Download citation
Download citation
link to html
In bis(1,10-phenanthroline)­di­azido­nickel(II), [Ni(C12H8N2)2(N3)2], the nickel atom is chelated by the two heterocyclic ligands in a distorted octahedral geometry; the two azido groups occupy cis-positions in the coordination polyhedron.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802016264/ya6136sup1.cif
Contains datablocks I, ya6136

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802016264/ya6136Isup2.hkl
Contains datablock I

CCDC reference: 198302

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.027
  • wR factor = 0.072
  • Data-to-parameter ratio = 11.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The azide anion, which has the ability to bind in several modes (Sheppard et al., 1996), is an excellent unit for bridging divalent transition metal atoms such as copper, manganese and nickel. Such metal–azide complexes serve as models for the investigation of metalloenzymes and ferromagnetic/antiferromagnetic interactions (Aebersold et al., 1998; Baffert et al., 2001). The 1,10-phenanthroline complex of copper diazide exists as a dinuclear compound, which is bridged by the pseudohalide group; adjacent molecules are linked by lattice water molecules into a layer structure (Cheng et al., 2002; Prabakaran, 2002). On the other hand, manganese diazide.2(1,10-phenanthroline) is a monomeric compound (Shen et al., 1999).

Bis(1,10-phenanthroline)diazidonickel, (I), also exists as a monomeric molecule; the metal atom adopts an NiN6 octahedral geometry, and the two azido groups occupy cis positions (Fig. 1). The four dative Ni—N distances are not much different from the two Ni—N distances; the distortion of the geometry arises from the small bite of the heterocyclic donor ligands. The bond distances involving the metal atom are not significantly different from those found in the 2,2'-bipyridine analog, which crystallizes as a monohydrate (Urtiaga et al., 1995).

Adjacent molecules in the title complex are linked by a weak C20—H20···N6i interaction [C20···N6i = 3.405 (3) Å; C20—H20···N6i = 155°; symmetry code (i): x − 1, y + 1, z] into a linear chain along the diagonal direction in the ab plane (Fig. 2). Some evidence for this interaction, which involves the terminal nitrogen end of one the two azido groups, is suggested by the temperature factor of atom N6, which is only about half as large as that of the terminal nitrogen end of the second azido group, N3, which does not participate in any noticeable intermolecular interactions.

Experimental top

A mixture of nickel sulfate (1 mmol, 0.23 g), 1,10-phenanthroline (2 mmol, 0.36 g) and sodium azide (2 mmol, 0.13 g) in 50 ml of a water-ethanol mixture (1:2 v:v) was stirred for several hours at room temperature. The mixture was filtered; dark green crystals separated from the solution after a week.

Refinement top

The hydrogen atoms were positioned geometrically, and were allowed to ride on their parent carbon atoms, with U(H) = 1.2eq(C).

Computing details top

Data collection: XSCANS (Siemens, 1990); cell refinement: Siemens software PLEASE SPECIFY (Siemens, 1990); data reduction: Siemens software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-II (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. ORTEPII plot (Johnson, 1976) of bis(1,10-phenanthroline)diazidonickel with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. ORTEPII plot (Johnson, 1976) showing the intermolecular C—H···N interactions.
Bis(1,10-phenanthroline)diazidonickel(II) top
Crystal data top
C24H16N10NiZ = 2
Mr = 503.18F(000) = 516
Triclinic, P1Dx = 1.587 Mg m3
a = 8.200 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.002 (2) ÅCell parameters from 30 reflections
c = 12.408 (2) Åθ = 3.0–14.4°
α = 82.28 (2)°µ = 0.96 mm1
β = 82.26 (2)°T = 298 K
γ = 72.57 (1)°Prism, green
V = 1053.0 (3) Å30.48 × 0.34 × 0.30 mm
Data collection top
Siemens P4 four-circle
diffractometer
3277 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.012
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
ω scanh = 09
Absorption correction: empirical
ψ scan (North et al., 1968)
k = 1213
Tmin = 0.656, Tmax = 0.762l = 1414
3984 measured reflections3 standard reflections every 97 reflections
3697 independent reflections intensity decay: 2.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.2944P]
where P = (Fo2 + 2Fc2)/3
3697 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C24H16N10Niγ = 72.57 (1)°
Mr = 503.18V = 1053.0 (3) Å3
Triclinic, P1Z = 2
a = 8.200 (1) ÅMo Kα radiation
b = 11.002 (2) ŵ = 0.96 mm1
c = 12.408 (2) ÅT = 298 K
α = 82.28 (2)°0.48 × 0.34 × 0.30 mm
β = 82.26 (2)°
Data collection top
Siemens P4 four-circle
diffractometer
3277 reflections with I > 2σ(I)
Absorption correction: empirical
ψ scan (North et al., 1968)
Rint = 0.012
Tmin = 0.656, Tmax = 0.7623 standard reflections every 97 reflections
3984 measured reflections intensity decay: 2.6%
3697 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
3697 reflectionsΔρmin = 0.30 e Å3
316 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.48265 (3)0.28823 (2)0.23492 (2)0.0271 (1)
N10.6351 (3)0.4097 (2)0.1853 (2)0.0427 (4)
N20.7839 (3)0.3741 (2)0.1600 (2)0.0479 (5)
N30.9284 (4)0.3436 (3)0.1339 (3)0.115 (1)
N40.6984 (2)0.1301 (2)0.2538 (2)0.0433 (5)
N50.7032 (2)0.0339 (2)0.3089 (1)0.0372 (4)
N60.7137 (3)0.0632 (2)0.3617 (2)0.0674 (7)
N70.4621 (2)0.2553 (2)0.0767 (1)0.0300 (4)
N80.3272 (2)0.1624 (2)0.2659 (1)0.0310 (4)
N90.4475 (2)0.3285 (2)0.3981 (1)0.0299 (4)
N100.2663 (2)0.4518 (2)0.2317 (1)0.0302 (4)
C10.5289 (3)0.3040 (2)0.0164 (2)0.0380 (5)
C20.5069 (3)0.2752 (2)0.1182 (2)0.0429 (5)
C30.4149 (3)0.1918 (2)0.1245 (2)0.0414 (5)
C40.3404 (3)0.1390 (2)0.0278 (2)0.0356 (5)
C50.2423 (3)0.0502 (2)0.0249 (2)0.0450 (6)
C60.1745 (3)0.0035 (2)0.0712 (2)0.0468 (6)
C70.1976 (3)0.0389 (2)0.1735 (2)0.0375 (5)
C80.1328 (3)0.0081 (2)0.2757 (2)0.0486 (6)
C90.1687 (3)0.0279 (2)0.3686 (2)0.0487 (6)
C100.2668 (3)0.1128 (2)0.3609 (2)0.0391 (5)
C110.2949 (2)0.1247 (2)0.1735 (2)0.0298 (4)
C120.3677 (2)0.1747 (2)0.0713 (2)0.0290 (4)
C130.5355 (3)0.2639 (2)0.4804 (2)0.0367 (5)
C140.5008 (3)0.3021 (2)0.5854 (2)0.0414 (5)
C150.3731 (3)0.4108 (2)0.6069 (2)0.0417 (5)
C160.2767 (3)0.4818 (2)0.5221 (2)0.0357 (5)
C170.1401 (3)0.5981 (2)0.5356 (2)0.0456 (6)
C180.0521 (3)0.6621 (2)0.4509 (2)0.0452 (6)
C190.0901 (3)0.6159 (2)0.3448 (2)0.0368 (5)
C200.0007 (3)0.6767 (2)0.2549 (2)0.0468 (6)
C210.0425 (3)0.6250 (2)0.1579 (2)0.0481 (6)
C220.1768 (3)0.5117 (2)0.1493 (2)0.0393 (5)
C230.2230 (2)0.5031 (2)0.3289 (2)0.0299 (4)
C240.3186 (2)0.4359 (2)0.4187 (2)0.0296 (4)
H10.59330.35990.01330.046*
H20.55440.31250.18160.051*
H30.40160.17010.19200.050*
H50.22530.02450.08990.054*
H60.11070.05350.07080.056*
H80.06540.06350.28010.058*
H90.12790.00410.43670.058*
H100.29110.13580.42500.047*
H130.62410.19000.46720.044*
H140.56460.25350.64090.050*
H150.35020.43770.67680.050*
H170.11200.62970.60360.055*
H180.03480.73760.46150.054*
H200.08980.75190.26160.056*
H210.01660.66450.09770.058*
H220.20430.47690.08260.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0306 (2)0.0245 (1)0.0242 (1)0.0047 (1)0.0017 (1)0.0041 (1)
N10.045 (1)0.034 (1)0.050 (1)0.013 (1)0.000 (1)0.005 (1)
N20.045 (1)0.044 (1)0.058 (1)0.018 (1)0.005 (1)0.003 (1)
N30.045 (2)0.091 (2)0.199 (4)0.022 (2)0.016 (2)0.001 (2)
N40.039 (1)0.033 (1)0.050 (1)0.002 (1)0.001 (1)0.002 (1)
N50.035 (1)0.034 (1)0.037 (1)0.000 (1)0.002 (1)0.010 (1)
N60.077 (2)0.038 (1)0.066 (2)0.002 (1)0.006 (1)0.012 (1)
N70.035 (1)0.026 (1)0.027 (1)0.005 (1)0.002 (1)0.003 (1)
N80.031 (1)0.030 (1)0.029 (1)0.005 (1)0.000 (1)0.004 (1)
N90.035 (1)0.027 (1)0.027 (1)0.006 (1)0.003 (1)0.006 (1)
N100.031 (1)0.028 (1)0.030 (1)0.006 (1)0.003 (1)0.004 (1)
C10.050 (1)0.035 (1)0.029 (1)0.013 (1)0.001 (1)0.001 (1)
C20.053 (1)0.045 (1)0.027 (1)0.009 (1)0.002 (1)0.001 (1)
C30.044 (1)0.047 (1)0.028 (1)0.002 (1)0.012 (1)0.009 (1)
C40.032 (1)0.034 (1)0.037 (1)0.002 (1)0.013 (1)0.008 (1)
C50.040 (1)0.048 (1)0.051 (1)0.006 (1)0.020 (1)0.016 (1)
C60.036 (1)0.042 (1)0.068 (2)0.013 (1)0.016 (1)0.011 (1)
C70.026 (1)0.034 (1)0.052 (1)0.006 (1)0.006 (1)0.004 (1)
C80.033 (1)0.043 (1)0.070 (2)0.017 (1)0.001 (1)0.001 (1)
C90.042 (1)0.052 (1)0.047 (1)0.016 (1)0.011 (1)0.004 (1)
C100.037 (1)0.041 (1)0.035 (1)0.009 (1)0.006 (1)0.003 (1)
C110.023 (1)0.026 (1)0.036 (1)0.001 (1)0.004 (1)0.003 (1)
C120.027 (1)0.026 (1)0.030 (1)0.001 (1)0.006 (1)0.004 (1)
C130.042 (1)0.035 (1)0.032 (1)0.007 (1)0.007 (1)0.005 (1)
C140.053 (1)0.046 (1)0.028 (1)0.018 (1)0.008 (1)0.002 (1)
C150.053 (1)0.050 (1)0.027 (1)0.024 (1)0.004 (1)0.012 (1)
C160.040 (1)0.037 (1)0.034 (1)0.018 (1)0.006 (1)0.010 (1)
C170.047 (1)0.045 (1)0.046 (1)0.014 (1)0.013 (1)0.022 (1)
C180.039 (1)0.035 (1)0.058 (2)0.005 (1)0.010 (1)0.018 (1)
C190.030 (1)0.030 (1)0.048 (1)0.007 (1)0.003 (1)0.008 (1)
C200.035 (1)0.032 (1)0.066 (2)0.002 (1)0.006 (1)0.005 (1)
C210.042 (1)0.043 (1)0.054 (1)0.000 (1)0.016 (1)0.001 (1)
C220.038 (1)0.037 (1)0.039 (1)0.004 (1)0.008 (1)0.003 (1)
C230.028 (1)0.027 (1)0.035 (1)0.009 (1)0.003 (1)0.005 (1)
C240.032 (1)0.029 (1)0.030 (1)0.012 (1)0.003 (1)0.006 (1)
Geometric parameters (Å, º) top
Ni1—N12.073 (2)C11—C121.439 (3)
Ni1—N42.091 (2)C13—C141.389 (3)
Ni1—N72.081 (2)C14—C151.364 (3)
Ni1—N82.115 (2)C15—C161.405 (3)
Ni1—N92.094 (2)C16—C241.404 (3)
Ni1—N102.115 (2)C16—C171.439 (3)
N1—N21.177 (3)C17—C181.349 (3)
N2—N31.144 (3)C18—C191.436 (3)
N4—N51.174 (3)C19—C231.402 (3)
N5—N61.162 (3)C19—C201.405 (3)
N7—C11.326 (3)C20—C211.359 (3)
N7—C121.353 (3)C21—C221.400 (3)
N8—C101.328 (3)C23—C241.439 (3)
N8—C111.354 (3)C1—H10.9300
N9—C131.329 (3)C2—H20.9300
N9—C241.356 (2)C3—H30.9300
N10—C221.323 (3)C5—H50.9300
N10—C231.359 (2)C6—H60.9300
C1—C21.391 (3)C8—H80.9300
C2—C31.366 (3)C9—H90.9300
C3—C41.406 (3)C10—H100.9300
C4—C121.404 (3)C13—H130.9300
C4—C51.434 (3)C14—H140.9300
C5—C61.350 (3)C15—H150.9300
C6—C71.427 (3)C17—H170.9300
C7—C81.402 (3)C18—H180.9300
C7—C111.407 (3)C20—H200.9300
C8—C91.362 (3)C21—H210.9300
C9—C101.390 (3)C22—H220.9300
N1—Ni1—N491.6 (1)C15—C14—C13119.9 (2)
N1—Ni1—N794.3 (1)C14—C15—C16119.1 (2)
N1—Ni1—N8173.3 (1)C15—C16—C24117.4 (2)
N1—Ni1—N993.6 (1)C15—C16—C17123.7 (2)
N1—Ni1—N1087.9 (1)C24—C16—C17118.9 (2)
N4—Ni1—N793.4 (1)C18—C17—C16121.0 (2)
N4—Ni1—N888.8 (1)C17—C18—C19121.3 (2)
N4—Ni1—N995.3 (1)C23—C19—C20117.2 (2)
N4—Ni1—N10174.3 (1)C23—C19—C18119.1 (2)
N7—Ni1—N878.9 (1)C20—C19—C18123.6 (2)
N7—Ni1—N9168.0 (1)C21—C20—C19119.5 (2)
N7—Ni1—N1092.3 (1)C20—C21—C22119.4 (2)
N8—Ni1—N993.0 (1)N10—C22—C21123.0 (2)
N8—Ni1—N1092.3 (1)N10—C23—C19123.1 (2)
N9—Ni1—N1079.0 (1)N10—C23—C24117.3 (2)
N2—N1—Ni1123.9 (1)C19—C23—C24119.6 (2)
N1—N2—N3177.8 (3)N9—C24—C16122.9 (2)
N5—N4—Ni1126.6 (2)N9—C24—C23117.0 (2)
N4—N5—N6177.6 (2)C16—C24—C23120.1 (2)
C1—N7—C12118.1 (2)N7—C1—H1118.5
C1—N7—Ni1127.8 (1)C2—C1—H1118.5
C12—N7—Ni1114.2 (1)C3—C2—H2120.3
C10—N8—C11117.8 (2)C1—C2—H2120.3
C10—N8—Ni1129.3 (2)C2—C3—H3120.3
C11—N8—Ni1112.9 (1)C4—C3—H3120.3
C13—N9—C24117.9 (2)C6—C5—H5119.7
C13—N9—Ni1128.4 (1)C4—C5—H5119.7
C24—N9—Ni1113.7 (1)C5—C6—H6119.0
C22—N10—C23117.7 (2)C7—C6—H6119.0
C22—N10—Ni1129.5 (1)C9—C8—H8120.1
C23—N10—Ni1112.7 (1)C7—C8—H8120.1
N7—C1—C2122.9 (2)C8—C9—H9120.2
C3—C2—C1119.5 (2)C10—C9—H9120.2
C2—C3—C4119.4 (2)N8—C10—H10118.6
C3—C4—C12117.2 (2)C9—C10—H10118.6
C3—C4—C5123.9 (2)N9—C13—H13118.6
C12—C4—C5118.8 (2)C14—C13—H13118.6
C6—C5—C4120.7 (2)C15—C14—H14120.0
C5—C6—C7122.1 (2)C13—C14—H14120.0
C8—C7—C11116.8 (2)C14—C15—H15120.5
C8—C7—C6124.6 (2)C16—C15—H15120.5
C11—C7—C6118.6 (2)C18—C17—H17119.5
C9—C8—C7119.7 (2)C16—C17—H17119.5
C8—C9—C10119.6 (2)C17—C18—H18119.3
N8—C10—C9122.8 (2)C19—C18—H18119.3
N8—C11—C7123.3 (2)C21—C20—H20120.2
N8—C11—C12117.1 (2)C19—C20—H20120.2
C7—C11—C12119.6 (2)C20—C21—H21120.3
N7—C12—C4122.9 (2)C22—C21—H21120.3
N7—C12—C11116.9 (2)N10—C22—H22118.5
C4—C12—C11120.2 (2)C21—C22—H22118.5
N9—C13—C14122.8 (2)
N7—Ni1—N1—N280.2 (2)Ni1—N8—C10—C9178.3 (2)
N4—Ni1—N1—N213.4 (2)C8—C9—C10—N80.6 (3)
N9—Ni1—N1—N2108.8 (2)C10—N8—C11—C71.7 (3)
N10—Ni1—N1—N2172.3 (2)Ni1—N8—C11—C7178.6 (2)
N1—Ni1—N4—N5157.5 (2)C10—N8—C11—C12177.3 (2)
N7—Ni1—N4—N5108.1 (2)Ni1—N8—C11—C120.4 (2)
N9—Ni1—N4—N563.7 (2)C8—C7—C11—N80.0 (3)
N8—Ni1—N4—N529.2 (2)C6—C7—C11—N8178.7 (2)
N1—Ni1—N7—C10.9 (2)C8—C7—C11—C12178.9 (2)
N4—Ni1—N7—C192.8 (2)C6—C7—C11—C120.2 (3)
N9—Ni1—N7—C1130.5 (3)C1—N7—C12—C41.2 (3)
N8—Ni1—N7—C1179.1 (2)Ni1—N7—C12—C4179.2 (1)
N10—Ni1—N7—C187.2 (2)C1—N7—C12—C11179.2 (2)
N1—Ni1—N7—C12179.5 (1)Ni1—N7—C12—C110.5 (2)
N4—Ni1—N7—C1287.6 (1)C3—C4—C12—N70.6 (3)
N9—Ni1—N7—C1249.1 (3)C5—C4—C12—N7178.3 (2)
N8—Ni1—N7—C120.5 (1)C3—C4—C12—C11179.8 (2)
N10—Ni1—N7—C1292.4 (1)C5—C4—C12—C111.3 (3)
N7—Ni1—N8—C10176.9 (2)N8—C11—C12—N70.1 (3)
N4—Ni1—N8—C1083.2 (2)C7—C11—C12—N7179.1 (2)
N9—Ni1—N8—C1012.1 (1)N8—C11—C12—C4179.6 (2)
N10—Ni1—N8—C1091.2 (2)C7—C11—C12—C40.6 (3)
N7—Ni1—N8—C110.5 (1)C24—N9—C13—C140.1 (3)
N4—Ni1—N8—C1193.3 (1)Ni1—N9—C13—C14179.0 (2)
N9—Ni1—N8—C11171.5 (1)N9—C13—C14—C150.8 (3)
N10—Ni1—N8—C1192.4 (1)C13—C14—C15—C160.9 (3)
N1—Ni1—N9—C1395.1 (2)C14—C15—C16—C240.2 (3)
N7—Ni1—N9—C13133.4 (3)C14—C15—C16—C17179.6 (2)
N4—Ni1—N9—C133.2 (2)C15—C16—C17—C18180.0 (2)
N8—Ni1—N9—C1385.9 (2)C24—C16—C17—C180.5 (3)
N10—Ni1—N9—C13177.7 (2)C16—C17—C18—C190.7 (4)
N1—Ni1—N9—C2484.0 (1)C17—C18—C19—C231.0 (3)
N7—Ni1—N9—C2447.4 (4)C17—C18—C19—C20178.1 (2)
N4—Ni1—N9—C24176.0 (1)C23—C19—C20—C210.1 (3)
N8—Ni1—N9—C2495.0 (1)C18—C19—C20—C21179.0 (2)
N10—Ni1—N9—C243.2 (1)C19—C20—C21—C220.1 (4)
N1—Ni1—N10—C2286.4 (2)C23—N10—C22—C210.7 (3)
N7—Ni1—N10—C227.9 (2)Ni1—N10—C22—C21175.5 (2)
N9—Ni1—N10—C22179.5 (2)C20—C21—C22—N100.6 (4)
N8—Ni1—N10—C2286.9 (2)C22—N10—C23—C190.5 (3)
N1—Ni1—N10—C2390.0 (1)Ni1—N10—C23—C19176.3 (2)
N7—Ni1—N10—C23175.8 (1)C22—N10—C23—C24178.7 (2)
N9—Ni1—N10—C234.1 (1)Ni1—N10—C23—C244.5 (2)
N8—Ni1—N10—C2396.7 (1)C20—C19—C23—N100.1 (3)
C12—N7—C1—C20.4 (3)C18—C19—C23—N10179.2 (2)
Ni1—N7—C1—C2180.0 (2)C20—C19—C23—C24179.1 (2)
N7—C1—C2—C31.0 (3)C18—C19—C23—C240.0 (3)
C1—C2—C3—C41.6 (3)C13—N9—C24—C161.0 (3)
C2—C3—C4—C120.8 (3)Ni1—N9—C24—C16178.3 (2)
C2—C3—C4—C5179.7 (2)C13—N9—C24—C23178.9 (2)
C3—C4—C5—C6180.0 (2)Ni1—N9—C24—C231.8 (2)
C12—C4—C5—C61.3 (3)C15—C16—C24—N90.8 (3)
C4—C5—C6—C70.5 (3)C17—C16—C24—N9178.7 (2)
C5—C6—C7—C8178.9 (2)C15—C16—C24—C23179.1 (2)
C5—C6—C7—C110.3 (3)C17—C16—C24—C231.4 (3)
C11—C7—C8—C91.5 (3)N10—C23—C24—N91.8 (3)
C6—C7—C8—C9177.2 (2)C19—C23—C24—N9178.9 (2)
C7—C8—C9—C101.2 (3)N10—C23—C24—C16178.1 (2)
C11—N8—C10—C92.0 (3)C19—C23—C24—C161.2 (3)

Experimental details

Crystal data
Chemical formulaC24H16N10Ni
Mr503.18
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.200 (1), 11.002 (2), 12.408 (2)
α, β, γ (°)82.28 (2), 82.26 (2), 72.57 (1)
V3)1053.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.48 × 0.34 × 0.30
Data collection
DiffractometerSiemens P4 four-circle
diffractometer
Absorption correctionEmpirical
ψ scan (North et al., 1968)
Tmin, Tmax0.656, 0.762
No. of measured, independent and
observed [I > 2σ(I)] reflections
3984, 3697, 3277
Rint0.012
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 1.03
No. of reflections3697
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.30

Computer programs: XSCANS (Siemens, 1990), Siemens software PLEASE SPECIFY (Siemens, 1990), Siemens software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-II (Johnson, 1976).

Selected geometric parameters (Å, º) top
Ni1—N12.073 (2)Ni1—N102.115 (2)
Ni1—N42.091 (2)N1—N21.177 (3)
Ni1—N72.081 (2)N2—N31.144 (3)
Ni1—N82.115 (2)N4—N51.174 (3)
Ni1—N92.094 (2)N5—N61.162 (3)
N1—Ni1—N491.6 (1)N7—Ni1—N9168.0 (1)
N1—Ni1—N794.3 (1)N7—Ni1—N1092.3 (1)
N1—Ni1—N8173.3 (1)N8—Ni1—N993.0 (1)
N1—Ni1—N993.6 (1)N8—Ni1—N1092.3 (1)
N1—Ni1—N1087.9 (1)N9—Ni1—N1079.0 (1)
N4—Ni1—N793.4 (1)N2—N1—Ni1123.9 (1)
N4—Ni1—N888.8 (1)N1—N2—N3177.8 (3)
N4—Ni1—N995.3 (1)N5—N4—Ni1126.6 (2)
N4—Ni1—N10174.3 (1)N4—N5—N6177.6 (2)
N7—Ni1—N878.9 (1)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds