Download citation
Download citation
link to html
The title compound, C16H12N2S4, was synthesized by reaction of 1,2-di­bromo­ethane with the sodium salt of 2-mer­capto­benzo­thia­zole. The mol­ecule has an approximate inversion centre, with two benzo­thia­zole fragments having an antiparallel orientation, their least-squares planes forming a dihedral angle of 4.12 (12)°. The central four-atom S—C—C—S link is almost planar, its plane being approximately orthogonal to the benzo­thia­zole planes [dihedral angles 84.98 (14) and 84.13 (15)°]. Intermolecular S...S interactions [3.657 (3) Å] link the mol­ecules in the crystal structure into infinite chains stretching along the [10\overline 1] direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803004264/ya6152sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803004264/ya6152Isup2.hkl
Contains datablock I

CCDC reference: 209908

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.039
  • wR factor = 0.094
  • Data-to-parameter ratio = 14.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Numerous flexible or rigid multi-thioether ligands containing N-heterocyclic entities have been synthesized and studied. They attract substantial attention due to their diverse coordination capabilities and important properties of their metal complexes (Bu et al., 2002; Hong et al., 2000; Alcock et al., 1978). In addition, studies of the S-containing compounds have also been carried out with the goal of designing an improved optical sensor for the AgI ion (Lerchi et al., 1996). As a continuation of our systematic studies of the coordination chemistry of various multi-thioether ligands and the architecture of their polymeric metal complexes, a dithioether ligand with `terminal' benzothiazole groups, namely 1,2-bis(benzothiazol-2-ylsulfanyl)ethane, (I), has been synthesized.

As shown in Fig. 1, the molecule of (I) has an approximate inversion centre, with two benzothiazole rings having an antiparallel orientation, the dihedral angle formed by their mean planes being 4.12 (12)°. The central four-atom S—C—C—S link is planar to within 0.01 Å and almost orthogonal to benzothiazole mean planes, the dihedral angles being 84.98 (14) and 84.13 (15)° for the S1- and S4-containing benzothiazole systems, respectively.

Intermolecular S1···S4i interactions [3.657 (3) Å; symmetry code (i): 0.5 + x, 0.5 − y, −0.5 + z] link the molecules in crystal into the infinite chains stretching along the [101] direction. In addition, ππ-stacking interactions between the benzothiazole fragments of the neighbouring molecules is observed; the average separation between the corresponding atoms is 3.895 Å.

Experimental top

The title compound has been synthesized by the reaction of 1,2-dibromoethane and the sodium salt of 2-mercaptobenzothiazole in EtOH at 353 K, as described by Liu et al. (2001) (yield: 80%, m.p.: 411–413 K). Yellow single crystals of the title compound were obtained by recrystallization from chloroform.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the title compound, with displacement ellipsoids at the 30% probability level. H atoms have been omitted.
1,2-bis(benzothiazol-2-ylsulfanyl)ethane top
Crystal data top
C16H12N2S4F(000) = 744
Mr = 360.53Dx = 1.514 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.534 (4) ÅCell parameters from 719 reflections
b = 10.719 (4) Åθ = 3.7–25.6°
c = 14.006 (5) ŵ = 0.60 mm1
β = 114.029 (5)°T = 293 K
V = 1581.5 (10) Å3Needle, yellow
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2791 independent reflections
Radiation source: fine-focus sealed tube1833 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.841, Tmax = 0.890k = 126
6363 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.2548P]
where P = (Fo2 + 2Fc2)/3
2791 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H12N2S4V = 1581.5 (10) Å3
Mr = 360.53Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.534 (4) ŵ = 0.60 mm1
b = 10.719 (4) ÅT = 293 K
c = 14.006 (5) Å0.30 × 0.25 × 0.20 mm
β = 114.029 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2791 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1833 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 0.890Rint = 0.037
6363 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
2791 reflectionsΔρmin = 0.21 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.71656 (7)0.53816 (7)0.11326 (6)0.0529 (2)
S20.73711 (8)0.40329 (8)0.30512 (6)0.0618 (3)
S30.43280 (8)0.33636 (8)0.41476 (7)0.0626 (3)
S40.43831 (7)0.19798 (8)0.59982 (6)0.0591 (3)
N10.5573 (2)0.5757 (2)0.19906 (17)0.0461 (6)
N20.6112 (2)0.1659 (2)0.52809 (18)0.0466 (6)
C10.5964 (2)0.6467 (2)0.0549 (2)0.0415 (7)
C20.5719 (3)0.7194 (3)0.0323 (2)0.0533 (8)
H20.62170.71340.07020.064*
C30.4708 (3)0.8019 (3)0.0618 (2)0.0645 (9)
H30.45230.85180.12050.077*
C40.3975 (3)0.8107 (3)0.0054 (3)0.0639 (9)
H40.33050.86720.02650.077*
C50.4210 (3)0.7377 (3)0.0819 (2)0.0553 (8)
H50.37040.74430.11910.066*
C60.5217 (2)0.6542 (2)0.1129 (2)0.0419 (7)
C70.6560 (3)0.5113 (3)0.2078 (2)0.0449 (7)
C80.6432 (3)0.4090 (3)0.3827 (2)0.0626 (9)
H8A0.69540.38260.45360.075*
H8B0.61690.49430.38560.075*
C90.5291 (3)0.3279 (3)0.3388 (2)0.0595 (8)
H9A0.55560.24220.33760.071*
H9B0.47800.35290.26740.071*
C100.5096 (3)0.2275 (3)0.5127 (2)0.0459 (7)
C110.6412 (3)0.0865 (2)0.6133 (2)0.0425 (7)
C120.7435 (3)0.0061 (3)0.6508 (2)0.0523 (8)
H120.79890.00090.61790.063*
C130.7629 (3)0.0663 (3)0.7374 (2)0.0600 (8)
H130.83270.11930.76330.072*
C140.6800 (3)0.0611 (3)0.7862 (2)0.0629 (9)
H140.69400.11130.84400.075*
C150.5769 (3)0.0179 (3)0.7498 (2)0.0586 (8)
H150.52150.02180.78280.070*
C160.5575 (3)0.0913 (3)0.6633 (2)0.0467 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0522 (5)0.0555 (5)0.0584 (5)0.0106 (4)0.0302 (4)0.0053 (4)
S20.0555 (5)0.0658 (6)0.0626 (5)0.0109 (4)0.0225 (4)0.0205 (4)
S30.0566 (5)0.0582 (6)0.0728 (6)0.0083 (4)0.0260 (5)0.0143 (4)
S40.0499 (5)0.0646 (6)0.0737 (6)0.0013 (4)0.0363 (4)0.0041 (4)
N10.0448 (14)0.0468 (15)0.0511 (14)0.0024 (12)0.0241 (12)0.0053 (12)
N20.0469 (14)0.0470 (15)0.0508 (14)0.0013 (12)0.0250 (12)0.0022 (12)
C10.0435 (16)0.0363 (16)0.0455 (16)0.0041 (13)0.0190 (13)0.0055 (13)
C20.062 (2)0.055 (2)0.0506 (18)0.0031 (16)0.0302 (16)0.0036 (16)
C30.071 (2)0.057 (2)0.062 (2)0.0013 (18)0.0240 (18)0.0206 (17)
C40.055 (2)0.051 (2)0.084 (2)0.0108 (16)0.0258 (19)0.0147 (18)
C50.0495 (19)0.0479 (19)0.077 (2)0.0048 (15)0.0342 (18)0.0042 (17)
C60.0412 (16)0.0364 (16)0.0483 (17)0.0055 (13)0.0183 (14)0.0007 (13)
C70.0445 (17)0.0435 (17)0.0470 (17)0.0034 (14)0.0191 (14)0.0010 (13)
C80.071 (2)0.062 (2)0.0474 (18)0.0081 (18)0.0162 (17)0.0064 (16)
C90.067 (2)0.055 (2)0.0495 (18)0.0037 (16)0.0159 (16)0.0057 (15)
C100.0437 (17)0.0446 (17)0.0508 (17)0.0091 (14)0.0207 (14)0.0051 (14)
C110.0434 (16)0.0392 (16)0.0454 (16)0.0082 (13)0.0185 (14)0.0027 (14)
C120.0577 (19)0.0518 (19)0.0544 (19)0.0016 (16)0.0299 (16)0.0003 (15)
C130.062 (2)0.052 (2)0.060 (2)0.0047 (16)0.0188 (17)0.0059 (17)
C140.072 (2)0.063 (2)0.0506 (19)0.0170 (19)0.0214 (18)0.0040 (17)
C150.064 (2)0.063 (2)0.056 (2)0.0191 (18)0.0329 (18)0.0065 (17)
C160.0470 (17)0.0461 (18)0.0518 (17)0.0112 (14)0.0251 (15)0.0053 (14)
Geometric parameters (Å, º) top
S1—C11.738 (3)C4—H40.93
S1—C71.754 (3)C5—C61.388 (4)
S2—C71.742 (3)C5—H50.93
S2—C81.821 (3)C8—C91.486 (4)
S3—C91.827 (3)C8—H8A0.97
S3—C101.743 (3)C8—H8B0.97
S4—C101.755 (3)C9—H9A0.97
S4—C161.730 (3)C9—H9B0.97
N1—C61.390 (3)C11—C121.380 (4)
N1—C71.294 (3)C11—C161.406 (4)
N2—C101.284 (3)C12—C131.379 (4)
N2—C111.391 (3)C12—H120.93
C1—C21.378 (4)C13—C141.385 (4)
C1—C61.406 (3)C13—H130.93
C2—C31.385 (4)C14—C151.377 (4)
C2—H20.93C14—H140.93
C3—C41.376 (4)C15—C161.384 (4)
C3—H30.93C15—H150.93
C4—C51.383 (4)
C1—S1—C788.77 (13)C9—C8—H8B109.2
C7—S2—C8100.64 (14)S2—C8—H8B109.2
C10—S3—C9100.98 (14)H8A—C8—H8B107.9
C16—S4—C1088.73 (13)C8—C9—S3112.1 (2)
C7—N1—C6110.0 (2)C8—C9—H9A109.2
C10—N2—C11110.5 (2)S3—C9—H9A109.2
C2—C1—C6121.7 (3)C8—C9—H9B109.2
C2—C1—S1129.2 (2)S3—C9—H9B109.2
C6—C1—S1109.0 (2)H9A—C9—H9B107.9
C1—C2—C3118.0 (3)N2—C10—S3127.8 (2)
C1—C2—H2121.0N2—C10—S4116.4 (2)
C3—C2—H2121.0S3—C10—S4115.86 (17)
C4—C3—C2120.8 (3)C12—C11—N2125.8 (2)
C4—C3—H3119.6C12—C11—C16119.2 (3)
C2—C3—H3119.6N2—C11—C16115.0 (2)
C3—C4—C5121.6 (3)C13—C12—C11119.6 (3)
C3—C4—H4119.2C13—C12—H12120.2
C5—C4—H4119.2C11—C12—H12120.2
C4—C5—C6118.7 (3)C12—C13—C14120.9 (3)
C4—C5—H5120.7C12—C13—H13119.5
C6—C5—H5120.7C14—C13—H13119.5
C5—C6—N1125.2 (2)C15—C14—C13120.5 (3)
C5—C6—C1119.2 (3)C15—C14—H14119.7
N1—C6—C1115.6 (2)C13—C14—H14119.7
N1—C7—S2126.9 (2)C14—C15—C16118.8 (3)
N1—C7—S1116.5 (2)C14—C15—H15120.6
S2—C7—S1116.60 (16)C16—C15—H15120.6
C9—C8—S2112.0 (2)C15—C16—C11121.0 (3)
C9—C8—H8A109.2C15—C16—S4129.6 (2)
S2—C8—H8A109.2C11—C16—S4109.3 (2)
C7—S1—C1—C2179.5 (3)C10—S3—C9—C884.6 (2)
C7—S1—C1—C60.7 (2)C11—N2—C10—S3179.0 (2)
C6—C1—C2—C30.3 (4)C11—N2—C10—S40.4 (3)
S1—C1—C2—C3178.4 (2)C9—S3—C10—N23.9 (3)
C1—C2—C3—C40.1 (5)C9—S3—C10—S4175.54 (16)
C2—C3—C4—C50.5 (5)C16—S4—C10—N20.2 (2)
C3—C4—C5—C60.4 (5)C16—S4—C10—S3179.31 (17)
C4—C5—C6—N1179.5 (3)C10—N2—C11—C12179.3 (3)
C4—C5—C6—C10.0 (4)C10—N2—C11—C160.6 (3)
C7—N1—C6—C5178.8 (3)N2—C11—C12—C13179.0 (3)
C7—N1—C6—C10.7 (3)C16—C11—C12—C131.1 (4)
C2—C1—C6—C50.3 (4)C11—C12—C13—C141.1 (5)
S1—C1—C6—C5178.6 (2)C12—C13—C14—C150.8 (5)
C2—C1—C6—N1179.9 (2)C13—C14—C15—C160.4 (5)
S1—C1—C6—N11.0 (3)C14—C15—C16—C110.3 (4)
C6—N1—C7—S2178.4 (2)C14—C15—C16—S4179.9 (2)
C6—N1—C7—S10.1 (3)C12—C11—C16—C150.7 (4)
C8—S2—C7—N10.7 (3)N2—C11—C16—C15179.4 (2)
C8—S2—C7—S1179.25 (16)C12—C11—C16—S4179.5 (2)
C1—S1—C7—N10.4 (2)N2—C11—C16—S40.4 (3)
C1—S1—C7—S2179.05 (17)C10—S4—C16—C15179.7 (3)
C7—S2—C8—C983.2 (2)C10—S4—C16—C110.1 (2)
S2—C8—C9—S3178.60 (15)

Experimental details

Crystal data
Chemical formulaC16H12N2S4
Mr360.53
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.534 (4), 10.719 (4), 14.006 (5)
β (°) 114.029 (5)
V3)1581.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.841, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
6363, 2791, 1833
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.094, 1.00
No. of reflections2791
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.21

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
S1—C11.738 (3)S4—C101.755 (3)
S1—C71.754 (3)S4—C161.730 (3)
S2—C71.742 (3)N1—C61.390 (3)
S2—C81.821 (3)N1—C71.294 (3)
S3—C91.827 (3)N2—C101.284 (3)
S3—C101.743 (3)N2—C111.391 (3)
C7—S2—C8100.64 (14)C10—S3—C9100.98 (14)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds