Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C8H12O4, is formed as a by-product in the preparation of the protected sugar 2,3-O-iso­propyl­idene-β-D-ribose under acid-catalysed conditions (H2SO4/acetone) from D-ribose [Fleetwood & Hughes (1999). Carbohydr. Res. 317, 204–209]. The absolute configuration was assigned on the basis of the known D-ribose configuration.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680200661X/ya6101sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680200661X/ya6101Isup2.hkl
Contains datablock I

CCDC reference: 185799

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.033
  • wR factor = 0.069
  • Data-to-parameter ratio = 6.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 25.00 From the CIF: _reflns_number_total 771 Count of symmetry unique reflns 775 Completeness (_total/calc) 99.48% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

NO COMMENT

Experimental top

Compound (I) is formed as a by-product in the preparation of the protected sugar (II) from D-ribose under acid-catalyzed conditions (H2SO4/acetone). Full details of the synthesis are given in Fleetwood & Hughes (1999).

Refinement top

As no elements heavier than Si were present in the title compound, the Flack (1983) parameter was meaningless and Friedel pairs were merged. All H atoms were placed geometrically and included in the refinement in riding-motion approximation, with Uiso equal to 1.2Ueq of the corresponding carrier atom (1.5Ueq for methyl H atoms).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997), COLLECT and maXus (Mackay et al., 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1998).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot with displacement ellipsoids drawn at the 30% probability level.
4,4-Dimethyl-3,5,8,10-tetraoxatricyclo[5.2.1.02,6]decane top
Crystal data top
C8H12O4F(000) = 184
Mr = 172.18Dx = 1.428 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.1183 (7) ÅCell parameters from 3809 reflections
b = 5.9280 (5) Åθ = 4.2–25.0°
c = 9.0398 (7) ŵ = 0.12 mm1
β = 113.000 (7)°T = 120 K
V = 400.46 (6) Å3Block, colourless
Z = 20.20 × 0.10 × 0.10 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
771 independent reflections
Radiation source: Bruker Nonius FR591 Rotating anode620 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 9.091 pixels mm1 pixels mm-1θmax = 25.0°, θmin = 4.2°
ϕ and ω scans to fill the asymmetric unith = 99
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
k = 67
Tmin = 0.977, Tmax = 0.989l = 1010
3809 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0343P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.16 e Å3
771 reflectionsΔρmin = 0.17 e Å3
112 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.051 (9)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier map
Crystal data top
C8H12O4V = 400.46 (6) Å3
Mr = 172.18Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.1183 (7) ŵ = 0.12 mm1
b = 5.9280 (5) ÅT = 120 K
c = 9.0398 (7) Å0.20 × 0.10 × 0.10 mm
β = 113.000 (7)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
771 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
620 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.989Rint = 0.069
3809 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.069H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
771 reflectionsΔρmin = 0.17 e Å3
112 parametersAbsolute structure: Flack (1983)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9472 (4)0.3881 (5)0.8485 (3)0.0211 (7)
H10.99860.44160.96250.025*
C20.7454 (4)0.3654 (5)0.7754 (3)0.0211 (7)
H20.68290.51330.74030.025*
O30.6810 (2)0.2413 (3)0.8764 (2)0.0225 (5)
C40.5576 (4)0.0780 (5)0.7770 (3)0.0198 (7)
O50.6405 (2)0.0061 (3)0.6699 (2)0.0198 (5)
C60.7175 (4)0.2033 (5)0.6332 (3)0.0192 (7)
H60.64210.27010.52650.023*
C70.9112 (4)0.1654 (5)0.6539 (3)0.0196 (7)
H70.92950.02630.59960.024*
O80.9668 (2)0.3694 (3)0.6012 (2)0.0226 (5)
C91.0001 (4)0.5267 (6)0.7325 (3)0.0263 (7)
H9B0.92510.66360.69670.032*
H9A1.12770.57130.78140.032*
O101.0063 (2)0.1653 (3)0.8225 (2)0.0203 (5)
C110.3781 (4)0.1855 (6)0.6853 (3)0.0251 (7)
H11A0.39250.31100.62080.038*
H11B0.32850.24210.76110.038*
H11C0.29660.07320.61440.038*
C120.5486 (4)0.1174 (5)0.8775 (3)0.0252 (7)
H12A0.66980.17330.93940.038*
H12B0.47670.23790.80780.038*
H12C0.49340.06930.95130.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0221 (16)0.0209 (18)0.0209 (15)0.0011 (14)0.0088 (12)0.0061 (13)
C20.0220 (15)0.0201 (17)0.0243 (15)0.0000 (14)0.0123 (12)0.0006 (13)
O30.0213 (11)0.0294 (14)0.0188 (10)0.0035 (10)0.0098 (8)0.0053 (9)
C40.0212 (16)0.0239 (19)0.0163 (14)0.0005 (13)0.0096 (12)0.0049 (12)
O50.0234 (11)0.0211 (12)0.0191 (10)0.0027 (9)0.0131 (8)0.0026 (9)
C60.0220 (16)0.0177 (19)0.0191 (14)0.0026 (14)0.0091 (11)0.0017 (12)
C70.0221 (17)0.0207 (17)0.0198 (14)0.0044 (14)0.0121 (11)0.0017 (13)
O80.0266 (11)0.0203 (12)0.0228 (11)0.0007 (10)0.0117 (8)0.0028 (9)
C90.0282 (17)0.0197 (18)0.0337 (17)0.0042 (14)0.0152 (13)0.0024 (14)
O100.0206 (11)0.0213 (12)0.0189 (9)0.0024 (9)0.0075 (8)0.0003 (9)
C110.0189 (16)0.0290 (19)0.0283 (15)0.0000 (15)0.0102 (12)0.0026 (14)
C120.0267 (17)0.0276 (18)0.0254 (15)0.0007 (15)0.0147 (12)0.0000 (14)
Geometric parameters (Å, º) top
C1—O101.456 (4)C6—H61.0000
C1—C21.514 (4)C7—O101.414 (3)
C1—C91.520 (4)C7—O81.436 (3)
C1—H11.0000C7—H71.0000
C2—O31.422 (3)O8—C91.450 (3)
C2—C61.549 (4)C9—H9B0.9900
C2—H21.0000C9—H9A0.9900
O3—C41.430 (3)C11—H11A0.9800
C4—O51.443 (3)C11—H11B0.9800
C4—C121.491 (4)C11—H11C0.9800
C4—C111.508 (4)C12—H12A0.9800
O5—C61.425 (3)C12—H12B0.9800
C6—C71.526 (4)C12—H12C0.9800
O10—C1—C2102.6 (2)O10—C7—O8104.4 (2)
O10—C1—C9100.3 (2)O10—C7—C6103.60 (19)
C2—C1—C9107.2 (2)O8—C7—C6106.1 (2)
O10—C1—H1115.0O10—C7—H7113.9
C2—C1—H1115.0O8—C7—H7113.9
C9—C1—H1115.0C6—C7—H7113.9
O3—C2—C1111.8 (2)C7—O8—C9104.61 (18)
O3—C2—C6103.9 (2)O8—C9—C1101.8 (2)
C1—C2—C6101.5 (2)O8—C9—H9B111.4
O3—C2—H2112.9C1—C9—H9B111.4
C1—C2—H2112.9O8—C9—H9A111.4
C6—C2—H2112.9C1—C9—H9A111.4
C2—O3—C4106.84 (19)H9B—C9—H9A109.3
O3—C4—O5103.1 (2)C7—O10—C195.6 (2)
O3—C4—C12109.4 (2)C4—C11—H11A109.5
O5—C4—C12109.0 (2)C4—C11—H11B109.5
O3—C4—C11110.4 (2)H11A—C11—H11B109.5
O5—C4—C11111.1 (2)C4—C11—H11C109.5
C12—C4—C11113.3 (2)H11A—C11—H11C109.5
C6—O5—C4106.0 (2)H11B—C11—H11C109.5
O5—C6—C7112.1 (2)C4—C12—H12A109.5
O5—C6—C2104.5 (2)C4—C12—H12B109.5
C7—C6—C2100.4 (2)H12A—C12—H12B109.5
O5—C6—H6113.0C4—C12—H12C109.5
C7—C6—H6113.0H12A—C12—H12C109.5
C2—C6—H6113.0H12B—C12—H12C109.5

Experimental details

Crystal data
Chemical formulaC8H12O4
Mr172.18
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)8.1183 (7), 5.9280 (5), 9.0398 (7)
β (°) 113.000 (7)
V3)400.46 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.977, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
3809, 771, 620
Rint0.069
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.069, 1.03
No. of reflections771
No. of parameters112
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.17
Absolute structureFlack (1983)

Computer programs: , SCALEPACK (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), COLLECT and maXus (Mackay et al., 1998), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1998).

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds