Download citation
Download citation
link to html
Two imidazolium hypodiphosphates, (C3H5N2)(H3P2O6) (I) and (C3H5N2)2(H2P2O6) (II), have been synthesized and structurally characterized. In both metal-free organic–inorganic hybrids (I) and (II), the hypodiphosphate mono- and dianions, (H­3P2O6) and (H2P2O6)2−, form hydrogen-bonded frameworks of different types, to which the organic cations are linked via N—H...O and C—H...O hydrogen bonds. The purity of the compounds was confirmed by powder X-ray diffraction. Differential scanning calorimetry of compound (I) revealed two structural phase transitions: continuous at 311.8 K [cooling/heating; from high-temperature phase (HTP) to room-temperature phase (RTP)] and a discontinuous one at 287.9/289.2 K [RTP → low-temperature phase (LTP)]. Compound (I) is characterized in a wide temperature range by single-crystal and powder X-ray diffraction methods. Crystal structures of high- and low-temperature phases are determined, which show orthorhombic (HTP, Pnna, No. 52) → monoclinic (LTP, P21/n11, No. 14, a-axis doubled) structural change on cooling with an intermediate incommensurately modulated phase (RTP). Dynamic properties of polycrystalline (I) were studied by means of dielectric spectroscopy. The dielectric behaviour is explained by the motion of imidazolium cations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520620011439/yb5027sup1.cif
Contains datablocks global, I-HTP, I_RTP, I_LTP, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620011439/yb5027I_HTPsup3.hkl
Contains datablock I_HTP

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620011439/yb5027I_RTPsup4.hkl
Contains datablock I_RTP

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620011439/yb5027I_LTPsup5.hkl
Contains datablock I_LTP

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620011439/yb5027IIsup6.hkl
Contains datablock II

mp4

Moving Picture Experts Group (MP4) video file https://doi.org/10.1107/S2052520620011439/yb5027sup10.mp4
Movie F1a

mp4

Moving Picture Experts Group (MP4) video file https://doi.org/10.1107/S2052520620011439/yb5027sup11.mp4
Movie F1b

gif

Graphic Interchange Format (GIF) image https://doi.org/10.1107/S2052520620011439/yb5027sup7.gif
Temperature of evolution 0kl Ewald sphere reconstruction

gif

Graphic Interchange Format (GIF) image https://doi.org/10.1107/S2052520620011439/yb5027sup8.gif
Temperature of evolution h0l Ewald sphere reconstruction

gif

Graphic Interchange Format (GIF) image https://doi.org/10.1107/S2052520620011439/yb5027sup9.gif
Temperature of evolution h1l Ewald sphere reconstruction

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520620011439/yb5027sup2.pdf
Figs. S1 to S5 and Tables S1

B-IncStrDB reference: 16472EnKoLb

CCDC references: 2024300; 2024301; 2024302; 2024303

Computing details top

For all structures, data collection: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); cell refinement: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); data reduction: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018). Program(s) used to solve structure: SHELXT-2014/7 (Sheldrick, 2015) for I-HTP, I_LTP, (II). For all structures, program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015).

(I-HTP) top
Crystal data top
(C3H5N2)·(H3O6P2)Dx = 1.811 Mg m3
Mr = 230.05Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnnaCell parameters from 4207 reflections
a = 7.014 (3) Åθ = 4.7–29.0°
b = 8.361 (3) ŵ = 0.52 mm1
c = 14.389 (5) ÅT = 326 K
V = 843.8 (6) Å3Plate, colourless
Z = 40.35 × 0.21 × 0.10 mm
F(000) = 472
Data collection top
Agilent Technologies, Xcalibur R
diffractometer
1134 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source863 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.6249 pixels mm-1θmax = 29.5°, θmin = 2.8°
ω scansh = 99
Absorption correction: analytical
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1111
Tmin = 0.879, Tmax = 0.960l = 1919
12181 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.2662P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1134 reflectionsΔρmax = 0.22 e Å3
101 parametersΔρmin = 0.31 e Å3
64 restraintsExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.065 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.59456 (8)0.00006 (5)0.33491 (3)0.0431 (2)
O10.5287 (3)0.07335 (14)0.42605 (9)0.0594 (4)
H10.49730.00210.46200.089*0.5
O20.5307 (2)0.17364 (15)0.32531 (8)0.0555 (4)
H20.51690.19540.27020.083*0.5
O30.5315 (2)0.09995 (15)0.25206 (9)0.0539 (4)
H30.53390.19500.26610.081*0.5
N1A0.318 (3)0.3850 (17)0.4513 (12)0.019 (4)*0.1
H1NA0.34690.28800.43730.023*0.1
C2A0.276 (3)0.497 (2)0.3892 (10)0.023 (4)*0.1
H2A0.26990.48460.32500.028*0.1
N3A0.245 (4)0.630 (2)0.4369 (12)0.035 (6)*0.1
H3NA0.21400.72150.41350.042*0.1
C4A0.270 (3)0.5991 (19)0.5292 (11)0.037 (5)*0.1
H4A0.26210.67390.57690.045*0.1
C5A0.309 (4)0.442 (2)0.5402 (11)0.033 (6)*0.1
H5A0.32580.38620.59540.039*0.1
N1B0.3068 (14)0.3895 (9)0.5180 (6)0.038 (2)*0.2
H1NB0.33140.30650.55120.045*0.2
C2B0.2987 (17)0.3952 (10)0.4260 (6)0.039 (3)*0.2
H2B0.31850.30970.38590.047*0.2
N3B0.2573 (15)0.5438 (10)0.4012 (6)0.034 (2)*0.2
H3NB0.23950.57530.34500.041*0.2
C4B0.247 (2)0.6397 (12)0.4777 (6)0.058 (4)*0.2
H4B0.22950.74990.47940.069*0.2
C5B0.2687 (15)0.5398 (10)0.5504 (6)0.033 (3)*0.2
H5B0.25910.56850.61270.039*0.2
N1C0.212 (2)0.5834 (16)0.5399 (7)0.021 (2)*0.2
H1NC0.17450.64610.58360.025*0.2
C2C0.254 (2)0.4299 (17)0.5503 (8)0.045 (5)*0.2
H2C0.24760.37190.60540.054*0.2
N3C0.3059 (18)0.3738 (11)0.4679 (7)0.027 (2)*0.2
H3NC0.33950.27690.45640.032*0.2
C4C0.2976 (15)0.4949 (13)0.4046 (7)0.025 (2)*0.2
H4C0.32810.48740.34180.031*0.2
C5C0.237 (3)0.6272 (14)0.4492 (9)0.034 (4)*0.2
H5C0.21720.72790.42350.041*0.2
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0726 (4)0.0295 (3)0.0271 (3)0.00982 (19)0.00558 (18)0.00153 (16)
O10.1093 (12)0.0349 (7)0.0339 (7)0.0028 (7)0.0159 (7)0.0041 (5)
O20.0904 (10)0.0317 (7)0.0444 (7)0.0191 (7)0.0149 (7)0.0047 (5)
O30.0817 (9)0.0471 (7)0.0328 (6)0.0095 (7)0.0079 (6)0.0053 (5)
Geometric parameters (Å, º) top
P1—O11.5198 (13)N1B—H1NB0.8600
P1—O31.5219 (13)C2B—N3B1.325 (3)
P1—O21.5252 (14)C2B—H2B0.9300
P1—P1i2.1805 (14)N3B—C4B1.364 (3)
O1—H10.8200N3B—H3NB0.8600
O2—H20.8200C4B—C5B1.347 (3)
O3—H30.8200C4B—H4B0.9300
N1A—C2A1.327 (2)C5B—H5B0.9300
N1A—C5A1.368 (2)N1C—C2C1.326 (3)
N1A—H1NA0.8600N1C—C5C1.368 (3)
C2A—N3A1.327 (2)N1C—H1NC0.8600
C2A—H2A0.9300C2C—N3C1.326 (3)
N3A—C4A1.366 (2)C2C—H2C0.9300
N3A—H3NA0.8600N3C—C4C1.363 (3)
C4A—C5A1.348 (2)N3C—H3NC0.8600
C4A—H4A0.9300C4C—C5C1.347 (3)
C5A—H5A0.9300C4C—H4C0.9300
N1B—C2B1.326 (3)C5C—H5C0.9300
N1B—C5B1.367 (3)
O1—P1—O3111.45 (9)N3B—C2B—N1B108.2 (8)
O1—P1—O2111.91 (7)N3B—C2B—H2B125.9
O3—P1—O2111.50 (8)N1B—C2B—H2B125.9
O1—P1—P1i107.67 (7)C2B—N3B—C4B110.2 (9)
O3—P1—P1i106.89 (6)C2B—N3B—H3NB124.9
O2—P1—P1i107.11 (7)C4B—N3B—H3NB124.9
P1—O1—H1109.5C5B—C4B—N3B104.9 (8)
P1—O2—H2109.5C5B—C4B—H4B127.6
P1—O3—H3109.5N3B—C4B—H4B127.6
C2A—N1A—C5A111.8 (12)C4B—C5B—N1B109.1 (7)
C2A—N1A—H1NA124.1C4B—C5B—H5B125.5
C5A—N1A—H1NA124.1N1B—C5B—H5B125.5
N3A—C2A—N1A106.4 (12)C2C—N1C—C5C109.8 (10)
N3A—C2A—H2A126.8C2C—N1C—H1NC125.1
N1A—C2A—H2A126.8C5C—N1C—H1NC125.1
C2A—N3A—C4A108.7 (11)N1C—C2C—N3C107.6 (10)
C2A—N3A—H3NA125.7N1C—C2C—H2C126.2
C4A—N3A—H3NA125.7N3C—C2C—H2C126.2
C5A—C4A—N3A109.1 (11)C2C—N3C—C4C108.9 (8)
C5A—C4A—H4A125.5C2C—N3C—H3NC125.6
N3A—C4A—H4A125.5C4C—N3C—H3NC125.6
C4A—C5A—N1A103.9 (11)C5C—C4C—N3C107.8 (8)
C4A—C5A—H5A128.1C5C—C4C—H4C126.1
N1A—C5A—H5A128.1N3C—C4C—H4C126.1
C2B—N1B—C5B107.4 (7)C4C—C5C—N1C106.0 (9)
C2B—N1B—H1NB126.3C4C—C5C—H5C127.0
C5B—N1B—H1NB126.3N1C—C5C—H5C127.0
C5A—N1A—C2A—N3A1.8 (10)C2C—N3C—C4C—C5C0.6 (14)
N1A—C2A—N3A—C4A0.7 (10)N3C—C4C—C5C—N1C0.6 (15)
C2A—N3A—C4A—C5A2.9 (16)C2C—N1C—C5C—C4C0.4 (13)
N3A—C4A—C5A—N1A3.8 (18)O1—P1—P1i—O1i50.17 (11)
C2A—N1A—C5A—C4A3.5 (15)O2—P1—P1i—O1i70.35 (7)
C5B—N1B—C2B—N3B0.1 (8)O3—P1—P1i—O1i170.03 (7)
N1B—C2B—N3B—C4B3.0 (8)O1—P1—P1i—O2i70.35 (7)
C2B—N3B—C4B—C5B4.9 (11)O2—P1—P1i—O2i169.13 (10)
N3B—C4B—C5B—N1B4.9 (12)O3—P1—P1i—O2i49.51 (7)
C2B—N1B—C5B—C4B3.3 (11)O1—P1—P1i—O3i170.03 (7)
C5C—N1C—C2C—N3C0.1 (9)O2—P1—P1i—O3i49.51 (7)
N1C—C2C—N3C—C4C0.3 (9)O3—P1—P1i—O3i70.11 (11)
Symmetry code: (i) x+3/2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1ii0.821.742.489 (3)151
O2—H2···O2iii0.821.762.516 (2)153
O3—H3···O3iv0.821.732.510 (3)157
N1A—H1NA···O10.862.213.018 (14)157
N3A—H3NA···O1v0.862.423.138 (18)141
N1B—H1NB···O2ii0.862.313.105 (8)154
N3B—H3NB···O3vi0.862.373.031 (9)134
N1C—H1NC···O2vii0.862.243.083 (11)168
N3C—H3NC···O10.862.203.019 (10)159
C2A—H2A···O3iv0.932.262.828 (19)119
C4A—H4A···O1viii0.932.573.147 (17)120
C4A—H4A···O2vii0.932.503.289 (17)143
C5A—H5A···O2ii0.932.343.171 (18)149
C2B—H2B···O10.932.533.138 (9)123
C4B—H4B···O1v0.932.463.171 (12)133
C5B—H5B···O3ix0.932.503.261 (9)139
C2C—H2C···O2ii0.932.483.175 (13)131
C2C—H2C···O3x0.932.613.305 (12)132
C4C—H4C···O3iv0.932.102.898 (10)144
C5C—H5C···O1v0.932.403.141 (13)137
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x+1/2, y+1, z; (vi) x+1/2, y+1/2, z+1/2; (vii) x1/2, y+1, z+1; (viii) x+1, y+1, z+1; (ix) x+1, y+1/2, z+1/2; (x) x1/2, y+1/2, z+1/2.
(I_RTP) top
Crystal data top
(C3H5N2)·(H3O6P2)Dx = 1.823 Mg m3
Mr = 230.05Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnnaCell parameters from 4526 reflections
a = 6.962 (3) Åθ = 4.7–29.1°
b = 8.368 (3) ŵ = 0.52 mm1
c = 14.388 (4) ÅT = 291 K
V = 838.2 (5) Å3Plate, colourless
Z = 40.35 × 0.21 × 0.10 mm
F(000) = 472
Data collection top
Agilent Technologies, Xcalibur R
diffractometer
1128 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.6249 pixels mm-1θmax = 29.2°, θmin = 2.8°
ω scansh = 99
Absorption correction: analytical
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1111
Tmin = 0.868, Tmax = 0.957l = 1919
12065 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.4756P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1128 reflectionsΔρmax = 0.24 e Å3
101 parametersΔρmin = 0.39 e Å3
35 restraintsExtinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: isomorphous structure methodsExtinction coefficient: 0.065 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.59322 (8)0.00009 (5)0.33478 (3)0.0410 (2)
O10.5268 (3)0.07328 (15)0.42589 (9)0.0537 (4)
H10.5146940.0027300.4650060.081*0.5
O20.5286 (3)0.17341 (16)0.32510 (9)0.0524 (4)
H20.5221410.1969800.2698660.079*0.5
O30.5298 (2)0.10050 (16)0.25196 (9)0.0509 (4)
H30.5361090.1955360.2655150.076*0.5
N1A0.315 (4)0.3899 (19)0.4357 (10)0.018 (5)*0.1
H1A0.3415300.3012280.4082350.022*0.1
C2A0.262 (4)0.519 (2)0.3881 (10)0.014 (4)*0.1
H2A0.2401360.5303470.3247390.017*0.1
N3A0.249 (5)0.626 (2)0.4558 (12)0.042 (11)*0.1
H3A0.2228720.7256720.4469070.051*0.1
C4A0.282 (4)0.5602 (19)0.5414 (12)0.027 (6)*0.1
H4A0.2739580.6138100.5978620.033*0.1
C5A0.327 (3)0.405 (2)0.5304 (10)0.010 (3)*0.1
H5A0.3575710.3281630.5749250.012*0.1
N1B0.285 (2)0.3941 (11)0.5211 (7)0.036 (3)*0.2
H1B0.3097170.3139120.5563970.044*0.2
C2B0.268 (2)0.3814 (9)0.4293 (7)0.029 (3)*0.2
H2B0.2869940.2920950.3919040.035*0.2
N3B0.2177 (18)0.5286 (9)0.4046 (6)0.024 (3)*0.2
H3B0.2016270.5586540.3480100.028*0.2
C4B0.194 (2)0.6268 (14)0.4798 (7)0.036 (3)*0.2
H4B0.1437400.7296920.4793660.043*0.2
C5B0.259 (3)0.5459 (12)0.5546 (8)0.038 (4)*0.2
H5B0.2802960.5838570.6144310.046*0.2
N1C0.212 (3)0.5622 (16)0.5424 (8)0.027 (3)*0.2
H1C0.1659050.6091160.5907810.033*0.2
C2C0.274 (2)0.4121 (16)0.5447 (8)0.018 (3)*0.2
H2C0.2882620.3442850.5954660.022*0.2
N3C0.311 (3)0.3842 (15)0.4554 (8)0.022 (3)*0.2
H3C0.3433910.2925080.4335450.026*0.2
C4C0.290 (2)0.5190 (15)0.4027 (8)0.027 (3)*0.2
H4C0.3155750.5276230.3394510.032*0.2
C5C0.225 (3)0.6374 (14)0.4580 (10)0.021 (4)*0.2
H5C0.1963490.7427620.4428190.025*0.2
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0685 (4)0.0304 (3)0.0240 (3)0.0146 (2)0.00466 (19)0.00231 (17)
O10.1012 (12)0.0316 (7)0.0283 (7)0.0010 (7)0.0124 (7)0.0036 (5)
O20.0860 (11)0.0316 (7)0.0394 (7)0.0218 (7)0.0148 (7)0.0052 (5)
O30.0763 (9)0.0488 (8)0.0276 (6)0.0128 (7)0.0064 (6)0.0044 (5)
Geometric parameters (Å, º) top
P1—O11.5190 (13)N1B—H1B0.8600
P1—O31.5234 (14)C2B—N3B1.330 (3)
P1—O21.5263 (14)C2B—H2B0.9300
P1—P1i2.1831 (15)N3B—C4B1.368 (3)
O1—H10.8200N3B—H3B0.8600
O2—H20.8200C4B—C5B1.348 (3)
O3—H30.8200C4B—H4B0.9300
N1A—C2A1.330 (2)C5B—H5B0.9300
N1A—C5A1.370 (2)N1C—C2C1.330 (3)
N1A—H1A0.8600N1C—C5C1.371 (3)
C2A—N3A1.330 (2)N1C—H1C0.8600
C2A—H2A0.9300C2C—N3C1.330 (3)
N3A—C4A1.369 (2)C2C—H2C0.9300
N3A—H3A0.8600N3C—C4C1.368 (3)
C4A—C5A1.349 (2)N3C—H3C0.8600
C4A—H4A0.9300C4C—C5C1.348 (3)
C5A—H5A0.9300C4C—H4C0.9300
N1B—C2B1.329 (3)C5C—H5C0.9300
N1B—C5B1.370 (3)
O1—P1—O3111.37 (9)N1B—C2B—N3B102.3 (9)
O1—P1—O2111.87 (8)N1B—C2B—H2B128.8
O3—P1—O2111.58 (8)N3B—C2B—H2B128.8
O1—P1—P1i107.74 (7)C2B—N3B—C4B112.2 (10)
O3—P1—P1i106.87 (6)C2B—N3B—H3B123.9
O2—P1—P1i107.10 (8)C4B—N3B—H3B123.9
P1—O1—H1109.5C5B—C4B—N3B106.8 (10)
P1—O2—H2109.5C5B—C4B—H4B126.6
P1—O3—H3109.5N3B—C4B—H4B126.6
C2A—N1A—C5A117.1 (12)C4B—C5B—N1B103.2 (10)
C2A—N1A—H1A121.5C4B—C5B—H5B128.4
C5A—N1A—H1A121.5N1B—C5B—H5B128.4
N1A—C2A—N3A101.1 (12)C2C—N1C—C5C115.7 (12)
N1A—C2A—H2A129.5C2C—N1C—H1C122.2
N3A—C2A—H2A129.5C5C—N1C—H1C122.2
C2A—N3A—C4A111.9 (13)N1C—C2C—N3C101.8 (11)
C2A—N3A—H3A124.1N1C—C2C—H2C129.1
C4A—N3A—H3A124.1N3C—C2C—H2C129.1
C5A—C4A—N3A108.9 (13)C2C—N3C—C4C111.8 (9)
C5A—C4A—H4A125.5C2C—N3C—H3C124.1
N3A—C4A—H4A125.5C4C—N3C—H3C124.1
C4A—C5A—N1A100.9 (12)C5C—C4C—N3C108.3 (9)
C4A—C5A—H5A129.5C5C—C4C—H4C125.9
N1A—C5A—H5A129.5N3C—C4C—H4C125.9
C2B—N1B—C5B114.4 (9)C4C—C5C—N1C102.0 (10)
C2B—N1B—H1B122.8C4C—C5C—H5C129.0
C5B—N1B—H1B122.8N1C—C5C—H5C129.0
C5A—N1A—C2A—N3A4 (3)C2C—N3C—C4C—C5C4 (2)
N1A—C2A—N3A—C4A4 (4)N3C—C4C—C5C—N1C0.1 (18)
C2A—N3A—C4A—C5A3 (4)C2C—N1C—C5C—C4C4.1 (19)
N3A—C4A—C5A—N1A1 (3)O1—P1—P1i—O1i50.06 (11)
C2A—N1A—C5A—C4A2 (3)O2—P1—P1i—O1i70.45 (7)
C5B—N1B—C2B—N3B3.9 (16)O3—P1—P1i—O1i169.85 (8)
N1B—C2B—N3B—C4B3.1 (14)O1—P1—P1i—O2i70.45 (7)
C2B—N3B—C4B—C5B8.9 (18)O2—P1—P1i—O2i169.04 (10)
N3B—C4B—C5B—N1B10.3 (19)O3—P1—P1i—O2i49.34 (8)
C2B—N1B—C5B—C4B9 (2)O1—P1—P1i—O3i169.85 (8)
C5C—N1C—C2C—N3C6.4 (19)O2—P1—P1i—O3i49.34 (8)
N1C—C2C—N3C—C4C6.2 (18)O3—P1—P1i—O3i70.36 (12)
Symmetry code: (i) x+3/2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1ii0.821.722.488 (3)156
O2—H2···O2iii0.821.752.513 (2)155
O3—H3···O3iv0.821.732.503 (3)157
N1A—H1A···O10.862.323.034 (17)141
N3A—H3A···O1v0.862.443.19 (2)147
N1B—H1B···O2ii0.862.363.162 (11)156
N3B—H3B···O3vi0.862.192.900 (9)140
N1C—H1C···O2vii0.862.393.186 (13)155
N3C—H3C···O10.862.243.036 (12)154
C2A—H2A···O3vi0.932.262.94 (2)130
C4A—H4A···O3viii0.932.613.32 (2)134
C5A—H5A···O2ii0.932.093.013 (14)171
C2B—H2B···O10.932.533.145 (9)124
C4B—H4B···O1v0.932.173.044 (12)156
C5B—H5B···O3viii0.932.383.231 (13)151
C2C—H2C···O2ii0.932.233.064 (14)149
C4C—H4C···O3iv0.932.262.957 (14)131
C5C—H5C···O1v0.932.203.024 (15)147
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x+1/2, y+1, z; (vi) x+1/2, y+1/2, z+1/2; (vii) x1/2, y+1, z+1; (viii) x+1, y+1/2, z+1/2.
(I_LTP) top
Crystal data top
(C3H5N2)·(H3O6P2)F(000) = 944
Mr = 230.05Dx = 1.860 Mg m3
Monoclinic, P21/n11Mo Kα radiation, λ = 0.71073 Å
a = 13.673 (2) ÅCell parameters from 6843 reflections
b = 8.396 (2) Åθ = 2.8–29.3°
c = 14.317 (3) ŵ = 0.53 mm1
β = 90°T = 100 K
V = 1643.5 (6) Å3Plate, colourless
Z = 80.35 × 0.21 × 0.10 mm
Data collection top
Agilent Technologies, Xcalibur R
diffractometer
4008 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source3358 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.6249 pixels mm-1θmax = 29.5°, θmin = 2.8°
ω scansh = 1817
Absorption correction: analytical
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1110
Tmin = 0.868, Tmax = 0.952l = 1818
14185 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0355P)2 + 1.1991P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4008 reflectionsΔρmax = 0.43 e Å3
245 parametersΔρmin = 0.47 e Å3
5 restraintsExtinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.0049 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P1A0.28745 (3)0.01736 (5)0.33674 (3)0.00790 (11)
P2A0.44733 (3)0.01986 (5)0.33894 (3)0.00804 (11)
O1A0.25123 (9)0.09237 (13)0.42644 (8)0.0109 (3)
O2A0.25705 (9)0.10470 (14)0.24807 (8)0.0108 (3)
O3A0.25329 (9)0.15954 (13)0.33107 (9)0.0120 (3)
H3A0.26250.20640.27970.066 (10)*
O4A0.47699 (9)0.19232 (13)0.33225 (8)0.0107 (3)
O5A0.48196 (9)0.06658 (14)0.42585 (8)0.0122 (3)
H5A0.50000.00000.50000.082 (16)*
O6A0.48091 (9)0.07278 (14)0.24998 (8)0.0117 (3)
H6A0.48470.17240.25370.069 (10)*
P1B0.31216 (3)0.50861 (5)0.16782 (3)0.00846 (11)
P2B0.47219 (3)0.51986 (5)0.16949 (3)0.00814 (11)
O1B0.27275 (9)0.67343 (13)0.18213 (8)0.0114 (3)
O2B0.28276 (9)0.39351 (14)0.24509 (8)0.0121 (3)
H2B0.275 (3)0.263 (4)0.242 (2)0.079 (11)*
O3B0.28407 (9)0.43198 (14)0.07219 (8)0.0124 (3)
H3B0.27630.49550.02790.057 (9)*
O4B0.50262 (9)0.62797 (14)0.24819 (8)0.0114 (3)
O5B0.50603 (9)0.57711 (14)0.07341 (8)0.0113 (3)
H5B0.50880.51620.02660.017*0.5
O6B0.50977 (9)0.34540 (14)0.18031 (9)0.0117 (3)
H6B0.50140.30340.23270.074 (11)*
N1A0.15762 (11)0.38999 (17)0.45119 (10)0.0123 (3)
H1NA0.18010.29710.43180.015*
N3A0.10820 (11)0.63204 (17)0.45115 (11)0.0125 (3)
H3NA0.09230.72770.43180.015*
C2A0.14201 (13)0.5153 (2)0.39745 (13)0.0136 (4)
H2AA0.15310.52030.33200.016*
C4A0.10181 (13)0.5810 (2)0.54167 (12)0.0121 (4)
H4A0.07970.64140.59400.015*
C5A0.13314 (13)0.4282 (2)0.54205 (13)0.0127 (4)
H5AA0.13740.36040.59460.015*
N1B0.40281 (11)0.40332 (17)0.46499 (10)0.0119 (3)
H1NB0.42460.33310.42390.014*
N3B0.35492 (11)0.50904 (17)0.59381 (11)0.0137 (3)
H3NB0.33940.52120.65310.016*
C2B0.38577 (13)0.3749 (2)0.55451 (13)0.0141 (4)
H2BA0.39420.27580.58500.017*
C4B0.35081 (13)0.6264 (2)0.52792 (13)0.0127 (4)
H4B0.33060.73350.53760.015*
C5B0.38112 (13)0.5599 (2)0.44651 (13)0.0128 (4)
H5BA0.38640.61140.38790.015*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P1A0.0103 (2)0.0068 (2)0.0067 (2)0.00010 (16)0.00073 (17)0.00033 (14)
P2A0.0102 (2)0.0067 (2)0.0072 (2)0.00057 (15)0.00022 (17)0.00017 (15)
O1A0.0137 (6)0.0100 (6)0.0091 (6)0.0018 (5)0.0026 (5)0.0007 (4)
O2A0.0140 (7)0.0102 (6)0.0082 (6)0.0020 (5)0.0019 (5)0.0019 (4)
O3A0.0164 (7)0.0081 (6)0.0117 (6)0.0023 (5)0.0024 (5)0.0000 (4)
O4A0.0134 (6)0.0081 (6)0.0107 (6)0.0011 (5)0.0003 (5)0.0007 (4)
O5A0.0172 (7)0.0104 (6)0.0091 (6)0.0022 (5)0.0032 (5)0.0002 (4)
O6A0.0167 (7)0.0088 (6)0.0096 (6)0.0014 (5)0.0022 (5)0.0014 (4)
P1B0.0107 (2)0.0068 (2)0.0079 (2)0.00058 (16)0.00009 (17)0.00017 (15)
P2B0.0108 (2)0.0068 (2)0.0069 (2)0.00064 (16)0.00065 (17)0.00094 (15)
O1B0.0145 (6)0.0083 (6)0.0114 (6)0.0014 (5)0.0005 (5)0.0002 (4)
O2B0.0162 (7)0.0099 (6)0.0103 (6)0.0013 (5)0.0025 (5)0.0010 (4)
O3B0.0186 (7)0.0095 (6)0.0089 (6)0.0018 (5)0.0030 (5)0.0005 (4)
O4B0.0147 (6)0.0095 (6)0.0101 (6)0.0011 (5)0.0015 (5)0.0022 (4)
O5B0.0165 (7)0.0096 (6)0.0078 (6)0.0029 (5)0.0023 (5)0.0001 (4)
O6B0.0151 (7)0.0084 (6)0.0117 (6)0.0010 (5)0.0022 (5)0.0005 (5)
N1A0.0116 (7)0.0094 (7)0.0160 (8)0.0021 (6)0.0008 (6)0.0032 (5)
N3A0.0122 (8)0.0092 (7)0.0164 (8)0.0013 (6)0.0004 (6)0.0030 (5)
C2A0.0112 (9)0.0177 (9)0.0119 (9)0.0002 (7)0.0005 (7)0.0000 (7)
C4A0.0126 (9)0.0137 (8)0.0100 (9)0.0009 (7)0.0014 (7)0.0021 (6)
C5A0.0126 (9)0.0136 (8)0.0119 (9)0.0007 (7)0.0020 (7)0.0029 (6)
N1B0.0120 (8)0.0105 (7)0.0130 (8)0.0005 (6)0.0013 (6)0.0042 (5)
N3B0.0160 (8)0.0161 (8)0.0089 (7)0.0000 (6)0.0030 (6)0.0014 (6)
C2B0.0132 (9)0.0122 (8)0.0170 (9)0.0003 (7)0.0012 (7)0.0020 (7)
C4B0.0121 (9)0.0101 (8)0.0159 (9)0.0012 (7)0.0014 (7)0.0008 (6)
C5B0.0148 (9)0.0128 (8)0.0109 (9)0.0012 (7)0.0009 (7)0.0024 (6)
Geometric parameters (Å, º) top
P1A—O1A1.5083 (12)O6B—H6B0.8400
P1A—O2A1.5299 (13)N1A—C2A1.327 (2)
P1A—O3A1.5583 (12)N1A—C5A1.378 (2)
P1A—P2A2.1863 (7)N1A—H1NA0.8800
P2A—O4A1.5077 (12)N3A—C2A1.323 (2)
P2A—O5A1.5222 (13)N3A—C4A1.372 (2)
P2A—O6A1.5551 (12)N3A—H3NA0.8800
O2A—H2B1.35 (3)C2A—H2AA0.9500
O3A—H3A0.8403C4A—C5A1.353 (2)
O5A—H5A1.220 (2)C4A—H4A0.9500
O6A—H6A0.8404C5A—H5AA0.9500
P1B—O1B1.4972 (12)N1B—C2B1.327 (2)
P1B—O2B1.5299 (13)N1B—C5B1.376 (2)
P1B—O3B1.5551 (12)N1B—H1NB0.8800
P1B—P2B2.1902 (7)N3B—C2B1.323 (2)
P2B—O4B1.4987 (12)N3B—C4B1.372 (2)
P2B—O5B1.5331 (13)N3B—H3NB0.8800
P2B—O6B1.5614 (13)C2B—H2BA0.9500
O2B—H2B1.10 (3)C4B—C5B1.352 (2)
O3B—H3B0.8402C4B—H4B0.9500
O5B—H5B0.8400C5B—H5BA0.9500
O1A—P1A—O2A114.69 (7)P2B—O6B—H6B116.5
O1A—P1A—O3A109.61 (7)C2A—N1A—C5A109.27 (15)
O2A—P1A—O3A109.86 (7)C2A—N1A—H1NA125.4
O1A—P1A—P2A108.19 (5)C5A—N1A—H1NA125.4
O2A—P1A—P2A106.20 (5)C2A—N3A—C4A109.56 (15)
O3A—P1A—P2A108.03 (5)C2A—N3A—H3NA125.2
O4A—P2A—O5A115.74 (7)C4A—N3A—H3NA125.2
O4A—P2A—O6A109.96 (7)N3A—C2A—N1A107.85 (16)
O5A—P2A—O6A109.81 (7)N3A—C2A—H2AA126.1
O4A—P2A—P1A106.09 (5)N1A—C2A—H2AA126.1
O5A—P2A—P1A108.55 (6)C5A—C4A—N3A106.77 (15)
O6A—P2A—P1A106.19 (5)C5A—C4A—H4A126.6
P1A—O2A—H2B118.9 (13)N3A—C4A—H4A126.6
P1A—O3A—H3A116.0C4A—C5A—N1A106.55 (16)
P2A—O5A—H5A123.79 (9)C4A—C5A—H5AA126.7
P2A—O6A—H6A117.1N1A—C5A—H5AA126.7
O1B—P1B—O2B113.34 (7)C2B—N1B—C5B109.23 (15)
O1B—P1B—O3B113.91 (7)C2B—N1B—H1NB125.4
O2B—P1B—O3B108.24 (7)C5B—N1B—H1NB125.4
O1B—P1B—P2B108.56 (5)C2B—N3B—C4B109.55 (15)
O2B—P1B—P2B106.38 (5)C2B—N3B—H3NB125.2
O3B—P1B—P2B105.89 (5)C4B—N3B—H3NB125.2
O4B—P2B—O5B113.44 (7)N3B—C2B—N1B107.83 (16)
O4B—P2B—O6B113.32 (7)N3B—C2B—H2BA126.1
O5B—P2B—O6B107.01 (7)N1B—C2B—H2BA126.1
O4B—P2B—P1B108.13 (5)C5B—C4B—N3B106.70 (15)
O5B—P2B—P1B107.79 (5)C5B—C4B—H4B126.7
O6B—P2B—P1B106.82 (5)N3B—C4B—H4B126.7
P1B—O2B—H2B129.2 (16)C4B—C5B—N1B106.69 (16)
P1B—O3B—H3B115.9C4B—C5B—H5BA126.7
P2B—O5B—H5B122.4N1B—C5B—H5BA126.7
O1A—P1A—P2A—O4A68.32 (7)O3B—P1B—P2B—O5B43.13 (7)
O2A—P1A—P2A—O4A55.28 (7)O1B—P1B—P2B—O6B165.73 (7)
O3A—P1A—P2A—O4A173.10 (7)O2B—P1B—P2B—O6B43.43 (7)
O1A—P1A—P2A—O5A56.68 (7)O3B—P1B—P2B—O6B71.58 (7)
O2A—P1A—P2A—O5A179.72 (7)C4A—N3A—C2A—N1A0.0 (2)
O3A—P1A—P2A—O5A61.90 (7)C5A—N1A—C2A—N3A0.1 (2)
O1A—P1A—P2A—O6A174.70 (7)C2A—N3A—C4A—C5A0.1 (2)
O2A—P1A—P2A—O6A61.70 (7)N3A—C4A—C5A—N1A0.2 (2)
O3A—P1A—P2A—O6A56.11 (7)C2A—N1A—C5A—C4A0.2 (2)
O1B—P1B—P2B—O4B43.44 (8)C4B—N3B—C2B—N1B0.7 (2)
O2B—P1B—P2B—O4B78.85 (8)C5B—N1B—C2B—N3B0.7 (2)
O3B—P1B—P2B—O4B166.13 (7)C2B—N3B—C4B—C5B0.5 (2)
O1B—P1B—P2B—O5B79.56 (7)N3B—C4B—C5B—N1B0.1 (2)
O2B—P1B—P2B—O5B158.14 (7)C2B—N1B—C5B—C4B0.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3A—H3A···O1Bi0.841.722.5544 (18)171
O5A—H5A···O5Aii1.22 (1)1.22 (1)2.440 (2)180
O6A—H6A···O4Bi0.841.692.5298 (18)172
O2B—H2B···O2A1.10 (3)1.35 (3)2.4510 (18)172 (3)
O3B—H3B···O1Aiii0.841.712.5410 (19)168
O5B—H5B···O5Biv0.841.642.463 (2)167
O6B—H6B···O4A0.841.742.5769 (19)172
N1A—H1NA···O1A0.881.982.8267 (19)162
N3A—H3NA···O5Bv0.882.022.8382 (19)154
N1B—H1NB···O4A0.881.902.7770 (19)176
N3B—H3NB···O2Avi0.882.022.7985 (19)148
C2A—H2AA···O2B0.952.413.076 (2)127
C4A—H4A···O6Bvi0.952.433.333 (2)158
C5A—H5AA···O1Bvii0.952.363.215 (2)149
C2B—H2BA···O5Aii0.952.443.173 (2)133
C4B—H4B···O3Bvi0.952.343.218 (2)154
C5B—H5BA···O4B0.952.563.344 (2)140
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y+1, z; (v) x1/2, y+3/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y1/2, z+1/2.
(II) top
Crystal data top
2(C3H5N2)·(H2O6P2)Dx = 1.593 Mg m3
Mr = 298.14Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 5341 reflections
a = 8.966 (2) Åθ = 2.6–28.4°
c = 15.462 (4) ŵ = 0.38 mm1
V = 1243.0 (6) Å3T = 110 K
Z = 4Column, colourless
F(000) = 6160.42 × 0.06 × 0.05 mm
Data collection top
Agilent Technologies, Xcalibur R
diffractometer
1550 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1444 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 10.3456 pixels mm-1θmax = 28.8°, θmin = 2.6°
ω scansh = 1111
Absorption correction: analytical
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1110
Tmin = 0.867, Tmax = 0.983l = 2019
13584 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0313P)2 + 0.3895P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1550 reflectionsΔρmax = 0.30 e Å3
94 parametersΔρmin = 0.30 e Å3
0 restraintsAbsolute structure: Flack x determined using 519 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Primary atom site location: dualAbsolute structure parameter: 0.03 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.31970 (6)0.24790 (6)0.56384 (3)0.01203 (14)
O10.29901 (18)0.08245 (17)0.57054 (11)0.0214 (4)
O20.47546 (16)0.30850 (17)0.57853 (10)0.0161 (3)
O30.21351 (18)0.33388 (19)0.62805 (10)0.0189 (4)
H30.131 (4)0.288 (4)0.635 (2)0.054 (11)*
N10.4969 (2)0.6045 (2)0.61837 (13)0.0187 (4)
H1N0.493 (4)0.518 (4)0.606 (2)0.038 (9)*
N30.4378 (2)0.8365 (2)0.61309 (13)0.0189 (4)
H3N0.401 (4)0.911 (4)0.599 (2)0.046 (10)*
C20.4252 (3)0.7072 (2)0.57305 (15)0.0195 (5)
H20.37330.69060.52040.023*
C40.5189 (2)0.8159 (3)0.68759 (16)0.0196 (5)
H40.54420.89020.72880.024*
C50.5557 (2)0.6700 (2)0.69101 (15)0.0187 (4)
H50.61150.62200.73520.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0132 (3)0.0100 (3)0.0128 (2)0.0007 (2)0.0022 (2)0.0010 (2)
O10.0240 (9)0.0120 (7)0.0281 (9)0.0015 (6)0.0086 (7)0.0037 (7)
O20.0146 (8)0.0151 (7)0.0188 (8)0.0008 (6)0.0040 (6)0.0010 (6)
O30.0188 (8)0.0208 (9)0.0170 (8)0.0051 (7)0.0040 (6)0.0033 (6)
N10.0191 (10)0.0135 (10)0.0236 (10)0.0007 (7)0.0005 (8)0.0021 (8)
N30.0217 (10)0.0127 (10)0.0225 (10)0.0030 (8)0.0044 (8)0.0001 (8)
C20.0203 (11)0.0181 (11)0.0200 (11)0.0009 (8)0.0032 (9)0.0025 (8)
C40.0201 (11)0.0172 (11)0.0216 (11)0.0001 (9)0.0037 (10)0.0027 (10)
C50.0181 (10)0.0177 (11)0.0201 (10)0.0006 (9)0.0023 (9)0.0003 (10)
Geometric parameters (Å, º) top
P1—O11.4986 (17)N3—C21.319 (3)
P1—O21.5157 (16)N3—C41.375 (3)
P1—O31.5768 (17)N3—H3N0.77 (4)
P1—P1i2.1741 (11)C2—H20.9500
O3—H30.86 (4)C4—C51.349 (3)
N1—C21.324 (3)C4—H40.9500
N1—C51.373 (3)C5—H50.9500
N1—H1N0.80 (4)
O1—P1—O2117.29 (9)C2—N3—H3N126 (2)
O1—P1—O3111.45 (10)C4—N3—H3N125 (2)
O2—P1—O3106.66 (9)N3—C2—N1108.8 (2)
O1—P1—P1i108.62 (7)N3—C2—H2125.6
O2—P1—P1i107.62 (6)N1—C2—H2125.6
O3—P1—P1i104.37 (7)C5—C4—N3107.0 (2)
P1—O3—H3112 (2)C5—C4—H4126.5
C2—N1—C5108.7 (2)N3—C4—H4126.5
C2—N1—H1N122 (2)C4—C5—N1106.8 (2)
C5—N1—H1N129 (2)C4—C5—H5126.6
C2—N3—C4108.7 (2)N1—C5—H5126.6
C4—N3—C2—N10.8 (3)O3—P1—P1i—O1i51.39 (9)
C5—N1—C2—N31.0 (3)O1—P1—P1i—O2i164.46 (9)
C2—N3—C4—C50.4 (3)O2—P1—P1i—O2i36.54 (13)
N3—C4—C5—N10.2 (3)O3—P1—P1i—O2i76.54 (9)
C2—N1—C5—C40.7 (3)O1—P1—P1i—O3i51.39 (10)
O1—P1—P1i—O1i67.61 (15)O2—P1—P1i—O3i76.54 (9)
O2—P1—P1i—O1i164.46 (9)O3—P1—P1i—O3i170.38 (13)
Symmetry code: (i) y, x, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2ii0.86 (4)1.73 (4)2.576 (2)169 (4)
N1—H1N···O20.80 (4)1.93 (4)2.731 (3)178 (3)
N3—H3N···O1iii0.77 (4)1.84 (4)2.616 (3)175 (4)
C2—H2···O2i0.952.533.302 (3)139
Symmetry codes: (i) y, x, z+1; (ii) x1/2, y+1/2, z+5/4; (iii) x, y+1, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds