Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title mol­ecule, C19H15NO2, exists in the enolized form and displays a strong intramolecular hydrogen bond. The structure supports the hypothesis that the conjugation in the mol­ecule is a determining factor for the position of the enol H atom. The packing of the mol­ecules is dominated by weak N—H...C and C—H...C interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803003192/ya6151sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803003192/ya6151Isup2.hkl
Contains datablock I

CCDC reference: 209973

Key indicators

  • Single-crystal X-ray study
  • T = 105 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.037
  • wR factor = 0.097
  • Data-to-parameter ratio = 11.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSMU_01 Alert C The ratio of given/expected absorption coefficient lies outside the range 0.99 <> 1.01 Calculated value of mu = 0.088 Value of mu given = 0.090 STRVAL_01 From the CIF: _refine_ls_abs_structure_Flack -1.800 From the CIF: _refine_ls_abs_structure_Flack_su 1.400 Alert C Flack parameter is too small PLAT_420 Alert C D-H Without Acceptor N - H(1N) ? General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.00 From the CIF: _reflns_number_total 3044 Count of symmetry unique reflns 1570 Completeness (_total/calc) 193.89% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1474 Fraction of Friedel pairs measured 0.939 Are heavy atom types Z>Si present no ALERT: MoKa measured Friedel data cannot be used to determine absolute structure in a light-atom study EXCEPT under VERY special conditions. It is preferred that Friedel data is merged in such cases.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

The 5-(1H-indol-3-yl)-1-phenyl-pent-4-ene-1,3-dione (IPPD) molecule, (I), depicted in Fig. 1, is essentially planar as a result of the conjugation throughout the pentene chain. The largest deviation (observed for the O1 atom) from the least-squares plane of all non-hydrogen atoms is less than 0.21 Å; the mean deviation for all non-hydrogen atoms from this plane is less than 0.06 Å. The dihedral angle formed by the planes of the phenyl and the indolyl groups is 2.7 (1)°.

The distance of 2.498 (2) Å between the O1 and O2 atoms indicates a strong intramolecular hydrogen bond. Even though the enol hydrogen atom appears to be closer to O2, the difference between the distances to two oxygen atoms [H200—O2 1.20 (5) and H200—O1 1.37 (5) Å] is almost within experimental error. However, a statistically more significant difference in the O1—C7 and O2—C9 bond lengths [1.285 (3) and 1.320 (3) Å, respectively] points in the same direction, and is in a good agreement with the observation that the enol hydrogen atom is more tightly bonded to the O2 than to the O1 atom. This finding is in accordance with the principle of the longest possible conjugation in the molecule, as observed in several related compounds (Arrieta & Mostad, 2001; Arrieta & Mostad, 2002a; Arrieta & Mostad, 2002b) The details of the geometry of the intramolecular hydrogen bond and of the intermolecular short contacts (see below) are given in Table 2.

The crystal structure of the present compound is quite similar to that of 1,5-diphenylpent-4-ene-1,3-dione in that the molecules form layers normal to the longest unit cell axis (Arrieta & Mostad, 2002b). The contacts between the layers involve the atoms of phenyl and indolyl rings, the shortest distances being 3.07 (3) Å for H3···C15v [symmetry code (v): 1.5 − x, y, z + 0.5] and 3.02 (3) Å for H16···C2vi [symmetry code (vi): 2 − x, 1 − y, −0.5 + z]. Each molecule within the layer is in contact with six neighbours as illustrated in Fig 3. The shortest intermolecular distance of 2.50 (3) Å is found between the H1N and C13D atoms [symmetry code (D): x − 0.5, −y, z]. The dihedral angles formed by the planes of the aromatic units in neighbouring molecules are 56.8 (1)° for the phenyl rings and 55.4 (1)° for the indolyl rings. This packing mode, where the neigbouring aromatic rings form the angles of 70±20° to each other and a C—H bond in one ring is pointing towards the π-electrons of the other, is repeatedly encountered in crystal structures of similar molecules (Mostad, 1994; Arrieta & Mostad, 2002a; Arrieta & Mostad, 2002b).

Experimental top

The compound was synthesized by condensation of benzoylacetone with 1H-indol-3-carbaldehyde according to a known procedure (Arrieta et al., 1992). Melting point 479–480 K (ethanol). The crystals used in the X-ray experiments were recrystallized from a mixture of ethanol/acetone (10:1).

Refinement top

All hydrogen atoms were located from the difference Fourier map and refined in an isotropic approximation. The C—H distances are in the range 0.87–1.02 Å; N—H is found to be 0.85 (5) Å.

As one would expect, due to the lack of anomalous scatterers the absolute structure determination (Flack, 1983) was inconclusive.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The IPPD molecule, showing the atom-numberingscheme, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of IPPD molecules in the crystal, viewed down the b axis.
[Figure 3] Fig. 3. The interaction between neighbouring molecules in the layers of the crystal structure of IPPD. [Symmetry codes: (A) 0.5 + x, 2 − y, z; (B) 0.5 + x, 1 − y, z; (C) 0.5 + x, −y, z; (D) x − 0.5, −y, z; (E) x − 0.5, 1 − y, z; (F) x − 0.5, 2 − y, z.]
1-phenyl-5-(3-indolyl)-pent-4-ene-1,3-dione top
Crystal data top
C19H15NO2Dx = 1.354 Mg m3
Mr = 289.31Melting point: 480 K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
a = 7.6712 (15) ÅCell parameters from 6355 reflections
b = 5.6251 (11) Åθ = 2.0–27.0°
c = 32.773 (7) ŵ = 0.09 mm1
V = 1414.2 (5) Å3T = 105 K
Z = 4Plates, red
F(000) = 6080.4 × 0.4 × 0.15 mm
Data collection top
Bruker SMART
diffractometer
3044 independent reflections
Radiation source: fine-focus sealed tube2508 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 8 pixels mm-1θmax = 27.0°, θmin = 1.2°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
k = 77
Tmin = 0.876, Tmax = 0.965l = 4141
14386 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037All H-atom parameters refined
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0532P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
3044 reflectionsΔρmax = 0.16 e Å3
259 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 1.8 (14)
Crystal data top
C19H15NO2V = 1414.2 (5) Å3
Mr = 289.31Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 7.6712 (15) ŵ = 0.09 mm1
b = 5.6251 (11) ÅT = 105 K
c = 32.773 (7) Å0.4 × 0.4 × 0.15 mm
Data collection top
Bruker SMART
diffractometer
3044 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2508 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.965Rint = 0.052
14386 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037All H-atom parameters refined
wR(F2) = 0.097Δρmax = 0.16 e Å3
S = 1.09Δρmin = 0.19 e Å3
3044 reflectionsAbsolute structure: Flack (1983)
259 parametersAbsolute structure parameter: 1.8 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8753 (3)1.0093 (3)0.94133 (5)0.0370 (4)
O20.9308 (2)0.8529 (3)0.87118 (5)0.0333 (4)
H2000.928 (6)0.964 (8)0.9023 (14)0.102 (14)*
N0.7701 (2)0.0183 (3)0.74798 (6)0.0247 (4)
H1N0.715 (3)0.145 (5)0.7420 (7)0.033 (7)*
C10.7848 (3)0.9531 (4)1.02260 (7)0.0238 (5)
H10.847 (3)1.094 (4)1.0131 (7)0.026 (6)*
C20.7326 (3)0.9276 (4)1.06316 (7)0.0267 (5)
H20.753 (4)1.059 (5)1.0831 (8)0.033 (7)*
C30.6404 (3)0.7276 (4)1.07519 (7)0.0273 (5)
H30.603 (3)0.704 (4)1.1015 (8)0.021 (6)*
C40.5974 (3)0.5543 (4)1.04686 (7)0.0276 (5)
H40.522 (3)0.414 (4)1.0554 (6)0.018 (6)*
C50.6484 (3)0.5789 (4)1.00636 (7)0.0250 (5)
H50.620 (3)0.465 (3)0.9896 (6)0.006 (5)*
C60.7435 (3)0.7790 (4)0.99375 (6)0.0229 (5)
C70.8039 (3)0.8105 (4)0.95101 (7)0.0247 (5)
C80.7890 (3)0.6264 (4)0.92177 (7)0.0269 (5)
H80.743 (3)0.482 (5)0.9298 (8)0.035 (7)*
C90.8509 (3)0.6554 (4)0.88231 (7)0.0251 (5)
C100.8283 (3)0.4692 (4)0.85197 (7)0.0272 (5)
H100.763 (3)0.328 (5)0.8631 (7)0.032 (7)*
C110.8859 (3)0.4849 (4)0.81351 (7)0.0230 (4)
H110.944 (3)0.627 (4)0.8060 (7)0.024 (6)*
C120.8584 (3)0.3088 (4)0.78176 (7)0.0227 (4)
C130.9169 (3)0.3255 (3)0.73982 (6)0.0195 (4)
C141.0112 (3)0.4936 (4)0.71737 (7)0.0212 (4)
H141.040 (3)0.646 (5)0.7292 (8)0.036 (7)*
C151.0470 (3)0.4501 (4)0.67646 (7)0.0240 (5)
H151.105 (3)0.563 (5)0.6603 (8)0.034 (7)*
C160.9867 (3)0.2412 (4)0.65718 (8)0.0258 (5)
H161.013 (3)0.213 (4)0.6295 (8)0.027 (6)*
C170.8917 (3)0.0729 (4)0.67845 (7)0.0233 (5)
H170.852 (3)0.059 (4)0.6639 (7)0.025 (6)*
C180.8577 (3)0.1163 (3)0.71976 (7)0.0211 (4)
C190.7689 (3)0.0959 (4)0.78478 (7)0.0247 (5)
H190.719 (3)0.020 (4)0.8097 (8)0.022 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0559 (11)0.0283 (8)0.0266 (9)0.0120 (8)0.0054 (8)0.0016 (7)
O20.0466 (10)0.0276 (8)0.0258 (9)0.0067 (8)0.0053 (8)0.0019 (7)
N0.0232 (10)0.0192 (8)0.0315 (11)0.0025 (7)0.0018 (8)0.0018 (8)
C10.0259 (12)0.0203 (10)0.0252 (12)0.0014 (9)0.0005 (9)0.0000 (8)
C20.0273 (12)0.0269 (11)0.0261 (12)0.0040 (9)0.0012 (10)0.0055 (9)
C30.0293 (12)0.0310 (12)0.0217 (11)0.0047 (10)0.0012 (10)0.0021 (10)
C40.0291 (12)0.0256 (11)0.0281 (12)0.0013 (10)0.0003 (10)0.0026 (9)
C50.0274 (12)0.0233 (11)0.0242 (12)0.0010 (9)0.0030 (10)0.0050 (9)
C60.0230 (10)0.0235 (10)0.0222 (11)0.0047 (9)0.0008 (9)0.0000 (8)
C70.0251 (12)0.0248 (11)0.0243 (11)0.0005 (9)0.0011 (9)0.0010 (9)
C80.0319 (13)0.0231 (11)0.0258 (12)0.0048 (9)0.0021 (9)0.0003 (9)
C90.0262 (11)0.0254 (10)0.0238 (12)0.0033 (9)0.0009 (9)0.0017 (9)
C100.0270 (11)0.0269 (12)0.0276 (13)0.0019 (9)0.0001 (10)0.0013 (9)
C110.0221 (11)0.0211 (10)0.0258 (11)0.0027 (8)0.0014 (9)0.0009 (9)
C120.0203 (10)0.0209 (9)0.0269 (11)0.0029 (8)0.0032 (9)0.0002 (9)
C130.0174 (9)0.0186 (9)0.0226 (11)0.0039 (7)0.0025 (9)0.0022 (8)
C140.0173 (10)0.0185 (9)0.0277 (11)0.0016 (8)0.0018 (9)0.0000 (9)
C150.0200 (10)0.0247 (11)0.0274 (12)0.0013 (9)0.0018 (9)0.0026 (9)
C160.0222 (11)0.0314 (12)0.0237 (11)0.0040 (10)0.0004 (9)0.0036 (9)
C170.0209 (11)0.0226 (10)0.0266 (12)0.0030 (8)0.0034 (9)0.0059 (9)
C180.0179 (10)0.0173 (9)0.0279 (12)0.0032 (7)0.0028 (9)0.0000 (8)
C190.0218 (11)0.0251 (10)0.0272 (13)0.0032 (9)0.0013 (10)0.0037 (9)
Geometric parameters (Å, º) top
O1—C71.285 (3)C8—C91.387 (3)
O1—H2001.37 (5)C8—H80.93 (3)
O2—C91.320 (3)C9—C101.455 (3)
O2—H2001.20 (5)C10—C111.339 (3)
N—C181.371 (3)C10—H101.01 (3)
N—C191.367 (3)C11—C121.452 (3)
N—H1N0.85 (3)C11—H110.95 (3)
C1—C21.396 (3)C12—C131.449 (3)
C1—C61.397 (3)C12—C191.384 (3)
C1—H10.98 (3)C13—C141.400 (3)
C2—C31.386 (3)C13—C181.422 (3)
C2—H21.00 (3)C14—C151.390 (3)
C3—C41.386 (3)C14—H140.97 (3)
C3—H30.92 (2)C15—C161.412 (3)
C4—C51.391 (3)C15—H150.94 (3)
C4—H41.02 (2)C16—C171.383 (3)
C5—C61.404 (3)C16—H160.94 (3)
C5—H50.87 (2)C17—C181.400 (3)
C6—C71.486 (3)C17—H170.93 (2)
C7—C81.415 (3)C19—H191.00 (2)
C7—O1—H200101.4 (19)C8—C9—C10120.8 (2)
C9—O2—H200101 (2)C11—C10—C9123.8 (2)
C19—N—C18109.81 (18)C11—C10—H10123.9 (15)
C19—N—H1N126.4 (17)C9—C10—H10112.3 (14)
C18—N—H1N123.4 (17)C10—C11—C12125.6 (2)
C2—C1—C6120.5 (2)C10—C11—H11117.2 (14)
C2—C1—H1121.8 (14)C12—C11—H11117.2 (14)
C6—C1—H1117.7 (14)C19—C12—C13106.10 (19)
C3—C2—C1120.1 (2)C19—C12—C11127.7 (2)
C3—C2—H2119.6 (15)C13—C12—C11126.21 (19)
C1—C2—H2120.1 (16)C14—C13—C18118.8 (2)
C4—C3—C2120.1 (2)C14—C13—C12134.62 (19)
C4—C3—H3116.8 (15)C18—C13—C12106.62 (19)
C2—C3—H3123.1 (15)C15—C14—C13119.4 (2)
C3—C4—C5120.2 (2)C15—C14—H14119.8 (15)
C3—C4—H4119.8 (12)C13—C14—H14120.5 (15)
C5—C4—H4119.9 (12)C14—C15—C16120.9 (2)
C4—C5—C6120.4 (2)C14—C15—H15121.4 (17)
C4—C5—H5117.4 (14)C16—C15—H15117.6 (17)
C6—C5—H5122.2 (14)C17—C16—C15121.1 (2)
C1—C6—C5118.7 (2)C17—C16—H16119.0 (14)
C1—C6—C7118.92 (19)C15—C16—H16119.8 (15)
C5—C6—C7122.3 (2)C16—C17—C18117.8 (2)
O1—C7—C8120.3 (2)C16—C17—H17117.2 (15)
O1—C7—C6117.98 (19)C18—C17—H17125.0 (15)
C8—C7—C6121.73 (19)N—C18—C17130.31 (19)
C9—C8—C7121.2 (2)N—C18—C13107.56 (19)
C9—C8—H8119.9 (17)C17—C18—C13122.1 (2)
C7—C8—H8118.8 (17)N—C19—C12109.9 (2)
O2—C9—C8121.02 (19)N—C19—H19121.6 (14)
O2—C9—C10118.20 (19)C12—C19—H19128.2 (14)
C6—C1—C2—C30.5 (3)C19—C12—C13—C14179.6 (2)
C1—C2—C3—C41.0 (4)C11—C12—C13—C141.0 (4)
C2—C3—C4—C50.8 (4)C19—C12—C13—C180.1 (2)
C3—C4—C5—C60.1 (4)C11—C12—C13—C18178.71 (19)
C2—C1—C6—C50.2 (3)C18—C13—C14—C151.1 (3)
C2—C1—C6—C7178.96 (19)C12—C13—C14—C15179.3 (2)
C4—C5—C6—C10.4 (3)C13—C14—C15—C161.2 (3)
C4—C5—C6—C7178.7 (2)C14—C15—C16—C170.6 (3)
C1—C6—C7—O17.5 (3)C15—C16—C17—C180.2 (3)
C5—C6—C7—O1173.4 (2)C19—N—C18—C17179.8 (2)
C1—C6—C7—C8170.7 (2)C19—N—C18—C130.7 (2)
C5—C6—C7—C88.4 (3)C16—C17—C18—N179.1 (2)
O1—C7—C8—C90.2 (3)C16—C17—C18—C130.2 (3)
C6—C7—C8—C9177.9 (2)C14—C13—C18—N179.89 (17)
C7—C8—C9—O22.2 (3)C12—C13—C18—N0.4 (2)
C7—C8—C9—C10177.3 (2)C14—C13—C18—C170.4 (3)
O2—C9—C10—C111.0 (3)C12—C13—C18—C17179.87 (19)
C8—C9—C10—C11179.5 (2)C18—N—C19—C120.8 (2)
C9—C10—C11—C12176.7 (2)C13—C12—C19—N0.6 (2)
C10—C11—C12—C190.4 (4)C11—C12—C19—N179.1 (2)
C10—C11—C12—C13178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···C5i0.98 (3)2.96 (3)3.872 (3)155.4 (19)
C4—H4···C1ii1.02 (2)2.95 (2)3.812 (3)142.4 (15)
C14—H14···Niii0.97 (3)2.87 (3)3.459 (3)120.1 (19)
N—H1N···C13iv0.85 (3)2.50 (3)3.225 (3)143 (2)
C3—H3···C15v0.92 (2)3.07 (3)3.939 (3)159.7 (18)
C16—H16···C2vi0.94 (3)3.02 (3)3.877 (3)150.9 (19)
O2—H200···O11.20 (5)1.37 (5)2.498 (2)154 (4)
Symmetry codes: (i) x+1/2, y+2, z; (ii) x1/2, y+1, z; (iii) x, y+1, z; (iv) x1/2, y, z; (v) x+3/2, y, z+1/2; (vi) x+2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC19H15NO2
Mr289.31
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)105
a, b, c (Å)7.6712 (15), 5.6251 (11), 32.773 (7)
V3)1414.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.4 × 0.4 × 0.15
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.876, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
14386, 3044, 2508
Rint0.052
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.09
No. of reflections3044
No. of parameters259
No. of restraints1
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.16, 0.19
Absolute structureFlack (1983)
Absolute structure parameter1.8 (14)

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
O1—C71.285 (3)C9—C101.455 (3)
O2—C91.320 (3)C10—C111.339 (3)
N—C181.371 (3)C11—C121.452 (3)
N—C191.367 (3)C12—C131.449 (3)
C6—C71.486 (3)C12—C191.384 (3)
C7—C81.415 (3)C13—C181.422 (3)
C8—C91.387 (3)
C19—N—C18109.81 (18)C11—C10—C9123.8 (2)
C1—C6—C7118.92 (19)C10—C11—C12125.6 (2)
C5—C6—C7122.3 (2)C19—C12—C13106.10 (19)
O1—C7—C8120.3 (2)C19—C12—C11127.7 (2)
O1—C7—C6117.98 (19)C13—C12—C11126.21 (19)
C8—C7—C6121.73 (19)C14—C13—C12134.62 (19)
C9—C8—C7121.2 (2)C18—C13—C12106.62 (19)
O2—C9—C8121.02 (19)N—C18—C17130.31 (19)
O2—C9—C10118.20 (19)N—C18—C13107.56 (19)
C8—C9—C10120.8 (2)N—C19—C12109.9 (2)
C2—C1—C6—C7178.96 (19)C7—C8—C9—O22.2 (3)
C4—C5—C6—C7178.7 (2)C7—C8—C9—C10177.3 (2)
C1—C6—C7—O17.5 (3)O2—C9—C10—C111.0 (3)
C5—C6—C7—O1173.4 (2)C8—C9—C10—C11179.5 (2)
C1—C6—C7—C8170.7 (2)C9—C10—C11—C12176.7 (2)
C5—C6—C7—C88.4 (3)C10—C11—C12—C190.4 (4)
O1—C7—C8—C90.2 (3)C10—C11—C12—C13178.7 (2)
C6—C7—C8—C9177.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···C5i0.98 (3)2.96 (3)3.872 (3)155.4 (19)
C4—H4···C1ii1.02 (2)2.95 (2)3.812 (3)142.4 (15)
C14—H14···Niii0.97 (3)2.87 (3)3.459 (3)120.1 (19)
N—H1N···C13iv0.85 (3)2.50 (3)3.225 (3)143 (2)
C3—H3···C15v0.92 (2)3.07 (3)3.939 (3)159.7 (18)
C16—H16···C2vi0.94 (3)3.02 (3)3.877 (3)150.9 (19)
O2—H200···O11.20 (5)1.37 (5)2.498 (2)154 (4)
Symmetry codes: (i) x+1/2, y+2, z; (ii) x1/2, y+1, z; (iii) x, y+1, z; (iv) x1/2, y, z; (v) x+3/2, y, z+1/2; (vi) x+2, y+1, z1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds