Download citation
Download citation
link to html
The tetracation of bis(2-ammonio­ethyl)­piperazin-1,4-ium tetraperchlorate tetrahydrate, C8H24N44+·4ClO4-·4H2O, lies over a center of symmetry and the piperazinyl ring adopts a chair conformation. Four ammonium N atoms, perchlorate anions and lattice water mol­ecules are linked by hydrogen bonds into an infinite three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802014782/ya6122sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802014782/ya6122Isup2.hkl
Contains datablock I

CCDC reference: 197475

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.050
  • wR factor = 0.146
  • Data-to-parameter ratio = 14.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_735 Alert C D-H Calc 0.84(3), Rep 0.840(10) .... 3.00 s.u-Ratio O1W -H1W2 1.555 1.555 PLAT_736 Alert C H...A Calc 2.19(3), Rep 2.190(10) .... 3.00 s.u-Ratio H1W2 -O5 1.555 1.555
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

The red title tetraammonium perchorate, (I), was a suprize product from the reaction between triethylenetetramine and perchloric acid; the reaction is probably catalyzed by ferrous ions. A search through the Cambridge Structural Database (Allen et al., 1983) for the neutral bis(2-ethylamino)-1,4-piperazine residue found only one example where this ligand forms a complex with silver nitrate in which the amino group and one of the tertiary nitrogen atoms of the piperazinyl ring chelate to the metal atom (Zhang et al., 2001; Cai & Ng, 2002).

The piperazinium portion of the cation adopts a chair conformation, and both ammonioethyl groups occupy equatorial positions (Fig. 1). A pair of ammonio and piperazinium groups form two hydrogen bonds to a water molecule [Nammonio···O = 2.695 (2) Å and Npiperazinium···O = 2.905 (3) Å]; this water molecule then uses one of its H atoms to interact with a perchlorate anion and the other with a second lattice water molecule. The second water molecule interacts with two other perchlorate O atoms to furnish a three-dimensional network structure.

The cationic portion of the structure that has been optimized at the PM3 level (Table 2) also adopts a chair conformation, but the calculated bond distances are somewhat longer than the experimental distances. On the other hand, the experimental distances are closer to the values calculated for the neutral ligand itself.

Experimental top

Iron(II) chloride (0.13 g, 1 mmol) was dissolved in water (10 ml) and the solution was mixed with an aqueous solution (10 ml) of triethylenetetramine (0.15 g, 1 mmol) to give a green precipitate. Perchloric acid (0.40 g, 4 mmol) was then added to dissolve the precipitate to give a red solution. Red crystals separated from solution after several weeks.

For the geometry-optimization calculations, the initial structures of the tetracation and the neutral bis(2-aminoethyl)piperazine were taken from the X-ray structure. They were optimized at their lowest energy state (singlet spin state) by using the semi-empirical quantum chemical PM3 Hamiltonian in HYPERCHEM (Hypercube, Inc., 2001). The unrestricted Hartree Fock method was employed in the optimization.

Refinement top

The nitrogen-bound and water H atoms were located and refined, subject to N—H = 0.85±0.01 Å and O—H = 0.84±0.01 Å, respectively. The H atoms attached the C atoms were generated geometrically and were allowed to ride on their parent C atoms, with Uiso(H) = 1.2Ueq(C). Water H atoms were refined

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the fragment of the structure of (I) at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
1,4-Bis(2-ammonioethyl)piperazin-1,4-ium tetraperchlorate tetrahydrate top
Crystal data top
C8H24N44+·4ClO4·4H2OF(000) = 672
Mr = 646.18Dx = 1.742 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.862 (1) ÅCell parameters from 3500 reflections
b = 19.644 (3) Åθ = 2.8–28.0°
c = 8.204 (1) ŵ = 0.58 mm1
β = 103.53 (1)°T = 298 K
V = 1231.9 (3) Å3Block, red
Z = 20.30 × 0.20 × 0.20 mm
Data collection top
Bruker CCD area-detector
diffractometer
2449 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 28.0°, θmin = 2.8°
ω scansh = 910
7255 measured reflectionsk = 1825
2885 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0965P)2 + 0.3123P]
where P = (Fo2 + 2Fc2)/3
2885 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.75 e Å3
13 restraintsΔρmin = 0.27 e Å3
Crystal data top
C8H24N44+·4ClO4·4H2OV = 1231.9 (3) Å3
Mr = 646.18Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.862 (1) ŵ = 0.58 mm1
b = 19.644 (3) ÅT = 298 K
c = 8.204 (1) Å0.30 × 0.20 × 0.20 mm
β = 103.53 (1)°
Data collection top
Bruker CCD area-detector
diffractometer
2449 reflections with I > 2σ(I)
7255 measured reflectionsRint = 0.029
2885 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05013 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.75 e Å3
2885 reflectionsΔρmin = 0.27 e Å3
195 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46188 (7)0.17189 (3)0.85643 (7)0.0384 (2)
Cl20.20735 (7)0.11224 (3)0.42162 (7)0.0395 (2)
O10.3558 (3)0.1991 (1)0.7030 (2)0.0658 (6)
O20.6130 (3)0.2126 (1)0.9091 (3)0.0726 (6)
O30.3603 (3)0.1736 (1)0.9797 (2)0.0625 (6)
O40.5084 (4)0.1034 (1)0.8342 (4)0.0862 (8)
O50.2798 (3)0.1471 (2)0.5396 (3)0.0893 (9)
O60.2883 (4)0.1376 (2)0.2598 (3)0.0849 (8)
O70.0241 (3)0.1221 (2)0.4601 (4)0.0888 (8)
O80.2487 (3)0.0420 (1)0.4248 (3)0.0788 (7)
O1w0.0069 (3)0.2256 (1)0.7820 (2)0.0541 (5)
O2w0.0018 (2)0.1633 (1)1.0763 (2)0.0497 (4)
N10.3052 (3)0.1593 (1)0.3538 (3)0.0444 (5)
N20.1421 (2)0.0380 (1)0.1092 (2)0.0297 (4)
C10.3244 (3)0.0846 (1)0.3809 (2)0.0337 (4)
C20.3222 (2)0.0455 (1)0.2215 (3)0.0353 (4)
C30.1514 (3)0.0145 (1)0.0628 (3)0.0391 (5)
C40.0295 (3)0.0105 (1)0.1768 (3)0.0369 (5)
H1a0.23000.06830.42850.040*
H1b0.43370.07550.46140.040*
H2a0.39650.06870.16010.042*
H2b0.37110.00060.25070.042*
H3a0.20640.03000.05520.047*
H3b0.22250.04600.10950.047*
H4a0.08270.05540.18750.044*
H4b0.02090.00430.28740.044*
H1n10.308 (3)0.175 (2)0.452 (2)0.09 (1)*
H1n20.209 (2)0.171 (1)0.289 (2)0.06 (1)*
H1n30.390 (2)0.176 (1)0.320 (3)0.04 (1)*
H2n0.091 (3)0.076 (1)0.100 (3)0.03 (1)*
H1w10.097 (2)0.224 (2)0.771 (4)0.11 (2)*
H1w20.076 (3)0.210 (2)0.696 (3)0.07 (1)*
H2w10.002 (3)0.175 (2)0.978 (2)0.05 (1)*
H2w20.098 (2)0.172 (2)1.100 (3)0.07 (1)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0445 (3)0.0302 (3)0.0403 (3)0.0010 (2)0.0094 (2)0.0019 (2)
Cl20.0383 (3)0.0377 (3)0.0438 (3)0.0001 (2)0.0123 (2)0.0029 (2)
O10.071 (1)0.081 (2)0.040 (1)0.000 (1)0.002 (1)0.004 (1)
O20.060 (1)0.063 (1)0.086 (2)0.025 (1)0.001 (1)0.009 (1)
O30.065 (1)0.077 (2)0.050 (1)0.010 (1)0.021 (1)0.003 (1)
O40.109 (2)0.036 (1)0.128 (2)0.013 (1)0.058 (2)0.008 (1)
O50.061 (1)0.118 (2)0.097 (2)0.015 (1)0.033 (1)0.055 (2)
O60.097 (2)0.089 (2)0.062 (1)0.007 (1)0.005 (1)0.028 (1)
O70.040 (1)0.103 (2)0.125 (2)0.007 (1)0.022 (1)0.011 (2)
O80.091 (2)0.041 (1)0.103 (2)0.005 (1)0.017 (1)0.017 (1)
O1w0.051 (1)0.061 (1)0.048 (1)0.004 (1)0.008 (1)0.003 (1)
O2w0.057 (1)0.038 (1)0.056 (1)0.015 (1)0.018 (1)0.007 (1)
N10.060 (1)0.029 (1)0.043 (1)0.008 (1)0.010 (1)0.008 (1)
N20.033 (1)0.023 (1)0.032 (1)0.002 (1)0.005 (1)0.004 (1)
C10.035 (1)0.030 (1)0.033 (1)0.003 (1)0.003 (1)0.003 (1)
C20.031 (1)0.033 (1)0.041 (1)0.001 (1)0.004 (1)0.006 (1)
C30.042 (1)0.041 (1)0.036 (1)0.009 (1)0.013 (1)0.008 (1)
C40.046 (1)0.033 (1)0.033 (1)0.009 (1)0.009 (1)0.002 (1)
Geometric parameters (Å, º) top
Cl1—O21.413 (2)O1w—H1w20.84 (1)
Cl1—O41.416 (2)O2W—H2W10.84 (1)
Cl1—O31.428 (2)O2W—H2W20.84 (1)
Cl1—O11.440 (2)N1—H1n10.86 (1)
Cl2—O51.410 (2)N1—H1n20.85 (1)
Cl2—O71.414 (2)N1—H1n30.85 (1)
Cl2—O81.420 (2)N2—H2n0.85 (1)
Cl2—O61.421 (2)C1—H1a0.9700
N1—C11.486 (3)C1—H1b0.9700
N2—C4i1.493 (3)C2—H2a0.9700
N2—C31.503 (3)C2—H2b0.9700
N2—C21.505 (2)C3—H3a0.9700
C1—C21.513 (3)C3—H3b0.9700
C3—C41.510 (3)C4—H4a0.9700
C4—N2i1.493 (3)C4—H4b0.9700
O1w—H1w10.84 (1)
O2—Cl1—O4110.7 (2)H1n1—N1—H1n3109 (2)
O2—Cl1—O3109.8 (2)H1n2—N1—H1n3111 (2)
O4—Cl1—O3108.5 (2)C4i—N2—H2n107 (2)
O2—Cl1—O1109.3 (1)C3—N2—H2n109 (2)
O4—Cl1—O1110.7 (2)C2—N2—H2n109 (2)
O3—Cl1—O1107.8 (1)N1—C1—H1a109.0
O5—Cl2—O7109.5 (2)C2—C1—H1a109.0
O5—Cl2—O8109.2 (2)N1—C1—H1b109.0
O7—Cl2—O8110.8 (2)C2—C1—H1b109.0
O5—Cl2—O6107.9 (2)H1a—C1—H1b107.8
O7—Cl2—O6111.7 (2)N2—C2—H2a108.9
O8—Cl2—O6107.7 (2)C1—C2—H2a108.9
C4i—N2—C3108.4 (2)N2—C2—H2b108.9
C4i—N2—C2113.0 (2)C1—C2—H2b108.9
C3—N2—C2111.1 (2)H2a—C2—H2b107.7
N1—C1—C2113.0 (2)N2—C3—H3a109.5
N2—C2—C1113.5 (2)C4—C3—H3a109.5
N2—C3—C4110.6 (2)N2—C3—H3b109.5
N2i—C4—C3110.9 (2)C4—C3—H3b109.5
H1w1—O1w—H1w2110 (2)H3a—C3—H3b108.1
H2W1—O2W—H2W2112 (2)N2i—C4—H4a109.5
C1—N1—H1n1103 (2)C3—C4—H4a109.5
C1—N1—H1n2114 (2)N2i—C4—H4b109.5
H1n1—N1—H1n2108 (2)C3—C4—H4b109.5
C1—N1—H1n3111 (2)H4a—C4—H4b108.0
C4i—N2—C2—C171.7 (2)C4i—N2—C3—C458.2 (2)
C3—N2—C2—C1166.2 (2)C2—N2—C3—C4177.1 (2)
N1—C1—C2—N276.4 (2)N2—C3—C4—N2i59.7 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O10.84 (1)2.29 (1)3.113 (3)167 (3)
O1w—H1w2···O50.84 (1)2.19 (1)2.990 (3)160 (3)
O2w—H2w1···O1w0.84 (1)1.89 (1)2.700 (3)164 (3)
O2w—H2w2···O6ii0.84 (1)2.31 (2)3.030 (3)144 (3)
N1—H1n1···O10.86 (1)2.06 (1)2.906 (3)168 (3)
N1—H1n2···O2wiii0.85 (1)2.11 (1)2.905 (3)155 (2)
N1—H1n3···O1wiv0.85 (1)2.15 (2)2.838 (3)138 (2)
N2—H2n···O2wiii0.85 (1)1.85 (1)2.695 (2)175 (2)
Symmetry codes: (ii) x, y, z+1; (iii) x, y, z1; (iv) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC8H24N44+·4ClO4·4H2O
Mr646.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.862 (1), 19.644 (3), 8.204 (1)
β (°) 103.53 (1)
V3)1231.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7255, 2885, 2449
Rint0.029
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.146, 1.05
No. of reflections2885
No. of parameters195
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 0.27

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O10.84 (1)2.29 (1)3.113 (3)167 (3)
O1w—H1w2···O50.84 (1)2.19 (1)2.990 (3)160 (3)
O2w—H2w1···O1w0.84 (1)1.89 (1)2.700 (3)164 (3)
O2w—H2w2···O6i0.84 (1)2.31 (2)3.030 (3)144 (3)
N1—H1n1···O10.86 (1)2.06 (1)2.906 (3)168 (3)
N1—H1n2···O2wii0.85 (1)2.11 (1)2.905 (3)155 (2)
N1—H1n3···O1wiii0.85 (1)2.15 (2)2.838 (3)138 (2)
N2—H2n···O2wii0.85 (1)1.85 (1)2.695 (2)175 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) x+1/2, y+1/2, z1/2.
Comparison of the bond dimensions (Å, °) of the 1,4-bis(2-ammonioethyl)piperazin-1,4-ium cation in the solid-state structure with the PM3-optimized tetracationic structure, and with the PM3-optimized 1,4-bis(2-aminoethyl)piperazine molecule top
BondX-rayPM3-optimizedPM3-optimized
dimensionstructurecationmolecule
N1—C11.486 (3)1.5291.472
N2—C21.505 (2)1.5441.492
N2—C31.503 (3)1.5371.492
N2—C4i1.493 (3)1.5331.492
C1—C21.513 (3)1.5421.533
C3—C41.510 (3)1.5321.526
C4i—N2—C3108.4 (2)107.0111.4
C4i—N2—C2113.0 (2)112.6111.8
C3—N2—C2111.1 (2)111.0112.3
N1—C1—C2113.0 (2)113.6111.4
N2—C2—C1113.5 (2)113.6115.6
N2—C3—C4110.6 (2)113.0110.2
N2i—C4—C3110.9 (2)113.0110.7
Symmetry code for the X-ray structure: (i) −x, −y, −z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds