Download citation
Download citation
link to html
In the title compound, [Ni2(C2H3O2)4(C6H12N4)]n, the hexa­methyl­enetetr­amine mol­ecules, occupying a special position of mm2 symmetry, link adjacent tetraacetatodinickel units, located in a special position of 2/m symmetry, into zigzag chains that run along the b axis of the unit cell. The Ni atom in the binuclear unit is five-coordinate and has a square-pyramidal geometry. It is displaced by 0.203 (3) Å out of the basal plane of the four O atoms towards the apical N atom of the adjacent hexa­methyl­enetetr­amine mol­ecule and away from the second Ni atom of the binuclear unit. The two Ni atoms are separated by 2.622 (1) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802007316/ya6102sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802007316/ya6102Isup2.hkl
Contains datablock I

CCDC reference: 167790

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.030
  • wR factor = 0.076
  • Data-to-parameter ratio = 12.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_703 Alert C Torsion Calc -133.94(5), Rep -134.00(10), Dev. 1.20 Sigma O2 -NI1 -N1 -C3 9.555 1.555 1.555 1.555 PLAT_703 Alert C Torsion Calc 133.94(5), Rep 134.00(10), Dev. 1.20 Sigma O2 -NI1 -N1 -C3 4.555 1.555 1.555 1.555 General Notes
ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.902 Tmax scaled 0.462 Tmin scaled 0.364
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Hexamethylenetetramine, a spacer molecule that has been extensively used in the crystal engineering of coordination polymers, can bridge through two (Zheng, Tong, Yu & Chen, 2001), three (Zheng, Tong, Zhu et al., 2001) or four (Tong et al., 1999) of its N atoms to furnish a variety of such polymers. To date, an enormous number of metal complexes of this kind have been reported (Zhang et al., 2000a,b); the title nickel acetate complex, (I), represents an exception, as only few acetate complexes have been studied.

The crystal structure of the title complex, which is isomorphous with its copper analog (Pickardt, 1981), is built of hexamethylenetetramine molecules and tetraacetatodinickel units, both of which occupy special positions. The hexamethylenetetramine molecule occupies the position of mm2 symmetry with one of the mirror planes passing through the N1, C3 and C5, and the other mirror plane passing through the N2, C3 and C5 atoms. The tetraacetatodinickel unit occupies the position of the 2/m symmetry with the mirror plane passing through both Ni atoms and bisecting two of the O—Ni—O angles in the coordination spheres of each of the Ni atoms; the twofold axis passes midway between the two Ni atoms but it does not pass through any of them.

The coordination geometry of the Ni atom may be described as a square pyramid, formed by four acetate O and the N atom of the adjacent hexamethylenetetramine, which is distorted towards an octahedron owing to the metal–metal interaction [2.622 (1) Å] (Fig. 1). The Ni atom is displaced out of the basal plane of the four O atoms by 0.203 (3) Å towards the apical hexamethylenetetramine N atom. The hexamethylenetetramine ligand uses only two of its four N atoms to link adjacent units to afford a zigzag chain running along the b axis of the unit cell (Fig. 2). The bonding pattern of the acetate groups in the title compound contrasts with that of tetraaquadiacetatonickel, a mononuclear compound with two monodetate acetate groups [Ni—O 2.067 (3) Å; Downie et al., 1971].

Experimental top

The title compound was synthesized by the reaction of nickel(II) acetate tetrahydrate (0.50 g, 2 mmol) and hexamethylenetetramine (0.14 g, 1 mmol) (2:1 molar ratio) in a small volume of ethanol. Water was added dropwise to dissolve the reactants. Green prismatic crystals deposited from solution in 80% yield after several weeks. Analysis calculated for C14H24N4Ni2O8: C 34.05, H 4.86, N 11.15%; found: C 33.86, H 5.04, N 11.28%.

Refinement top

The H atoms of the hexamethylenetetramine entity were generated geometrically and allowed to ride on the parent C atom; Uiso(H) = 1.2Ueq(C). The methyl H atoms were positioned by using the HFIX 137 instruction in SHELXL97.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of (I) at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. ORTEPII (Johnson, 1976) plot showing the chain motif in the crystal packing of (I).
catena-µ-(N,N'-hexamethylenetetramine)[tetra-µ-acetatodinickel(II)] top
Crystal data top
[Ni2(C2H3O2)4(C6H12N4)]Dx = 1.684 Mg m3
Mr = 493.79Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmmaCell parameters from 1865 reflections
a = 15.480 (1) Åθ = 2.5–25.0°
b = 15.638 (2) ŵ = 1.98 mm1
c = 8.048 (1) ÅT = 298 K
V = 1948.2 (4) Å3Prism, green
Z = 40.56 × 0.48 × 0.39 mm
F(000) = 1024
Data collection top
Bruker CCD area-detector
diffractometer
937 independent reflections
Radiation source: fine-focus sealed tube775 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1816
Tmin = 0.403, Tmax = 0.512k = 1818
3062 measured reflectionsl = 59
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.5367P]
where P = (Fo2 + 2Fc2)/3
937 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Ni2(C2H3O2)4(C6H12N4)]V = 1948.2 (4) Å3
Mr = 493.79Z = 4
Orthorhombic, CmmaMo Kα radiation
a = 15.480 (1) ŵ = 1.98 mm1
b = 15.638 (2) ÅT = 298 K
c = 8.048 (1) Å0.56 × 0.48 × 0.39 mm
Data collection top
Bruker CCD area-detector
diffractometer
937 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
775 reflections with I > 2σ(I)
Tmin = 0.403, Tmax = 0.512Rint = 0.029
3062 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
937 reflectionsΔρmin = 0.35 e Å3
73 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.05907 (3)0.11560 (5)0.0277 (2)
O10.0920 (1)0.1076 (1)0.0265 (2)0.046 (1)
O20.0903 (1)0.0092 (1)0.2250 (2)0.049 (1)
N10.00000.1718 (2)0.2823 (3)0.029 (1)
N20.0788 (2)0.25000.4975 (4)0.036 (1)
C10.1209 (2)0.0742 (2)0.1568 (3)0.035 (1)
C20.1992 (2)0.1155 (2)0.2351 (4)0.049 (1)
C30.00000.25000.1794 (6)0.028 (1)
C40.0774 (2)0.1736 (2)0.3915 (3)0.034 (1)
C50.00000.25000.5988 (6)0.041 (1)
H2a0.21400.08570.33540.074*
H2b0.24690.11300.15900.074*
H2c0.18650.17420.26070.074*
H30.05070.25000.10850.034*
H4a0.12900.17250.32340.041*
H4b0.07770.12290.46100.041*
H50.00000.19990.66980.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0280 (3)0.0237 (3)0.0314 (3)0.0000.0000.0038 (2)
O10.045 (1)0.040 (1)0.053 (1)0.011 (1)0.015 (1)0.009 (1)
O20.054 (1)0.047 (1)0.047 (1)0.016 (1)0.012 (1)0.008 (1)
N10.030 (1)0.026 (2)0.030 (2)0.0000.0000.001 (1)
N20.041 (2)0.029 (2)0.039 (2)0.0000.010 (1)0.000
C10.028 (1)0.034 (2)0.041 (2)0.002 (1)0.001 (1)0.010 (1)
C20.038 (1)0.053 (2)0.056 (2)0.005 (2)0.005 (1)0.01 (2)
C30.038 (3)0.021 (3)0.026 (2)0.0000.0000.000
C40.032 (1)0.032 (2)0.040 (1)0.002 (1)0.004 (1)0.001 (1)
C50.062 (4)0.037 (3)0.024 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Ni1—O11.978 (2)N2—C41.469 (3)
Ni1—O1i1.978 (2)N2—C4iv1.469 (3)
Ni1—O2ii1.967 (2)C1—C21.511 (4)
Ni1—O2iii1.967 (2)C3—N1v1.477 (4)
Ni1—N12.215 (3)C5—N2v1.467 (4)
Ni1—Ni1iii2.622 (1)C2—H2a0.9600
O1—C11.254 (3)C2—H2b0.9600
O2—C11.248 (3)C2—H2c0.9600
N1—C31.477 (4)C3—H30.9700
N1—C4i1.486 (3)C4—H4a0.9700
N1—C41.486 (3)C4—H4b0.9700
N2—C51.467 (4)C5—H50.9700
O1—Ni1—O1i92.1 (1)C5—N2—C4iv108.1 (2)
O1—Ni1—O2ii87.5 (1)C4—N2—C4iv108.9 (3)
O1—Ni1—O2iii168.2 (1)O2—C1—O1124.9 (2)
O1—Ni1—N192.6 (1)O2—C1—C2118.0 (3)
O1—Ni1—Ni1iii82.0 (1)O1—C1—C2117.1 (3)
O1i—Ni1—O2ii168.2 (1)N1v—C3—N1111.8 (4)
O1i—Ni1—O2iii87.5 (1)N2—C4—N1111.8 (2)
O1i—Ni1—N192.6 (1)N2—C5—N2v112.5 (4)
O1i—Ni1—Ni1iii82.0 (1)C1—C2—H2a109.5
O2ii—Ni1—O2iii90.6 (1)C1—C2—H2b109.5
O2ii—Ni1—N199.3 (1)H2a—C2—H2b109.5
O2ii—Ni1—Ni1iii86.3 (1)C1—C2—H2c109.5
O2iii—Ni1—N199.3 (1)H2a—C2—H2c109.5
O2iii—Ni1—Ni1iii86.3 (1)H2b—C2—H2c109.5
N1—Ni1—Ni1iii172.1 (1)N1v—C3—H3109.2
C1—O1—Ni1125.4 (2)N1—C3—H3109.2
C1—O2—Ni1iii121.0 (2)N2—C4—H4a109.3
C3—N1—C4i108.4 (2)N1—C4—H4a109.3
C3—N1—C4108.4 (2)N2—C4—H4b109.3
C4i—N1—C4107.4 (3)N1—C4—H4b109.3
C3—N1—Ni1108.6 (2)H4a—C4—H4b107.9
C4i—N1—Ni1111.9 (2)N2—C5—H5109.1
C4—N1—Ni1111.9 (2)N2v—C5—H5109.1
C5—N2—C4108.1 (2)
O2iii—Ni1—O1—C13.8 (5)O1i—Ni1—N1—C473.6 (2)
O2ii—Ni1—O1—C184.4 (2)Ni1iii—O2—C1—O18.5 (4)
O1i—Ni1—O1—C183.8 (2)Ni1iii—O2—C1—C2170.7 (2)
N1—Ni1—O1—C1176.5 (2)Ni1—O1—C1—O27.1 (4)
Ni1iii—Ni1—O1—C12.2 (2)Ni1—O1—C1—C2172.1 (2)
O2iii—Ni1—N1—C3134.0 (1)C4i—N1—C3—N1v58.1 (2)
O2ii—Ni1—N1—C3134.0 (1)C4—N1—C3—N1v58.1 (2)
O1—Ni1—N1—C346.1 (1)Ni1—N1—C3—N1v180.0
O1i—Ni1—N1—C346.1 (1)C5—N2—C4—N158.9 (3)
O2iii—Ni1—N1—C4i106.4 (2)C4iv—N2—C4—N158.4 (3)
O2ii—Ni1—N1—C4i14.3 (2)C3—N1—C4—N258.1 (3)
O1—Ni1—N1—C4i73.6 (2)C4i—N1—C4—N258.9 (3)
O1i—Ni1—N1—C4i165.8 (2)Ni1—N1—C4—N2177.9 (2)
O2iii—Ni1—N1—C414.3 (2)C4—N2—C5—N2v58.9 (2)
O2ii—Ni1—N1—C4106.4 (2)C4iv—N2—C5—N2v58.9 (2)
O1—Ni1—N1—C4165.8 (2)
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x, y, z; (iv) x, y+1/2, z; (v) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Ni2(C2H3O2)4(C6H12N4)]
Mr493.79
Crystal system, space groupOrthorhombic, Cmma
Temperature (K)298
a, b, c (Å)15.480 (1), 15.638 (2), 8.048 (1)
V3)1948.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.98
Crystal size (mm)0.56 × 0.48 × 0.39
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.403, 0.512
No. of measured, independent and
observed [I > 2σ(I)] reflections
3062, 937, 775
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.02
No. of reflections937
No. of parameters73
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.35

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Ni1—O11.978 (2)Ni1—N12.215 (3)
Ni1—O2i1.967 (2)Ni1—Ni1ii2.622 (1)
O1—Ni1—O1iii92.1 (1)O2i—Ni1—O2ii90.6 (1)
O1—Ni1—O2i87.5 (1)O2i—Ni1—N199.3 (1)
O1—Ni1—O2ii168.2 (1)O2i—Ni1—Ni1ii86.3 (1)
O1—Ni1—N192.6 (1)N1—Ni1—Ni1ii172.1 (1)
O1—Ni1—Ni1ii82.0 (1)
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds