Download citation
Download citation
link to html
In centrosymmetric octa­methyl-1κ2C,2κ2C,3κ2C,4κ2C-tetra­kis-μ-benzoato-1:2κ2O,O′;2:3κ2O;3:4κ2O,O′;1:4κ2O-bis-μ3-oxo-1:2:3k3O;1:3:4k3O-tetratin, [[(CH3)2SnO2CC6H5]2O]2; the exocyclic Sn atom is five-coordinated and has a trans–C3SnO2 trigonal bipyramidal geometry [C—Sn—C = 139.4 (2)°] and the endocyclic Sn atom is six-coordinated and has a severely distorted trans-C2SnO4 octahedral geometry [C—Sn—C = 145.6 (2)°].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802020020/ya6140sup1.cif
Contains datablocks I, globalm

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802020020/ya6140Isup2.hkl
Contains datablock I

CCDC reference: 202277

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.034
  • wR factor = 0.080
  • Data-to-parameter ratio = 20.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

In the supramolecular self-assembled structures of dimeric 1,1,3,3-tetraorgano-1,3-dicarboxylatodistannoxanes, the monomeric R2(R'CO2)Sn—O—Sn(O2CR')R2 moieties are linked by two dative Sn O interactions involving their distannoxanyl O atoms. The dative bond is unusually short in such organotin compounds, these being typically as short as the covalent Sn—O bond, so that the covalent and dative bonds are not readily distinguished (Ng et al., 1991; Haiduc & Edelmann, 1999). The most common of the four types of such tetranuclear aggregates has two bridging and two monodentate carboxylate groups, and one Sn atom is five-coordinated, whereas the other is six-coordinated. The benzoate derivative, bis(1,1,3,3-tetramethyl-1,3-dibenzoatodistannoxane), (I), adopts this centrosymmetric conformation (Fig. 1). The five-coordinated Sn atom has a bent C2Sn skeleton [C—Sn—C = 139.4 (2) Å], as does the six-coordinated Sn atom [C—Sn—C = 145.6 (2)°]. The five-coordinated Sn atom is bonded to a monodentate benzoate group, whose –CO2 unit displays single and double C—O bonds. The single-bond atom O1 acts as a bridging atom forming a relatively short bond with the five-coordinated Sn atom [Sn1—O1 = 2.165 (3) Å] and a very long bond with the six-coordinated Sn atom [O1—Sn2i 2.800 (3) Å; symmetry code: (i) 1 − x, 1 − y, 1 − z]. The double-bond atom O2 is engaged in a weak C—HAr···OCO interaction [C15···O2ii = 3.450 (6) Å and C—H···Oii = 165°; symmetry code: (ii) −1/2 + x, 3/2 − y, 1/2 + z], which links adjacent molecules into a layer structure (Fig. 2).

A number of the distannoxanes have been isolated as the products either from the condensation of a diorganotin oxide with two molar equivalents of the carboxylic acid, or from the metathetical reaction of a diorganotin halide with metal carboxylate (Tiekink, 1991a; Tiekink, 1994). The dicarboxylate that is initially formed is unstable with respect to hydrolysis to the distannoxane. An example is shown by dimethyltin diacetate, an air-sensitive compound (Lockhart et al., 1987) that can hydrolyze to the distannoxane (Lockhart et al., 1986). On the other hand, dimethyltin dibenzoate represents an exception as it is air-stable; the monomeric compound adopts a skew-trapezoidal bipyramidal geometry [C—Sn—C = 147.2 (7)°] (Tiekink, 1991b).

Experimental top

Dimethylphenyltin iodide was obtained by the cleavage of the tin–phenyl bond by elemental iodine (Davison & Rakita, 1970; Amini et al., 1989). In an attempt to synthesize dimethylphenyltin benzoate, equimolar quantities of dimethylphenyltin iodide (0.35 g, 1 mmol) and silver benzoate (0.23 g, 1 mmol) were dissolved in ethanol to give a precipitate that was presumed to be silver iodide. The precipitate was removed and the solvent evaporated off to furnish a white material. Crystals (m.p. 514–515 K) were grown from a methanol–toluene solvent system. In the 1H NMR spectrum in CDCl3, the tin–methyl coupling constant was 90 Hz.

Refinement top

H atoms were positioned geometrically and were allowed to ride on their parent C atoms, with Uiso(H) = 1.2Ueq(C) for the aromatic C atoms and Uiso(H) = 1.5Ueq(C) for the methyl C atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the centrosymmetric 1,1,3,3-tetramethyl-1,3-dibenzoatodistannoxane dimer with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. ORTEPII (Johnson, 1976) plot of the supramolecular C—H···O interactions in bis(1,1,3,3-tetramethyl-1,3-dibenzoatodistannoxane). H atoms have been omitted.
Octamethyl-1κ2C,2κ2C,3κ2C,4κ2C-tetrakis-µ-benzoato- 1:2κ2O,O';2:3κ2O;3:4κ2O,O';1:4κ2O-bis-µ3-oxo- 1:2:3k3O;1:3:4k3O-tetratin top
Crystal data top
[Sn4O2(CH3)8(C7H5O2)4]F(000) = 1080
Mr = 1111.47Dx = 1.774 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.4001 (6) ÅCell parameters from 3680 reflections
b = 20.952 (1) Åθ = 1.9–27.5°
c = 11.2920 (7) ŵ = 2.42 mm1
β = 110.671 (2)°T = 293 K
V = 2080.8 (2) Å3Prism, colorless
Z = 20.15 × 0.05 × 0.03 mm
Data collection top
Bruker CCD area-detector
diffractometer
4785 independent reflections
Radiation source: rotating anode tube3723 reflections with I > 2σ(I)'
Graphite monochromatorRint = 0.041
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.713, Tmax = 0.931k = 2727
20323 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0227P)2 + 0.958P]
where P = (Fo2 + 2Fc2)/3
4785 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Sn4O2(CH3)8(C7H5O2)4]V = 2080.8 (2) Å3
Mr = 1111.47Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.4001 (6) ŵ = 2.42 mm1
b = 20.952 (1) ÅT = 293 K
c = 11.2920 (7) Å0.15 × 0.05 × 0.03 mm
β = 110.671 (2)°
Data collection top
Bruker CCD area-detector
diffractometer
4785 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3723 reflections with I > 2σ(I)'
Tmin = 0.713, Tmax = 0.931Rint = 0.041
20323 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.01Δρmax = 0.69 e Å3
4785 reflectionsΔρmin = 0.32 e Å3
230 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.26923 (3)0.62434 (1)0.42276 (2)0.0486 (1)
Sn20.44818 (3)0.48241 (1)0.62079 (2)0.0470 (1)
O10.3761 (3)0.6262 (1)0.2815 (3)0.059 (1)
O20.2225 (4)0.7081 (1)0.2134 (3)0.066 (1)
O30.1815 (5)0.6088 (2)0.5801 (3)0.103 (1)
O40.2867 (5)0.5279 (2)0.6996 (4)0.099 (1)
O50.4060 (3)0.5477 (2)0.4790 (2)0.050 (1)
C10.3804 (6)0.7047 (2)0.5243 (5)0.084 (2)
C20.0514 (5)0.5969 (3)0.3013 (5)0.076 (1)
C30.2861 (5)0.4097 (2)0.5528 (5)0.077 (1)
C40.6196 (6)0.5197 (2)0.7790 (5)0.082 (2)
C50.3215 (5)0.6729 (2)0.2031 (4)0.053 (1)
C60.3864 (5)0.6817 (2)0.1003 (4)0.056 (1)
C70.5113 (6)0.6492 (3)0.0992 (5)0.081 (2)
C80.5698 (7)0.6579 (3)0.0035 (6)0.103 (2)
C90.5015 (8)0.7014 (4)0.0896 (5)0.099 (2)
C100.3756 (8)0.7343 (3)0.0908 (5)0.093 (2)
C110.3195 (6)0.7246 (2)0.0045 (4)0.074 (1)
C120.2023 (5)0.5747 (2)0.6735 (4)0.054 (1)
C130.1207 (4)0.5914 (2)0.7614 (3)0.046 (1)
C140.0156 (5)0.6409 (2)0.7312 (4)0.058 (1)
C150.0611 (5)0.6558 (2)0.8107 (4)0.068 (1)
C160.0330 (5)0.6228 (2)0.9215 (4)0.067 (1)
C170.0703 (5)0.5739 (2)0.9519 (4)0.064 (1)
C180.1463 (5)0.5581 (2)0.8717 (4)0.058 (1)
H1a0.32500.72050.57510.127*
H1b0.38590.73720.46620.127*
H1c0.48140.69310.57810.127*
H2a0.05570.58490.22060.114*
H2b0.01780.63190.29050.114*
H2c0.01690.56120.33740.114*
H3a0.19280.42770.49650.116*
H3b0.26840.38950.62270.116*
H3c0.32310.37870.50820.116*
H4a0.71700.50650.77800.123*
H4b0.60670.50430.85460.123*
H4c0.61380.56540.77700.123*
H70.55850.62060.16410.097*
H80.65370.63460.00260.124*
H90.54140.70870.15290.119*
H100.32830.76290.15570.111*
H110.23470.74750.00450.088*
H140.00270.66400.65690.070*
H150.13270.68850.78930.081*
H160.08390.63350.97580.081*
H170.08920.55141.02690.077*
H180.21540.52450.89240.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0533 (2)0.0505 (2)0.0476 (2)0.0109 (1)0.0248 (1)0.0051 (1)
Sn20.0523 (2)0.0489 (2)0.0461 (2)0.0056 (1)0.0252 (1)0.0048 (1)
O10.064 (2)0.066 (2)0.058 (2)0.013 (1)0.036 (1)0.014 (1)
O20.073 (2)0.066 (2)0.067 (2)0.015 (2)0.034 (2)0.009 (2)
O30.132 (3)0.128 (3)0.080 (2)0.060 (3)0.078 (2)0.043 (2)
O40.132 (3)0.100 (3)0.102 (3)0.058 (3)0.087 (3)0.032 (2)
O50.055 (2)0.053 (2)0.051 (2)0.015 (1)0.029 (1)0.011 (1)
C10.107 (4)0.063 (3)0.075 (3)0.001 (3)0.022 (3)0.013 (3)
C20.055 (3)0.102 (4)0.075 (3)0.007 (3)0.027 (2)0.001 (3)
C30.060 (3)0.076 (3)0.096 (4)0.010 (2)0.028 (3)0.001 (3)
C40.093 (4)0.075 (3)0.069 (3)0.002 (3)0.017 (3)0.014 (3)
C50.061 (2)0.052 (2)0.050 (2)0.004 (2)0.023 (2)0.002 (2)
C60.066 (3)0.056 (2)0.050 (2)0.014 (2)0.027 (2)0.004 (2)
C70.086 (4)0.101 (4)0.072 (3)0.009 (3)0.048 (3)0.014 (3)
C80.098 (4)0.140 (6)0.097 (4)0.001 (4)0.066 (4)0.005 (4)
C90.113 (5)0.133 (5)0.072 (4)0.046 (4)0.057 (4)0.014 (4)
C100.121 (5)0.102 (4)0.061 (3)0.022 (4)0.039 (3)0.013 (3)
C110.096 (4)0.070 (3)0.058 (3)0.008 (3)0.031 (3)0.005 (2)
C120.056 (2)0.062 (3)0.049 (2)0.001 (2)0.025 (2)0.007 (2)
C130.050 (2)0.052 (2)0.040 (2)0.002 (2)0.022 (2)0.007 (2)
C140.065 (3)0.061 (3)0.050 (2)0.006 (2)0.024 (2)0.003 (2)
C150.060 (3)0.077 (3)0.072 (3)0.016 (2)0.031 (2)0.006 (3)
C160.063 (3)0.085 (3)0.068 (3)0.002 (2)0.040 (2)0.015 (3)
C170.079 (3)0.077 (3)0.048 (2)0.003 (2)0.036 (2)0.005 (2)
C180.059 (2)0.065 (3)0.057 (2)0.012 (2)0.028 (2)0.004 (2)
Geometric parameters (Å, º) top
Sn1—C12.096 (5)C15—C161.371 (6)
Sn1—C22.103 (5)C16—C171.368 (6)
Sn1—O12.165 (3)C17—C181.377 (5)
Sn1—O32.232 (3)C1—H1a0.9600
Sn1—O52.015 (2)C1—H1b0.9600
Sn2—C32.099 (5)C1—H1c0.9600
Sn2—C42.089 (5)C2—H2a0.9600
Sn2—O1i2.800 (3)C2—H2b0.9600
Sn2—O42.226 (3)C2—H2c0.9600
Sn2—O52.035 (2)C3—H3a0.9600
Sn2—O5i2.153 (2)C3—H3b0.9600
O1—C51.296 (5)C3—H3c0.9600
O2—C51.226 (5)C4—H4a0.9600
O3—C121.231 (5)C4—H4b0.9600
O4—C121.230 (5)C4—H4c0.9600
C5—C61.502 (5)C7—H70.9300
C6—C71.361 (7)C8—H80.9300
C6—C111.376 (6)C9—H90.9300
C7—C81.386 (7)C10—H100.9300
C8—C91.369 (9)C11—H110.9300
C9—C101.365 (9)C14—H140.9300
C10—C111.370 (7)C15—H150.9300
C12—C131.495 (5)C16—H160.9300
C13—C181.374 (5)C17—H170.9300
C13—C141.388 (6)C18—H180.9300
C14—C151.372 (6)
C1—Sn1—C2139.4 (2)C16—C15—C14120.4 (4)
C1—Sn1—O196.7 (2)C17—C16—C15119.9 (4)
C1—Sn1—O386.3 (2)C16—C17—C18120.1 (4)
C1—Sn1—O5109.2 (2)C13—C18—C17120.6 (4)
C2—Sn1—O197.0 (2)Sn1—C1—H1a109.5
C2—Sn1—O386.0 (2)Sn1—C1—H1b109.5
C2—Sn1—O5110.7 (2)H1a—C1—H1b109.5
O1—Sn1—O3171.0 (1)Sn1—C1—H1c109.5
O1—Sn1—O580.6 (1)H1a—C1—H1c109.5
O3—Sn1—O590.4 (1)H1b—C1—H1c109.5
C3—Sn2—C4145.6 (2)Sn1—C2—H2a109.5
C3—Sn2—O1i78.8 (2)Sn1—C2—H2b109.5
C3—Sn2—O487.0 (2)H2a—C2—H2b109.5
C3—Sn2—O5106.6 (2)Sn1—C2—H2c109.5
C3—Sn2—O5i96.3 (2)H2a—C2—H2c109.5
C4—Sn2—O1i78.3 (2)H2b—C2—H2c109.5
C4—Sn2—O485.8 (2)Sn2—C3—H3a109.5
C4—Sn2—O5107.4 (2)Sn2—C3—H3b109.5
C4—Sn2—O5i96.6 (2)H3a—C3—H3b109.5
O1i—Sn2—O4125.5 (1)Sn2—C3—H3c109.5
O1i—Sn2—O5141.3 (1)H3a—C3—H3c109.5
O1i—Sn2—O5i64.7 (1)H3b—C3—H3c109.5
O4—Sn2—O593.2 (1)Sn2—C4—H4a109.5
O4—Sn2—O5i169.8 (1)Sn2—C4—H4b109.5
O5—Sn2—O5i76.6 (1)H4a—C4—H4b109.5
C5—O1—Sn1110.0 (2)Sn2—C4—H4c109.5
C12—O3—Sn1140.8 (3)H4a—C4—H4c109.5
C12—O4—Sn2135.9 (3)H4b—C4—H4c109.5
Sn1—O5—Sn2135.2 (1)C6—C7—H7119.2
Sn1—O5—Sn2i121.4 (1)C8—C7—H7119.2
Sn2—O5—Sn2i103.4 (1)C9—C8—H8120.7
O2—C5—O1121.3 (4)C7—C8—H8120.7
O2—C5—C6121.9 (4)C10—C9—H9119.5
O1—C5—C6116.8 (4)C8—C9—H9119.5
C7—C6—C11118.4 (4)C9—C10—H10120.3
C7—C6—C5122.2 (4)C11—C10—H10120.3
C11—C6—C5119.4 (4)C10—C11—H11119.4
C6—C7—C8121.5 (5)C6—C11—H11119.4
C9—C8—C7118.5 (6)C15—C14—H14119.9
C10—C9—C8121.0 (5)C13—C14—H14119.9
C9—C10—C11119.3 (6)C16—C15—H15119.8
C10—C11—C6121.2 (5)C14—C15—H15119.8
O4—C12—O3124.3 (4)C17—C16—H16120.1
O4—C12—C13117.8 (4)C15—C16—H16120.1
O3—C12—C13117.9 (4)C16—C17—H17120.0
C18—C13—C14119.0 (3)C18—C17—H17120.0
C18—C13—C12121.1 (4)C13—C18—H18119.7
C14—C13—C12120.0 (4)C17—C18—H18119.7
C15—C14—C13120.1 (4)
O5—Sn1—O1—C5178.5 (3)Sn1—O1—C5—C6178.7 (3)
C1—Sn1—O1—C573.1 (3)O2—C5—C6—C7169.9 (5)
C2—Sn1—O1—C568.6 (3)O1—C5—C6—C79.6 (6)
O5—Sn1—O3—C125.3 (6)O2—C5—C6—C119.2 (6)
C1—Sn1—O3—C12103.9 (6)O1—C5—C6—C11171.3 (4)
C2—Sn1—O3—C12116.0 (6)C11—C6—C7—C81.0 (8)
O5—Sn2—O4—C120.7 (6)C5—C6—C7—C8179.9 (5)
C4—Sn2—O4—C12106.5 (6)C6—C7—C8—C91.6 (9)
C3—Sn2—O4—C12107.2 (6)C7—C8—C9—C102 (1)
O5i—Sn2—O4—C122 (1)C8—C9—C10—C111.7 (9)
O1i—Sn2—O4—C12178.9 (5)C9—C10—C11—C61.0 (8)
C1—Sn1—O5—Sn286.2 (3)C7—C6—C11—C100.6 (7)
C2—Sn1—O5—Sn285.9 (2)C5—C6—C11—C10179.8 (4)
O1—Sn1—O5—Sn2179.9 (2)Sn2—O4—C12—O34.8 (9)
O3—Sn1—O5—Sn20.0 (2)Sn2—O4—C12—C13174.7 (3)
C1—Sn1—O5—Sn2i94.5 (2)Sn1—O3—C12—O48.1 (9)
C2—Sn1—O5—Sn2i93.4 (2)Sn1—O3—C12—C13171.5 (4)
O1—Sn1—O5—Sn2i0.6 (1)O4—C12—C13—C184.0 (6)
O3—Sn1—O5—Sn2i179.3 (2)O3—C12—C13—C18175.6 (4)
C4—Sn2—O5—Sn187.7 (3)O4—C12—C13—C14175.2 (4)
C3—Sn2—O5—Sn186.7 (2)O3—C12—C13—C145.3 (6)
O5i—Sn2—O5—Sn1179.4 (3)C18—C13—C14—C150.1 (6)
O4—Sn2—O5—Sn11.1 (2)C12—C13—C14—C15179.0 (4)
O1i—Sn2—O5—Sn1179.4 (1)C13—C14—C15—C161.1 (7)
C4—Sn2—O5—Sn2i92.9 (2)C14—C15—C16—C171.2 (7)
C3—Sn2—O5—Sn2i92.7 (2)C15—C16—C17—C180.2 (7)
O5i—Sn2—O5—Sn2i0.0C14—C13—C18—C170.8 (6)
O4—Sn2—O5—Sn2i179.5 (2)C12—C13—C18—C17180.0 (4)
O1i—Sn2—O5—Sn2i0.0 (2)C16—C17—C18—C130.8 (7)
Sn1—O1—C5—O20.8 (5)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Sn4O2(CH3)8(C7H5O2)4]
Mr1111.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.4001 (6), 20.952 (1), 11.2920 (7)
β (°) 110.671 (2)
V3)2080.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.42
Crystal size (mm)0.15 × 0.05 × 0.03
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.713, 0.931
No. of measured, independent and
observed [I > 2σ(I)'] reflections
20323, 4785, 3723
Rint0.041
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.080, 1.01
No. of reflections4785
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.32

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Sn1—C12.096 (5)Sn2—C42.089 (5)
Sn1—C22.103 (5)Sn2—O1i2.800 (3)
Sn1—O12.165 (3)Sn2—O42.226 (3)
Sn1—O32.232 (3)Sn2—O52.035 (2)
Sn1—O52.015 (2)Sn2—O5i2.153 (2)
Sn2—C32.099 (5)
C1—Sn1—C2139.4 (2)C3—Sn2—O5i96.3 (2)
C1—Sn1—O196.7 (2)C4—Sn2—O1i78.3 (2)
C1—Sn1—O386.3 (2)C4—Sn2—O485.8 (2)
C1—Sn1—O5109.2 (2)C4—Sn2—O5107.4 (2)
C2—Sn1—O197.0 (2)C4—Sn2—O5i96.6 (2)
C2—Sn1—O386.0 (2)O1i—Sn2—O4125.5 (1)
C2—Sn1—O5110.7 (2)O1i—Sn2—O5141.3 (1)
O1—Sn1—O3171.0 (1)O1i—Sn2—O5i64.7 (1)
O1—Sn1—O580.6 (1)O4—Sn2—O593.2 (1)
O3—Sn1—O590.4 (1)O4—Sn2—O5i169.8 (1)
C3—Sn2—C4145.6 (2)O5—Sn2—O5i76.6 (1)
C3—Sn2—O1i78.8 (2)Sn1—O5—Sn2135.2 (1)
C3—Sn2—O487.0 (2)Sn1—O5—Sn2i121.4 (1)
C3—Sn2—O5106.6 (2)Sn2—O5—Sn2i103.4 (1)
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds