.0224 (8)
N40.8801 (5)0.6858 (4)0.8018 (2)0.0235 (8)
N50.7507 (5)0.4171 (4)0.8935 (2)0.0239 (9)
N60.7521 (5)0.5493 (4)0.9246 (2)0.0233 (8)
N70.5807 (6)0.0635 (5)0.6375 (3)0.0444 (12)
N80.6949 (5)0.0077 (4)0.4198 (3)0.0328 (10)
C10.5110 (8)0.8110 (6)0.8469 (4)0.0428 (14)
H1A0.53170.80740.90860.064*
H1B0.41810.83180.83630.064*
H1C0.59850.88700.82510.064*
C20.4872 (6)0.6681 (5)0.8022 (3)0.0263 (11)
C30.3635 (7)0.5735 (6)0.7505 (3)0.0327 (12)
H30.27100.58640.73420.039*
C40.3990 (6)0.4550 (5)0.7263 (3)0.0253 (10)
C50.2937 (6)0.3242 (6)0.6717 (3)0.0366 (13)
H5A0.33820.31940.61760.055*
H5B0.19320.33060.66020.055*
H5C0.28100.23740.70190.055*
C61.0411 (7)0.9492 (5)0.8421 (4)0.0426 (14)
H6A0.96350.98970.82830.064*
H6B1.14221.01710.82900.064*
H6C1.04390.93190.90300.064*
C71.0002 (6)0.8080 (5)0.7893 (3)0.0287 (11)
C81.0739 (6)0.7789 (5)0.7216 (3)0.0311 (11)
H81.16410.84350.69960.037*
C90.9890 (6)0.6355 (5)0.6924 (3)0.0261 (10)
C101.0235 (6)0.5602 (6)0.6156 (3)0.0325 (12)
H10A1.03290.47080.63230.049*
H10B1.12020.62350.59450.049*
H10C0.93970.53760.57030.049*
C110.7690 (8)0.6862 (6)1.0651 (3)0.0473 (16)
H11A0.85110.77451.05030.071*
H11B0.78530.67191.12580.071*
H11C0.66930.69451.05420.071*
C120.7709 (6)0.5599 (5)1.0117 (3)0.0303 (11)
C130.7831 (7)0.4334 (6)1.0377 (3)0.0364 (13)
H130.79830.41061.09480.044*
C140.7685 (6)0.3467 (5)0.9633 (3)0.0312 (12)
C150.7720 (8)0.1978 (6)0.9619 (3)0.0457 (16)
H15A0.69900.13630.91570.069*
H15B0.74350.15661.01680.069*
H15C0.87600.20400.95240.069*
C160.7941 (6)0.0550 (5)0.4710 (3)0.0283 (11)
C170.6692 (9)0.2715 (7)0.5941 (4)0.0512 (17)
H17A0.60180.33010.54510.077*
H17B0.66410.33230.64200.077*
H17C0.77530.22970.57830.077*
C180.6190 (7)0.1559 (6)0.6194 (3)0.0344 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.02163 (11)0.01687 (9)0.01946 (10)0.00761 (7)0.00064 (7)0.00379 (6)
Cu10.0277 (4)0.0265 (3)0.0287 (3)0.0025 (3)0.0001 (3)0.0061 (2)
Cu20.0279 (4)0.0304 (3)0.0264 (3)0.0141 (3)0.0012 (3)0.0078 (2)
S10.0312 (7)0.0202 (5)0.0288 (6)0.0045 (5)0.0079 (5)0.0014 (5)
S20.0245 (7)0.0237 (6)0.0209 (5)0.0090 (5)0.0008 (5)0.0023 (4)
S30.0311 (8)0.0351 (7)0.0258 (6)0.0189 (6)0.0027 (5)0.0042 (5)
S40.0247 (7)0.0395 (7)0.0359 (7)0.0132 (6)0.0015 (6)0.0173 (6)
B10.026 (3)0.021 (2)0.024 (3)0.008 (2)0.000 (2)0.004 (2)
N10.023 (2)0.0179 (18)0.0257 (19)0.0075 (17)0.0024 (16)0.0040 (15)
N20.025 (2)0.0158 (17)0.025 (2)0.0056 (17)0.0048 (17)0.0058 (15)
N30.023 (2)0.0164 (18)0.0259 (19)0.0061 (16)0.0005 (16)0.0012 (15)
N40.027 (2)0.0192 (18)0.0229 (19)0.0075 (17)0.0032 (17)0.0031 (15)
N50.029 (2)0.0216 (19)0.0203 (19)0.0101 (18)0.0019 (17)0.0028 (15)
N60.024 (2)0.0208 (19)0.0205 (19)0.0043 (17)0.0015 (16)0.0067 (15)
N70.058 (4)0.033 (3)0.045 (3)0.021 (3)0.011 (2)0.001 (2)
N80.033 (3)0.028 (2)0.030 (2)0.004 (2)0.002 (2)0.0079 (18)
C10.050 (4)0.031 (3)0.053 (3)0.022 (3)0.001 (3)0.012 (3)
C20.031 (3)0.025 (2)0.029 (2)0.017 (2)0.005 (2)0.0001 (19)
C30.033 (3)0.039 (3)0.033 (3)0.024 (3)0.000 (2)0.003 (2)
C40.024 (3)0.029 (2)0.026 (2)0.014 (2)0.001 (2)0.0014 (19)
C50.024 (3)0.042 (3)0.043 (3)0.015 (2)0.011 (2)0.016 (2)
C60.040 (4)0.025 (3)0.053 (3)0.002 (2)0.007 (3)0.011 (2)
C70.028 (3)0.021 (2)0.033 (3)0.005 (2)0.000 (2)0.001 (2)
C80.029 (3)0.022 (2)0.037 (3)0.003 (2)0.007 (2)0.005 (2)
C90.021 (3)0.025 (2)0.027 (2)0.004 (2)0.004 (2)0.0004 (19)
C100.028 (3)0.034 (3)0.032 (3)0.007 (2)0.008 (2)0.005 (2)
C110.070 (5)0.040 (3)0.028 (3)0.018 (3)0.005 (3)0.011 (2)
C120.033 (3)0.032 (3)0.021 (2)0.008 (2)0.002 (2)0.007 (2)
C130.047 (4)0.040 (3)0.019 (2)0.014 (3)0.001 (2)0.002 (2)
C140.036 (3)0.031 (3)0.027 (2)0.013 (2)0.004 (2)0.002 (2)
C150.074 (5)0.042 (3)0.030 (3)0.033 (3)0.007 (3)0.005 (2)
C160.028 (3)0.024 (2)0.029 (2)0.005 (2)0.008 (2)0.006 (2)
C170.069 (5)0.052 (4)0.050 (4)0.042 (4)0.010 (3)0.003 (3)
C180.044 (4)0.030 (3)0.027 (3)0.012 (3)0.005 (2)0.005 (2)
Geometric parameters (Å, º) top
W1—S12.2250 (15)C1—H1B0.9700
W1—S32.2414 (13)C1—H1C0.9700
W1—N52.268 (4)C2—C31.364 (7)
W1—N12.290 (4)C3—C41.386 (6)
W1—N32.303 (4)C3—H30.9400
W1—S22.3274 (12)C4—C51.489 (7)
W1—Cu22.6354 (9)C5—H5A0.9700
W1—Cu12.6737 (14)C5—H5B0.9700
Cu1—N8i1.931 (4)C5—H5C0.9700
Cu1—N72.213 (5)C6—C71.502 (6)
Cu1—S12.2356 (13)C6—H6A0.9700
Cu1—S22.2594 (16)C6—H6B0.9700
Cu1—Cu22.8260 (12)C6—H6C0.9700
Cu2—S32.1870 (14)C7—C81.374 (7)
Cu2—S22.2185 (14)C8—C91.384 (7)
Cu2—S42.2202 (14)C8—H80.9400
S4—C161.660 (5)C9—C101.502 (6)
B1—N61.510 (7)C10—H10A0.9700
B1—N21.520 (7)C10—H10B0.9700
B1—N41.542 (7)C10—H10C0.9700
B1—H1B11.16 (5)C11—C121.487 (7)
N1—C41.357 (6)C11—H11A0.9700
N1—N21.389 (5)C11—H11B0.9700
N2—C21.353 (6)C11—H11C0.9700
N3—C91.346 (6)C12—C131.379 (7)
N3—N41.384 (5)C13—C141.384 (7)
N4—C71.335 (6)C13—H130.9400
N5—C141.349 (6)C14—C151.494 (7)
N5—N61.379 (5)C15—H15A0.9700
N6—C121.348 (6)C15—H15B0.9700
N7—C181.139 (6)C15—H15C0.9700
N8—C161.144 (6)C17—C181.448 (7)
N8—Cu1i1.931 (4)C17—H17A0.9700
C1—C21.490 (6)C17—H17B0.9700
C1—H1A0.9700C17—H17C0.9700
S1—W1—S3103.79 (5)C14—N5—W1131.2 (3)
S1—W1—N584.93 (11)N6—N5—W1121.9 (3)
S3—W1—N584.25 (11)C12—N6—N5109.8 (4)
S1—W1—N187.06 (10)C12—N6—B1129.5 (4)
S3—W1—N1160.63 (10)N5—N6—B1120.3 (3)
N5—W1—N180.74 (13)C18—N7—Cu1171.8 (4)
S1—W1—N3159.82 (10)C16—N8—Cu1i171.1 (4)
S3—W1—N388.29 (11)C2—C1—H1A109.5
N5—W1—N380.20 (14)C2—C1—H1B109.5
N1—W1—N377.17 (14)H1A—C1—H1B109.5
S1—W1—S2104.38 (6)C2—C1—H1C109.5
S3—W1—S2104.49 (5)H1A—C1—H1C109.5
N5—W1—S2164.95 (9)H1B—C1—H1C109.5
N1—W1—S287.86 (10)N2—C2—C3107.3 (4)
N3—W1—S287.75 (10)N2—C2—C1122.3 (5)
S1—W1—Cu2106.18 (4)C3—C2—C1130.4 (5)
S3—W1—Cu252.54 (4)C2—C3—C4107.5 (4)
N5—W1—Cu2136.68 (10)C2—C3—H3126.2
N1—W1—Cu2140.13 (9)C4—C3—H3126.2
N3—W1—Cu294.00 (10)N1—C4—C3109.5 (4)
S2—W1—Cu252.66 (4)N1—C4—C5125.3 (4)
S1—W1—Cu153.35 (4)C3—C4—C5125.2 (5)
S3—W1—Cu1100.84 (4)C4—C5—H5A109.5
N5—W1—Cu1138.13 (11)C4—C5—H5B109.5
N1—W1—Cu198.51 (10)H5A—C5—H5B109.5
N3—W1—Cu1140.91 (9)C4—C5—H5C109.5
S2—W1—Cu153.17 (4)H5A—C5—H5C109.5
Cu2—W1—Cu164.32 (3)H5B—C5—H5C109.5
N8i—Cu1—N792.82 (19)C7—C6—H6A109.5
N8i—Cu1—S1123.14 (14)C7—C6—H6B109.5
N7—Cu1—S1105.52 (13)H6A—C6—H6B109.5
N8i—Cu1—S2113.49 (13)C7—C6—H6C109.5
N7—Cu1—S2115.02 (14)H6A—C6—H6C109.5
S1—Cu1—S2106.31 (6)H6B—C6—H6C109.5
N8i—Cu1—W1155.15 (13)N4—C7—C8107.8 (4)
N7—Cu1—W1111.99 (14)N4—C7—C6123.9 (5)
S1—Cu1—W152.99 (4)C8—C7—C6128.3 (5)
S2—Cu1—W155.54 (4)C7—C8—C9106.4 (5)
N8i—Cu1—Cu2136.69 (13)C7—C8—H8126.8
N7—Cu1—Cu269.48 (14)C9—C8—H8126.8
S1—Cu1—Cu299.94 (6)N3—C9—C8110.0 (4)
S2—Cu1—Cu250.23 (4)N3—C9—C10125.5 (4)
W1—Cu1—Cu257.18 (3)C8—C9—C10124.5 (5)
S3—Cu2—S2110.17 (5)C9—C10—H10A109.5
S3—Cu2—S4119.50 (6)C9—C10—H10B109.5
S2—Cu2—S4129.01 (5)H10A—C10—H10B109.5
S3—Cu2—W154.43 (4)C9—C10—H10C109.5
S2—Cu2—W156.52 (4)H10A—C10—H10C109.5
S4—Cu2—W1173.70 (4)H10B—C10—H10C109.5
S3—Cu2—Cu197.71 (5)C12—C11—H11A109.5
S2—Cu2—Cu151.51 (4)C12—C11—H11B109.5
S4—Cu2—Cu1126.62 (5)H11A—C11—H11B109.5
W1—Cu2—Cu158.50 (3)C12—C11—H11C109.5
W1—S1—Cu173.66 (5)H11A—C11—H11C109.5
Cu2—S2—Cu178.26 (5)H11B—C11—H11C109.5
Cu2—S2—W170.82 (4)N6—C12—C13107.7 (4)
Cu1—S2—W171.29 (5)N6—C12—C11123.1 (5)
Cu2—S3—W173.03 (5)C13—C12—C11129.2 (4)
C16—S4—Cu298.52 (17)C12—C13—C14106.6 (4)
N6—B1—N2109.6 (4)C12—C13—H13126.7
N6—B1—N4109.2 (4)C14—C13—H13126.7
N2—B1—N4107.9 (4)N5—C14—C13109.6 (4)
N6—B1—H1B1113 (2)N5—C14—C15126.0 (4)
N2—B1—H1B1108 (3)C13—C14—C15124.4 (4)
N4—B1—H1B1109 (3)C14—C15—H15A109.5
C4—N1—N2105.4 (4)C14—C15—H15B109.5
C4—N1—W1132.9 (3)H15A—C15—H15B109.5
N2—N1—W1121.7 (3)C14—C15—H15C109.5
C2—N2—N1110.3 (4)H15A—C15—H15C109.5
C2—N2—B1129.5 (4)H15B—C15—H15C109.5
N1—N2—B1120.0 (4)N8—C16—S4177.9 (5)
C9—N3—N4105.5 (4)C18—C17—H17A109.5
C9—N3—W1133.2 (3)C18—C17—H17B109.5
N4—N3—W1120.4 (3)H17A—C17—H17B109.5
C7—N4—N3110.3 (4)C18—C17—H17C109.5
C7—N4—B1128.9 (4)H17A—C17—H17C109.5
N3—N4—B1120.2 (4)H17B—C17—H17C109.5
C14—N5—N6106.3 (3)N7—C18—C17178.4 (6)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···S4ii0.972.853.518 (5)127
C8—H8···N8iii0.942.603.456 (7)152
C5—H5A···S20.972.843.491 (6)125
C5—H5C···S10.972.803.510 (6)131
C10—H10C···S20.972.863.415 (6)117
C15—H15A···S10.972.633.415 (6)138
Symmetry codes: (ii) x1, y, z; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu4W2(C15H22BN6)2(NCS)2S6(C2H3N)2]
Mr1606.88
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)9.3349 (19), 9.954 (2), 15.547 (3)
α, β, γ (°)92.21 (3), 93.73 (3), 112.33 (3)
V3)1330.3 (5)
Z1
Radiation typeMo Kα
µ (mm1)6.24
Crystal size (mm)0.17 × 0.15 × 0.12
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.417, 0.522
No. of measured, independent and
observed [I > 2σ(I)] reflections
12835, 5976, 5024
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.072, 1.02
No. of reflections5976
No. of parameters318
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.96, 1.14

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
W1—S12.2250 (15)Cu1—S12.2356 (13)
W1—S32.2414 (13)Cu1—S22.2594 (16)
W1—S22.3274 (12)Cu2—S32.1870 (14)
W1—Cu22.6354 (9)Cu2—S22.2185 (14)
W1—Cu12.6737 (14)Cu2—S42.2202 (14)
Cu1—N72.213 (5)N8—Cu1i1.931 (4)
S1—W1—S3103.79 (5)N7—Cu1—S1105.52 (13)
S1—W1—S2104.38 (6)N8i—Cu1—S2113.49 (13)
S3—W1—S2104.49 (5)N7—Cu1—S2115.02 (14)
N8i—Cu1—N792.82 (19)S1—Cu1—S2106.31 (6)
N8i—Cu1—S1123.14 (14)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···S4ii0.972.853.518 (5)127
C8—H8···N8iii0.942.603.456 (7)152
C5—H5A···S20.972.843.491 (6)125
C5—H5C···S10.972.803.510 (6)131
C10—H10C···S20.972.863.415 (6)117
C15—H15A···S10.972.633.415 (6)138
Symmetry codes: (ii) x1, y, z; (iii) x+2, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds