Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the title compound, {[Cu3(C7H3O6S)2(C7H6N2)6]·8H2O}n, is built of trinuclear complexes [Cu3(bz)6(ssal)2] (bz = benzimidazole and ssal = 5-sulfonatosalicylate trianion) and uncoordinated water mol­ecules. The mol­ecule of the complex occupies a special position on a crystallographic inversion centre. The Cu atom located on the inversion centre has a square planar coordination made up of the two N atoms of monodentate benzimidazole ligands and the O atoms of two bridging salicylates. The other crystallographically independent Cu atom has a square pyramidal environment formed by the N atoms of two more monodentate benzimidazole ligands, two chelate O atoms of the bridging salicylate and the sulfonate O atom of the sulfonatosalicylate ligand belonging to the neighbouring trimetallic complex. The latter coordination links the mol­ecules of the complex into infinite chains running along the a axis. These chains are further connected by O—H...O and N—H...O hydrogen bonding into a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680503000X/ya6263sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680503000X/ya6263Isup2.hkl
Contains datablock I

CCDC reference: 287767

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.010 Å
  • H-atom completeness 97%
  • Disorder in solvent or counterion
  • R factor = 0.070
  • wR factor = 0.161
  • Data-to-parameter ratio = 11.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.83 Ratio
Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.50 Ratio PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 17.00 Perc. PLAT311_ALERT_2_C Isolated Disordered Oxygen Atom (No H's ?) ..... <O5W' PLAT311_ALERT_2_C Isolated Disordered Oxygen Atom (No H's ?) ..... <O5W PLAT341_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 10 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 1
Alert level G FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C56 H58 Cu3 N12 O20 S2 Atom count from the _atom_site data: C56 H56 Cu3 N12 O20 S2 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G WARNING: H atoms missing from atom site list. Is this intentional? From the CIF: _cell_formula_units_Z 1 From the CIF: _chemical_formula_sum C56 H58 Cu3 N12 O20 S2 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 56.00 56.00 0.00 H 58.00 56.00 2.00 Cu 3.00 3.00 0.00 N 12.00 12.00 0.00 O 20.00 20.00 0.00 S 2.00 2.00 0.00
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

5-Sulfosalicylate complexes have lately been receiving considerable attention, and numerous complexes of this kind have been synthesized (Gao et al., 2005; Smith et al., 2005). Among these, two copper complexes with trinuclear units, [Cu3(2,2'-bipy)2(ssal)2(H2O)4]·4H2O, (II) (Wang et al., 2004), and [Cu3(dpa)3(ssal)2]·3H2O, (III) (Fan & Zhu, 2005) (2,2'-bipy = 2,2'-bipyridine; dpa = 2,2'-dipyridylamine), were reported. We present here a third 5-sulfonatosalicylate copper complex with the trinuclear Cu3 motif, (I).

The crystal structure of the title compound is built of centrosymmetric trinuclear complexes, [Cu3(bz)6(ssal)2] (bz = benzimidazole and ssal = 5-sulfonatosalicylate trianion), and uncoordinated water molecules; a fragment of the structure of (I) with the trinuclear complex and hydrate water molecules is shown in Fig. 1.

There are two crystallographically independent Cu atoms in each complex. One of them, Cu2, occupies a special position on the crystallographic inversion centre and has a square planar coordination, formed by the N atoms of two monodentate benzimidazole ligands [Cu2—N5 = 2.000 (5) Å] and the O atoms of two bridging sulfonatosalicylates [Cu2—O2 = 1.965 (3) Å]. The other crystallographically independent metal atom, Cu1, has a square pyramidal geometry formed by the N atoms of two more benzimidazole ligands [Cu1—N1 = 1.990 (4) Å and Cu1—N3 = 2.004 (4) Å], two O atoms of the chelate salicylate fragment [Cu1—O1 = 1.935 (4) Å and Cu1—O3 = 1.920 (3) Å] and the O atom of the sulfonate group of the neighbouring trinuclear complex in the apical position of the pyramid [Cu1—O4ii = 2.330 (4) Å; symmetry code (ii): −x, 1 − y, 2 − z]. The latter contact gives rise to infinite chains running along the a axis of the crystal. The structure is further consolidated into a three-dimensional framework by extensive N—H···O and O—H···O hydrogen bonding (Table 2).

Comparison of the two previously reported copper complexes with trinuclear units with (I) shows that the ssal ligands in these three complexes have different coordination modes. In (III), ssal is a µ5 ligand, while in (I) and (II), the ssal anions are µ3 ligands; therefore, the structures of (I) and (II) feature one-dimensional chains, whereas the structure of (III) is built of two-dimensional layers. In the trinuclear units the Cu atoms in special positions have four-, six- and four-coordinated environments with square planar, octahedral and distorted tetrahedral geometries for (I), (II) and (III), respectively. The Cu atoms in general positions have either square pyramidal environments, as in (I) and (II), or octahedron geometry, as in (III). The comparison of bond lengths in these three complexes is given in Table 3.

Experimental top

A mixture of CuCl2·2H2O (0.170 g,1 mmol), 5-sulfosalicylic acid dihydrate (0.126 g, 0.5 mmol), Na2CO3 (0.106 g,1 mmol) and benzimidazole (0.236 g, 2 mmol) in water/methanol (v/v 2:1) solution (30 ml) was refluxed for 2 h and filtered. After the mixture had been left to stand for 1 d, green block-shaped crystals of (I) precipitated; these were used for the X-ray diffraction experiment.

Refinement top

All aromatic H atoms were placed in calculated positions, with C—H = 0.93 Å and N—H = 0.86 Å, and refined as riding atoms, with Uiso(H) values of 1.2Ueq(C,N). The occupancies of water molecules O4w and O5w were initially refined to 0.60 (3) and 0.54 (2), respectively; they were then fixed at 0.5. A t this stage, the O5w molecule was disordered over two sites with the ratio of 0.341 (17):0.159 (17) for O5w and O5w', respectively. The H atoms of these water molecules could not be located. H atoms of other water molecules were located in difference Fourier maps and were refined with distance restraint of O—H = 0.85 (1) Å and fixed isotropic displacement parameter of Uiso(H) = 0.08 Å2.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) view of the stucture of (I). Displacement ellipsoids are drawn at the 30% probability level. The minor component of the disordered water molecule has been omitted for clarity. [Symmetry codes (i): 1 − x, 1 − y, 2 − z; (ii): − x, 1 − y, 2 − z; (iii): 1 + x, y, z.]
[Figure 2] Fig. 2. A view of the one-dimensional network in (I). H atoms and uncoordinated water molecules have been omitted for clarity.
(I) top
Crystal data top
[Cu3(C7H6N2)6(C7H3SO6)2]·8H2OZ = 1
Mr = 1473.88F(000) = 755
Triclinic, P1Dx = 1.558 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.1489 (6) ÅCell parameters from 5186 reflections
b = 11.9699 (6) Åθ = 2.2–27.7°
c = 12.5693 (6) ŵ = 1.16 mm1
α = 99.302 (1)°T = 295 K
β = 93.690 (1)°Block, green
γ = 107.155 (1)°0.33 × 0.21 × 0.10 mm
V = 1570.48 (14) Å3
Data collection top
Bruker APEX area-detector
diffractometer
5475 independent reflections
Radiation source: fine-focus sealed tube5149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scanθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1313
Tmin = 0.701, Tmax = 0.893k = 1414
11391 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0484P)2 + 6.6709P]
where P = (Fo2 + 2Fc2)/3
5475 reflections(Δ/σ)max < 0.001
464 parametersΔρmax = 0.69 e Å3
24 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Cu3(C7H6N2)6(C7H3SO6)2]·8H2Oγ = 107.155 (1)°
Mr = 1473.88V = 1570.48 (14) Å3
Triclinic, P1Z = 1
a = 11.1489 (6) ÅMo Kα radiation
b = 11.9699 (6) ŵ = 1.16 mm1
c = 12.5693 (6) ÅT = 295 K
α = 99.302 (1)°0.33 × 0.21 × 0.10 mm
β = 93.690 (1)°
Data collection top
Bruker APEX area-detector
diffractometer
5475 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
5149 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.893Rint = 0.020
11391 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07024 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.22Δρmax = 0.69 e Å3
5475 reflectionsΔρmin = 0.66 e Å3
464 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.18297 (6)0.36682 (6)1.21624 (5)0.02564 (19)
Cu20.50000.50001.00000.0282 (2)
S10.08891 (12)0.38480 (12)0.67725 (10)0.0262 (3)
N10.0885 (4)0.2634 (4)1.3118 (3)0.0285 (10)
N20.0283 (5)0.1999 (4)1.4381 (4)0.0344 (11)
H20.06750.20221.49470.041*
N30.3475 (4)0.3837 (4)1.3016 (4)0.0315 (10)
N40.4885 (5)0.3356 (5)1.4015 (4)0.0491 (14)
H40.52020.29451.43850.059*
N50.5021 (4)0.6571 (4)0.9636 (4)0.0333 (11)
N60.4524 (6)0.7702 (6)0.8570 (5)0.0578 (16)
H60.41250.79020.80610.069*
O10.2765 (3)0.4331 (4)1.1046 (3)0.0314 (9)
O20.3212 (3)0.4406 (4)0.9388 (3)0.0324 (9)
O30.0252 (3)0.3294 (3)1.1263 (3)0.0301 (8)
O40.1757 (4)0.4552 (4)0.6815 (3)0.0361 (9)
O50.0276 (4)0.4398 (4)0.6355 (3)0.0398 (10)
O60.1529 (4)0.2634 (3)0.6171 (3)0.0359 (9)
O1W0.1746 (4)0.6734 (5)0.7493 (4)0.0532 (12)
O2W0.5983 (7)0.2051 (7)1.5237 (8)0.112 (3)
O3W0.3372 (10)0.8597 (10)0.6903 (8)0.141 (3)
O4W0.300 (2)0.015 (2)1.399 (3)0.183 (11)0.50
O5W'0.575 (6)0.963 (5)1.395 (5)0.14 (2)0.159 (17)
O5W0.501 (3)0.906 (2)1.287 (2)0.133 (11)0.341 (17)
C10.0522 (5)0.1398 (5)1.2926 (4)0.0295 (12)
C20.0822 (6)0.0598 (6)1.2137 (5)0.0451 (15)
H2C0.13180.08581.16030.054*
C30.0352 (8)0.0601 (6)1.2178 (7)0.060 (2)
H30.05480.11561.16690.072*
C40.0404 (7)0.0991 (6)1.2960 (6)0.0575 (19)
H4C0.07070.18031.29590.069*
C50.0719 (6)0.0212 (6)1.3739 (5)0.0470 (16)
H50.12390.04791.42550.056*
C60.0224 (5)0.0993 (5)1.3719 (4)0.0314 (12)
C70.0381 (5)0.2941 (5)1.3987 (4)0.0310 (12)
H70.04730.37261.42960.037*
C80.4599 (5)0.4778 (6)1.3205 (4)0.0358 (13)
C90.4917 (6)0.5878 (6)1.2901 (5)0.0460 (16)
H90.43360.61071.24940.055*
C100.6126 (7)0.6616 (7)1.3226 (6)0.061 (2)
H100.63660.73611.30330.074*
C110.7014 (6)0.6285 (8)1.3841 (6)0.062 (2)
H110.78280.68131.40380.074*
C120.6717 (6)0.5226 (7)1.4151 (6)0.0534 (18)
H120.73040.50081.45620.064*
C130.5499 (6)0.4475 (6)1.3831 (5)0.0404 (15)
C140.3711 (6)0.3028 (6)1.3513 (5)0.0417 (15)
H140.31170.22961.35150.050*
C150.5868 (5)0.7720 (5)0.9938 (5)0.0384 (14)
C160.6869 (7)0.8229 (6)1.0766 (6)0.0550 (18)
H160.70960.77741.12290.066*
C170.7509 (8)0.9415 (7)1.0877 (8)0.074 (2)
H170.81760.97701.14280.089*
C180.7184 (9)1.0092 (7)1.0190 (9)0.082 (3)
H180.76461.08951.02870.098*
C190.6211 (10)0.9629 (7)0.9371 (8)0.075 (3)
H190.60001.00940.89090.090*
C200.5560 (7)0.8442 (6)0.9265 (6)0.0493 (17)
C210.4249 (6)0.6621 (6)0.8824 (5)0.0427 (15)
H210.35820.59720.84630.051*
C220.2406 (5)0.4197 (4)1.0050 (4)0.0245 (11)
C230.1051 (5)0.3828 (4)0.9614 (4)0.0225 (10)
C240.0071 (5)0.3452 (4)1.0261 (4)0.0220 (10)
C250.1185 (5)0.3222 (5)0.9793 (4)0.0263 (11)
H250.18420.29781.02080.032*
C260.1467 (5)0.3346 (5)0.8754 (4)0.0276 (11)
H260.23030.31930.84720.033*
C270.0496 (5)0.3703 (4)0.8115 (4)0.0215 (10)
C280.0741 (5)0.3941 (4)0.8544 (4)0.0230 (11)
H280.13850.41820.81170.028*
H1B0.121 (5)0.678 (6)0.794 (5)0.080*
H1A0.147 (6)0.607 (4)0.705 (5)0.080*
H2A0.557 (6)0.146 (6)1.551 (6)0.080*
H2B0.674 (3)0.231 (6)1.555 (6)0.080*
H3A0.379 (8)0.933 (2)0.693 (6)0.080*
H3B0.320 (9)0.825 (6)0.623 (2)0.080*
H4A0.330 (15)0.033 (17)1.465 (3)0.080*0.50
H4B0.345 (16)0.019 (19)1.362 (10)0.080*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0226 (3)0.0338 (4)0.0210 (3)0.0094 (3)0.0008 (2)0.0063 (3)
Cu20.0166 (4)0.0405 (6)0.0258 (5)0.0042 (4)0.0020 (3)0.0104 (4)
S10.0270 (7)0.0324 (7)0.0194 (6)0.0114 (6)0.0002 (5)0.0021 (5)
N10.028 (2)0.035 (3)0.023 (2)0.011 (2)0.0018 (18)0.0057 (19)
N20.040 (3)0.038 (3)0.025 (2)0.011 (2)0.008 (2)0.005 (2)
N30.023 (2)0.045 (3)0.028 (2)0.011 (2)0.0006 (18)0.009 (2)
N40.039 (3)0.068 (4)0.047 (3)0.027 (3)0.008 (2)0.015 (3)
N50.027 (2)0.038 (3)0.037 (3)0.011 (2)0.003 (2)0.011 (2)
N60.073 (4)0.065 (4)0.049 (4)0.040 (3)0.006 (3)0.019 (3)
O10.0195 (18)0.052 (2)0.0191 (19)0.0058 (17)0.0010 (14)0.0057 (16)
O20.0168 (17)0.050 (2)0.027 (2)0.0023 (17)0.0011 (15)0.0148 (17)
O30.0215 (18)0.045 (2)0.0234 (19)0.0059 (16)0.0029 (14)0.0120 (17)
O40.039 (2)0.044 (2)0.028 (2)0.0200 (19)0.0031 (17)0.0042 (17)
O50.036 (2)0.054 (3)0.028 (2)0.011 (2)0.0047 (17)0.0108 (19)
O60.042 (2)0.035 (2)0.026 (2)0.0103 (18)0.0023 (17)0.0050 (16)
O1W0.033 (2)0.078 (4)0.047 (3)0.015 (2)0.004 (2)0.014 (2)
O2W0.071 (4)0.102 (6)0.154 (7)0.021 (4)0.040 (5)0.036 (5)
O3W0.118 (8)0.161 (9)0.145 (8)0.028 (7)0.007 (7)0.074 (7)
O4W0.124 (17)0.124 (18)0.29 (3)0.002 (12)0.067 (18)0.12 (2)
O5W'0.14 (2)0.14 (2)0.14 (2)0.042 (7)0.016 (3)0.026 (4)
O5W0.134 (11)0.133 (11)0.133 (11)0.041 (4)0.0156 (17)0.026 (2)
C10.029 (3)0.031 (3)0.029 (3)0.013 (2)0.001 (2)0.004 (2)
C20.049 (4)0.048 (4)0.036 (3)0.016 (3)0.012 (3)0.001 (3)
C30.072 (5)0.039 (4)0.069 (5)0.024 (4)0.014 (4)0.003 (4)
C40.071 (5)0.034 (4)0.068 (5)0.017 (3)0.009 (4)0.009 (3)
C50.054 (4)0.040 (4)0.045 (4)0.009 (3)0.002 (3)0.015 (3)
C60.033 (3)0.036 (3)0.028 (3)0.015 (2)0.001 (2)0.007 (2)
C70.038 (3)0.030 (3)0.026 (3)0.014 (2)0.002 (2)0.004 (2)
C80.027 (3)0.057 (4)0.023 (3)0.014 (3)0.002 (2)0.005 (3)
C90.037 (3)0.060 (4)0.034 (3)0.007 (3)0.002 (3)0.009 (3)
C100.054 (5)0.069 (5)0.052 (4)0.001 (4)0.007 (4)0.019 (4)
C110.028 (3)0.090 (6)0.051 (4)0.001 (4)0.001 (3)0.003 (4)
C120.030 (3)0.083 (6)0.044 (4)0.015 (4)0.001 (3)0.009 (4)
C130.032 (3)0.063 (4)0.026 (3)0.017 (3)0.005 (2)0.004 (3)
C140.036 (3)0.049 (4)0.042 (4)0.016 (3)0.003 (3)0.011 (3)
C150.032 (3)0.039 (3)0.046 (4)0.013 (3)0.008 (3)0.011 (3)
C160.049 (4)0.047 (4)0.063 (5)0.009 (3)0.004 (3)0.010 (3)
C170.064 (5)0.046 (5)0.098 (7)0.006 (4)0.010 (5)0.005 (4)
C180.086 (7)0.038 (4)0.115 (8)0.009 (4)0.011 (6)0.014 (5)
C190.105 (7)0.050 (5)0.085 (6)0.035 (5)0.017 (6)0.029 (5)
C200.057 (4)0.049 (4)0.051 (4)0.026 (3)0.011 (3)0.014 (3)
C210.036 (3)0.050 (4)0.044 (4)0.019 (3)0.002 (3)0.007 (3)
C220.021 (2)0.024 (3)0.028 (3)0.005 (2)0.004 (2)0.006 (2)
C230.022 (3)0.018 (2)0.025 (3)0.006 (2)0.001 (2)0.000 (2)
C240.026 (3)0.018 (2)0.023 (3)0.008 (2)0.002 (2)0.005 (2)
C250.024 (3)0.030 (3)0.024 (3)0.007 (2)0.005 (2)0.003 (2)
C260.022 (3)0.029 (3)0.031 (3)0.009 (2)0.003 (2)0.003 (2)
C270.026 (3)0.020 (2)0.018 (2)0.009 (2)0.001 (2)0.0009 (19)
C280.022 (2)0.025 (3)0.020 (2)0.004 (2)0.004 (2)0.003 (2)
Geometric parameters (Å, º) top
Cu1—O11.935 (4)C2—C31.386 (10)
Cu1—O31.920 (3)C2—H2C0.9300
Cu1—O4i2.330 (4)C3—C41.384 (10)
Cu1—N11.990 (4)C3—H30.9300
Cu1—N32.004 (4)C4—C51.377 (10)
Cu2—O21.965 (3)C4—H4C0.9300
Cu2—O2ii1.965 (3)C5—C61.388 (8)
Cu2—N52.000 (5)C5—H50.9300
Cu2—N5ii2.000 (5)C7—H70.9300
S1—O51.446 (4)C8—C91.383 (9)
S1—O41.457 (4)C8—C131.400 (8)
S1—O61.469 (4)C9—C101.368 (10)
S1—C271.765 (5)C9—H90.9300
N1—C71.309 (7)C10—C111.402 (11)
N1—C11.390 (7)C10—H100.9300
N2—C71.342 (7)C11—C121.341 (11)
N2—C61.370 (7)C11—H110.9300
N2—H20.8600C12—C131.382 (9)
N3—C141.313 (8)C12—H120.9300
N3—C81.392 (7)C14—H140.9300
N4—C141.332 (8)C15—C161.395 (9)
N4—C131.377 (9)C15—C201.397 (9)
N4—H40.8600C16—C171.366 (10)
N5—C211.312 (8)C16—H160.9300
N5—C151.396 (8)C17—C181.376 (12)
N6—C211.336 (9)C17—H170.9300
N6—C201.377 (9)C18—C191.365 (13)
N6—H60.8600C18—H180.9300
O1—C221.260 (6)C19—C201.372 (11)
O2—C221.262 (6)C19—H190.9300
O3—C241.316 (6)C21—H210.9300
O4—Cu1i2.330 (4)C22—C231.483 (7)
O1W—H1B0.85 (6)C23—C281.405 (7)
O1W—H1A0.85 (5)C23—C241.413 (7)
O2W—H2A0.86 (7)C24—C251.414 (7)
O2W—H2B0.85 (5)C25—C261.366 (7)
O3W—H3A0.86 (4)C25—H250.9300
O3W—H3B0.86 (3)C26—C271.395 (7)
O4W—H4A0.850 (11)C26—H260.9300
O4W—H4B0.853 (10)C27—C281.377 (7)
C1—C21.392 (8)C28—H280.9300
C1—C61.394 (8)
O3—Cu1—O191.45 (15)N1—C7—N2112.6 (5)
O3—Cu1—N187.16 (16)N1—C7—H7123.7
O1—Cu1—N1166.81 (18)N2—C7—H7123.7
O3—Cu1—N3172.30 (18)C9—C8—N3131.6 (5)
O1—Cu1—N388.85 (17)C9—C8—C13119.6 (6)
N1—Cu1—N390.79 (18)N3—C8—C13108.8 (6)
O3—Cu1—O4i97.02 (15)C10—C9—C8117.0 (6)
O1—Cu1—O4i97.76 (16)C10—C9—H9121.5
N1—Cu1—O4i95.42 (16)C8—C9—H9121.5
N3—Cu1—O4i90.56 (17)C9—C10—C11122.2 (7)
O2—Cu2—O2ii180.000 (1)C9—C10—H10118.9
O2—Cu2—N587.02 (17)C11—C10—H10118.9
O2ii—Cu2—N592.98 (17)C12—C11—C10121.5 (7)
O2—Cu2—N5ii92.98 (17)C12—C11—H11119.3
O2ii—Cu2—N5ii87.02 (17)C10—C11—H11119.3
N5—Cu2—N5ii180.000 (1)C11—C12—C13116.8 (7)
O5—S1—O4113.4 (3)C11—C12—H12121.6
O5—S1—O6112.0 (2)C13—C12—H12121.6
O4—S1—O6110.3 (2)N4—C13—C12131.9 (6)
O5—S1—C27107.6 (2)N4—C13—C8105.3 (5)
O4—S1—C27107.3 (2)C12—C13—C8122.8 (7)
O6—S1—C27105.9 (2)N3—C14—N4113.5 (6)
C7—N1—C1105.5 (5)N3—C14—H14123.2
C7—N1—Cu1128.5 (4)N4—C14—H14123.2
C1—N1—Cu1125.7 (3)C16—C15—N5132.1 (6)
C7—N2—C6107.7 (5)C16—C15—C20118.8 (6)
C7—N2—H2126.1N5—C15—C20109.1 (6)
C6—N2—H2126.1C17—C16—C15118.2 (7)
C14—N3—C8105.0 (5)C17—C16—H16120.9
C14—N3—Cu1125.4 (4)C15—C16—H16120.9
C8—N3—Cu1129.7 (4)C16—C17—C18121.2 (8)
C14—N4—C13107.4 (5)C16—C17—H17119.4
C14—N4—H4126.3C18—C17—H17119.4
C13—N4—H4126.3C19—C18—C17122.4 (8)
C21—N5—C15105.1 (5)C19—C18—H18118.8
C21—N5—Cu2120.4 (4)C17—C18—H18118.8
C15—N5—Cu2133.3 (4)C18—C19—C20116.4 (8)
C21—N6—C20108.0 (5)C18—C19—H19121.8
C21—N6—H6126.0C20—C19—H19121.8
C20—N6—H6126.0C19—C20—N6132.2 (7)
C22—O1—Cu1128.8 (3)C19—C20—C15123.0 (7)
C22—O2—Cu2116.9 (3)N6—C20—C15104.9 (6)
C24—O3—Cu1127.9 (3)N5—C21—N6112.9 (6)
S1—O4—Cu1i136.4 (2)N5—C21—H21123.6
H1B—O1W—H1A109 (6)N6—C21—H21123.6
H2A—O2W—H2B109 (7)O1—C22—O2120.0 (5)
H3A—O3W—H3B108 (7)O1—C22—C23122.2 (4)
H4A—O4W—H4B109.4 (19)O2—C22—C23117.7 (4)
N1—C1—C2130.5 (5)C28—C23—C24119.3 (4)
N1—C1—C6108.8 (5)C28—C23—C22118.3 (4)
C2—C1—C6120.6 (5)C24—C23—C22122.3 (4)
C3—C2—C1117.2 (6)O3—C24—C23124.4 (4)
C3—C2—H2C121.4O3—C24—C25118.0 (4)
C1—C2—H2C121.4C23—C24—C25117.6 (4)
C4—C3—C2121.5 (6)C26—C25—C24122.2 (5)
C4—C3—H3119.3C26—C25—H25118.9
C2—C3—H3119.3C24—C25—H25118.9
C5—C4—C3121.9 (7)C25—C26—C27119.9 (5)
C5—C4—H4C119.0C25—C26—H26120.1
C3—C4—H4C119.0C27—C26—H26120.1
C4—C5—C6116.8 (6)C28—C27—C26119.6 (4)
C4—C5—H5121.6C28—C27—S1121.5 (4)
C6—C5—H5121.6C26—C27—S1118.9 (4)
N2—C6—C5132.8 (6)C27—C28—C23121.4 (5)
N2—C6—C1105.3 (5)C27—C28—H28119.3
C5—C6—C1121.9 (5)C23—C28—H28119.3
O3—Cu1—N1—C794.1 (5)C14—N4—C13—C80.8 (7)
O1—Cu1—N1—C7178.4 (6)C11—C12—C13—N4179.1 (7)
N3—Cu1—N1—C793.3 (5)C11—C12—C13—C80.5 (10)
O4i—Cu1—N1—C72.7 (5)C9—C8—C13—N4178.5 (5)
O3—Cu1—N1—C179.2 (4)N3—C8—C13—N40.6 (6)
O1—Cu1—N1—C15.0 (10)C9—C8—C13—C121.2 (9)
N3—Cu1—N1—C193.3 (4)N3—C8—C13—C12179.7 (6)
O4i—Cu1—N1—C1176.0 (4)C8—N3—C14—N40.3 (7)
O1—Cu1—N3—C14135.7 (5)Cu1—N3—C14—N4179.4 (4)
N1—Cu1—N3—C1431.1 (5)C13—N4—C14—N30.7 (7)
O4i—Cu1—N3—C14126.6 (5)C21—N5—C15—C16177.5 (7)
O1—Cu1—N3—C843.1 (5)Cu2—N5—C15—C1615.1 (10)
N1—Cu1—N3—C8150.1 (5)C21—N5—C15—C200.2 (7)
O4i—Cu1—N3—C854.7 (5)Cu2—N5—C15—C20167.2 (4)
O2—Cu2—N5—C2128.0 (4)N5—C15—C16—C17177.8 (7)
O2ii—Cu2—N5—C21152.0 (4)C20—C15—C16—C170.3 (11)
O2—Cu2—N5—C15166.1 (5)C15—C16—C17—C180.4 (13)
O2ii—Cu2—N5—C1513.9 (5)C16—C17—C18—C190.5 (16)
O3—Cu1—O1—C2217.0 (5)C17—C18—C19—C200.2 (15)
N1—Cu1—O1—C2266.8 (9)C18—C19—C20—N6177.7 (8)
N3—Cu1—O1—C22155.3 (5)C18—C19—C20—C150.9 (13)
O4i—Cu1—O1—C22114.3 (5)C21—N6—C20—C19178.8 (8)
N5—Cu2—O2—C22109.0 (4)C21—N6—C20—C150.0 (7)
N5ii—Cu2—O2—C2271.0 (4)C16—C15—C20—C191.0 (11)
O1—Cu1—O3—C242.4 (4)N5—C15—C20—C19179.0 (7)
N1—Cu1—O3—C24164.4 (4)C16—C15—C20—N6177.9 (6)
O4i—Cu1—O3—C24100.4 (4)N5—C15—C20—N60.1 (7)
O5—S1—O4—Cu1i70.1 (4)C15—N5—C21—N60.2 (7)
O6—S1—O4—Cu1i163.4 (3)Cu2—N5—C21—N6169.2 (4)
C27—S1—O4—Cu1i48.5 (4)C20—N6—C21—N50.1 (8)
C7—N1—C1—C2177.4 (6)Cu1—O1—C22—O2160.2 (4)
Cu1—N1—C1—C28.0 (8)Cu1—O1—C22—C2321.5 (7)
C7—N1—C1—C60.3 (6)Cu2—O2—C22—O12.5 (7)
Cu1—N1—C1—C6174.3 (4)Cu2—O2—C22—C23175.9 (3)
N1—C1—C2—C3177.4 (6)O1—C22—C23—C28166.8 (5)
C6—C1—C2—C30.1 (9)O2—C22—C23—C2811.5 (7)
C1—C2—C3—C41.1 (11)O1—C22—C23—C248.5 (8)
C2—C3—C4—C50.4 (12)O2—C22—C23—C24173.2 (5)
C3—C4—C5—C61.2 (11)Cu1—O3—C24—C236.8 (7)
C7—N2—C6—C5179.5 (6)Cu1—O3—C24—C25173.6 (3)
C7—N2—C6—C10.7 (6)C28—C23—C24—O3178.7 (5)
C4—C5—C6—N2176.4 (6)C22—C23—C24—O36.1 (8)
C4—C5—C6—C12.2 (9)C28—C23—C24—C250.9 (7)
N1—C1—C6—N20.6 (6)C22—C23—C24—C25174.4 (5)
C2—C1—C6—N2177.3 (5)O3—C24—C25—C26179.2 (5)
N1—C1—C6—C5179.6 (5)C23—C24—C25—C260.4 (7)
C2—C1—C6—C51.6 (9)C24—C25—C26—C270.4 (8)
C1—N1—C7—N20.2 (6)C25—C26—C27—C280.8 (7)
Cu1—N1—C7—N2174.6 (4)C25—C26—C27—S1179.7 (4)
C6—N2—C7—N10.6 (6)O5—S1—C27—C288.2 (5)
C14—N3—C8—C9178.8 (6)O4—S1—C27—C28130.6 (4)
Cu1—N3—C8—C92.2 (9)O6—S1—C27—C28111.7 (4)
C14—N3—C8—C130.2 (6)O5—S1—C27—C26171.3 (4)
Cu1—N3—C8—C13178.8 (4)O4—S1—C27—C2648.9 (5)
N3—C8—C9—C10179.8 (6)O6—S1—C27—C2668.8 (4)
C13—C8—C9—C100.9 (9)C26—C27—C28—C230.3 (7)
C8—C9—C10—C110.0 (11)S1—C27—C28—C23179.8 (4)
C9—C10—C11—C120.6 (12)C24—C23—C28—C270.5 (7)
C10—C11—C12—C130.4 (11)C22—C23—C28—C27174.9 (4)
C14—N4—C13—C12179.5 (7)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O6iii0.862.012.836 (6)161
N4—H4···O2W0.861.962.822 (8)178
N6—H6···O3W0.862.042.894 (10)172
N6—H6···O1W0.862.603.099 (8)118
O1W—H1B···O3i0.85 (6)1.96 (6)2.798 (6)170 (7)
O2W—H2A···O5Wiv0.86 (7)1.90 (7)2.73 (6)162 (8)
O2W—H2A···O5Wiv0.86 (7)2.31 (6)3.03 (3)142 (8)
O2W—H2B···O6v0.85 (5)1.94 (5)2.781 (8)170 (8)
O3W—H3A···O5Wvi0.86 (4)1.78 (7)2.50 (6)140 (7)
O3W—H3A···O5Wvi0.86 (4)1.96 (4)2.81 (3)169 (9)
O3W—H3B···O2Wii0.86 (3)2.14 (6)2.874 (16)144 (8)
O4W—H4A···O5Wiv0.85 (1)1.98 (9)2.80 (7)163 (16)
O4W—H4B···O5Wvii0.85 (1)2.36 (6)3.20 (4)169 (16)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x, y, z+1; (iv) x+1, y+1, z+3; (v) x+1, y, z+1; (vi) x+1, y+2, z+2; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu3(C7H6N2)6(C7H3SO6)2]·8H2O
Mr1473.88
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)11.1489 (6), 11.9699 (6), 12.5693 (6)
α, β, γ (°)99.302 (1), 93.690 (1), 107.155 (1)
V3)1570.48 (14)
Z1
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.33 × 0.21 × 0.10
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.701, 0.893
No. of measured, independent and
observed [I > 2σ(I)] reflections
11391, 5475, 5149
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.161, 1.22
No. of reflections5475
No. of parameters464
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.66

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond angles (º) top
O3—Cu1—O191.45 (15)N3—Cu1—O4i90.56 (17)
O3—Cu1—N187.16 (16)O2—Cu2—O2ii180.000 (1)
O1—Cu1—N1166.81 (18)O2—Cu2—N587.02 (17)
O3—Cu1—N3172.30 (18)O2ii—Cu2—N592.98 (17)
O1—Cu1—N388.85 (17)N5—Cu2—N5ii180.000 (1)
N1—Cu1—N390.79 (18)O5—S1—O4113.4 (3)
O3—Cu1—O4i97.02 (15)O5—S1—O6112.0 (2)
O1—Cu1—O4i97.76 (16)O4—S1—O6110.3 (2)
N1—Cu1—O4i95.42 (16)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O6iii0.862.012.836 (6)160.5
N4—H4···O2W0.861.962.822 (8)177.9
N6—H6···O3W0.862.042.894 (10)172.0
N6—H6···O1W0.862.603.099 (8)118.4
O1W—H1B···O3i0.85 (6)1.96 (6)2.798 (6)170 (7)
O2W—H2A···O5W'iv0.86 (7)1.90 (7)2.73 (6)162 (8)
O2W—H2A···O5Wiv0.86 (7)2.31 (6)3.03 (3)142 (8)
O2W—H2B···O6v0.85 (5)1.94 (5)2.781 (8)170 (8)
O3W—H3A···O5W'vi0.86 (4)1.78 (7)2.50 (6)140 (7)
O3W—H3A···O5Wvi0.86 (4)1.96 (4)2.81 (3)169 (9)
O3W—H3B···O2Wii0.86 (3)2.14 (6)2.874 (16)144 (8)
O4W—H4A···O5W'iv0.850 (11)1.98 (9)2.80 (7)163 (16)
O4W—H4B···O5Wvii0.853 (10)2.36 (6)3.20 (4)169 (16)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x, y, z+1; (iv) x+1, y+1, z+3; (v) x+1, y, z+1; (vi) x+1, y+2, z+2; (vii) x, y1, z.
Comparison of bond lengths (Å) in three copper complexes with trinuclear units top
Bond(I)(II)(III)
Cu—Na2.000 (5)1.973 (2)
Cu—O(COO)a1.965 (3)1.960 (4)1.9447 (19)
Cu—O(COO)a2.486 (4)
Cu—N1.990 (4)1.991 (5)1.977 (2)
Cu—N2.004 (4)1.996 (5)1.992 (2)
Cu—O(phenolato)1.920 (3)1.881 (4)1.900 (2)
Cu—O(COO)1.935 (4)1.933 (4)1.942 (2)
Cu—O(SO3)2.330 (4)2.546 (4)2.318 (2)
Notes: (a) The distance involving the Cu atom in a special position.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds