Download citation
Download citation
link to html
In the crystal structure of pyridinium D(+)-10-camphor­sulfonate hemihydrate, C5H6N+·C10H15O4S-·0.5H2O, a water mol­ecule lying on a twofold axis serves as a donor of two hydrogen bonds, thus linking two camphor­sulfonate anions. Each anion in its turn acts as a hydrogen-bond acceptor for the NH group of a pyridinium cation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802001150/ya6085sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802001150/ya6085Isup2.hkl
Contains datablock I

CCDC reference: 180813

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.051
  • wR factor = 0.149
  • Data-to-parameter ratio = 14.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.899 Tmax scaled 0.890 Tmin scaled 0.809 REFLT_03 From the CIF: _diffrn_reflns_theta_max 73.90 From the CIF: _reflns_number_total 3092 Count of symmetry unique reflns 1802 Completeness (_total/calc) 171.59% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1290 Fraction of Friedel pairs measured 0.716 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

Pyridinium D(+)-10-camphorsulfonate hemihydrate top
Crystal data top
C5H6N+·C10H15O4S·0.5H2OF(000) = 684
Mr = 320.40Dx = 1.311 Mg m3
Monoclinic, C2Cu Kα radiation, λ = 1.54178 Å
a = 24.244 (8) ÅCell parameters from 25 reflections
b = 6.8638 (3) Åθ = 26–40°
c = 10.415 (3) ŵ = 1.94 mm1
β = 110.54 (1)°T = 295 K
V = 1622.9 (7) Å3Needle, colourless
Z = 40.45 × 0.10 × 0.06 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2748 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.023
Graphite monochromatorθmax = 73.9°, θmin = 3.9°
θ/2ω scansh = 3030
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971)
k = 88
Tmin = 0.90, Tmax = 0.99l = 1212
3574 measured reflections3 standard reflections every 60 min
3092 independent reflections intensity decay: 3%
Refinement top
Refinement on F2Secondary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0968P)2 + 0.7053P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3092 reflectionsΔρmax = 0.40 e Å3
208 parametersΔρmin = 0.32 e Å3
1 restraintAbsolute structure: Flack (1983); 1293 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.94769 (4)0.58774 (12)0.74229 (8)0.0534 (2)
O11.00896 (12)0.6438 (4)0.8012 (4)0.0794 (9)
O20.93865 (12)0.3813 (4)0.7611 (3)0.0629 (6)
O30.92056 (17)0.6432 (5)0.5997 (3)0.0840 (10)
C10.84446 (14)0.7061 (5)0.7876 (3)0.0480 (7)
C20.81672 (17)0.5020 (6)0.7399 (4)0.0644 (10)
H2A0.81310.47710.64560.071 (9)*
H2B0.84040.39990.79770.071 (9)*
C30.75499 (17)0.5132 (7)0.7541 (5)0.0761 (12)
H3A0.72390.48400.66780.095 (11)*
H3B0.75220.42420.82390.095 (11)*
C40.75192 (15)0.7246 (7)0.7960 (4)0.0664 (10)
H40.72120.75090.83490.074 (12)*
C50.74763 (18)0.8487 (9)0.6713 (5)0.0834 (14)
H5A0.73480.98020.68050.099 (12)*
H5B0.72080.79150.58750.099 (12)*
C60.81140 (16)0.8462 (7)0.6738 (4)0.0645 (10)
C70.81562 (13)0.7644 (6)0.8954 (3)0.0540 (8)
C80.82747 (19)0.9772 (7)0.9412 (5)0.0749 (11)
H8A0.81601.06040.86210.089 (9)*
H8B0.86870.99420.99210.089 (9)*
H8C0.80511.01030.99820.089 (9)*
C90.83463 (17)0.6363 (8)1.0219 (4)0.0710 (12)
H9A0.82740.50230.99490.088 (9)*
H9B0.81260.67071.07940.088 (9)*
H9C0.87590.65481.07160.088 (9)*
O40.83008 (13)0.9428 (5)0.6031 (3)0.0825 (9)
C100.91162 (13)0.7223 (5)0.8362 (3)0.0473 (7)
H10A0.92750.68050.93110.062 (8)*
H10B0.92170.85870.83390.062 (8)*
N120.91664 (12)0.9774 (5)0.4569 (3)0.0584 (8)
H120.90910.90950.51780.11 (2)*
C130.90693 (17)1.1627 (7)0.4748 (4)0.0656 (10)
H130.89441.20000.54590.111 (19)*
C140.91546 (18)1.2999 (7)0.3880 (5)0.0741 (11)
H140.90811.43070.39880.13 (2)*
C150.93484 (17)1.2427 (6)0.2850 (5)0.0671 (10)
H150.94061.33410.22500.108 (19)*
C160.94561 (15)1.0480 (6)0.2714 (4)0.0638 (11)
H160.95921.00640.20290.077 (13)*
C170.93612 (16)0.9180 (6)0.3594 (4)0.0606 (9)
H170.94330.78630.35130.099 (17)*
O1W1.00000.1558 (8)1.00000.132 (3)
H1W0.98010.24590.92050.197*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0674 (4)0.0458 (4)0.0595 (4)0.0040 (4)0.0377 (3)0.0014 (4)
O10.0691 (15)0.0678 (18)0.124 (2)0.0028 (12)0.0623 (17)0.0096 (16)
O20.0762 (15)0.0471 (14)0.0724 (16)0.0034 (11)0.0348 (13)0.0029 (12)
O30.140 (3)0.0671 (18)0.0626 (16)0.0212 (17)0.0577 (18)0.0035 (13)
C10.0484 (15)0.0542 (19)0.0446 (15)0.0022 (13)0.0202 (13)0.0015 (14)
C20.063 (2)0.071 (2)0.062 (2)0.0207 (18)0.0261 (17)0.0127 (19)
C30.059 (2)0.090 (3)0.080 (3)0.026 (2)0.0241 (19)0.004 (2)
C40.0464 (17)0.085 (3)0.070 (2)0.0003 (17)0.0235 (15)0.009 (2)
C50.055 (2)0.115 (4)0.078 (3)0.007 (2)0.0202 (19)0.026 (3)
C60.0587 (19)0.079 (3)0.056 (2)0.0051 (17)0.0206 (16)0.0131 (18)
C70.0494 (16)0.063 (2)0.0547 (18)0.0025 (14)0.0246 (14)0.0009 (15)
C80.077 (2)0.071 (3)0.089 (3)0.006 (2)0.044 (2)0.015 (2)
C90.0617 (19)0.105 (4)0.0527 (19)0.002 (2)0.0281 (16)0.0085 (19)
O40.0777 (16)0.097 (2)0.0785 (17)0.0044 (16)0.0341 (14)0.0351 (17)
C100.0519 (15)0.0475 (16)0.0481 (15)0.0005 (13)0.0246 (13)0.0032 (14)
N120.0553 (15)0.069 (2)0.0500 (15)0.0035 (14)0.0172 (12)0.0065 (15)
C130.061 (2)0.079 (3)0.062 (2)0.0072 (18)0.0283 (17)0.0130 (19)
C140.070 (2)0.052 (2)0.104 (3)0.0081 (18)0.036 (2)0.013 (2)
C150.061 (2)0.061 (2)0.083 (3)0.0112 (17)0.0294 (19)0.009 (2)
C160.0599 (18)0.079 (3)0.0568 (19)0.0027 (17)0.0260 (15)0.0011 (18)
C170.067 (2)0.054 (2)0.063 (2)0.0037 (16)0.0251 (17)0.0036 (17)
O1W0.230 (8)0.061 (3)0.076 (3)0.0000.019 (4)0.000
Geometric parameters (Å, º) top
S1—O11.446 (3)C4—C71.552 (5)
S1—O21.458 (3)C5—C61.537 (5)
S1—O31.448 (3)C6—O41.192 (5)
S1—C101.782 (3)C7—C91.515 (5)
C1—C61.518 (5)C7—C81.532 (6)
C1—C101.530 (4)N12—C131.318 (6)
C1—C21.558 (5)N12—C171.326 (5)
C1—C71.569 (4)C13—C141.371 (7)
C2—C31.557 (5)C14—C151.371 (6)
C3—C41.524 (7)C15—C161.378 (6)
C4—C51.526 (6)C16—C171.355 (6)
O1—S1—O3113.2 (2)C4—C5—C6102.2 (3)
O1—S1—O2112.47 (18)O4—C6—C1128.6 (3)
O3—S1—O2110.98 (18)O4—C6—C5125.5 (4)
O1—S1—C10104.96 (16)C1—C6—C5105.8 (3)
O2—S1—C10107.72 (15)C9—C7—C8108.4 (3)
O3—S1—C10107.02 (17)C9—C7—C4113.9 (3)
C6—C1—C10114.9 (3)C8—C7—C4114.2 (3)
C6—C1—C2105.7 (3)C9—C7—C1113.5 (3)
C10—C1—C2117.5 (3)C8—C7—C1112.6 (3)
C6—C1—C798.7 (3)C4—C7—C193.8 (3)
C10—C1—C7115.8 (3)C1—C10—S1116.8 (2)
C2—C1—C7101.9 (3)C13—N12—C17122.3 (4)
C3—C2—C1104.3 (3)N12—C13—C14119.6 (4)
C4—C3—C2102.7 (3)C15—C14—C13119.5 (4)
C3—C4—C5106.5 (4)C14—C15—C16119.1 (4)
C3—C4—C7102.8 (3)C17—C16—C15119.1 (4)
C5—C4—C7102.9 (3)N12—C17—C16120.4 (4)
C6—C1—C2—C372.2 (4)C6—C1—C7—C9174.4 (3)
C10—C1—C2—C3158.1 (3)C10—C1—C7—C962.5 (4)
C7—C1—C2—C330.5 (4)C2—C1—C7—C966.2 (4)
C1—C2—C3—C44.6 (4)C6—C1—C7—C862.0 (4)
C2—C3—C4—C569.0 (4)C10—C1—C7—C861.2 (4)
C2—C3—C4—C738.8 (4)C2—C1—C7—C8170.1 (3)
C3—C4—C5—C676.7 (4)C6—C1—C7—C456.2 (3)
C7—C4—C5—C631.0 (5)C10—C1—C7—C4179.4 (3)
C10—C1—C6—O413.5 (6)C2—C1—C7—C451.9 (3)
C2—C1—C6—O4117.7 (5)C6—C1—C10—S185.5 (4)
C7—C1—C6—O4137.2 (5)C2—C1—C10—S139.7 (4)
C10—C1—C6—C5163.6 (3)C7—C1—C10—S1160.3 (2)
C2—C1—C6—C565.2 (4)O1—S1—C10—C1174.7 (3)
C7—C1—C6—C539.8 (4)O3—S1—C10—C154.2 (3)
C4—C5—C6—O4171.3 (5)O2—S1—C10—C165.2 (3)
C4—C5—C6—C15.9 (5)C17—N12—C13—C141.9 (6)
C3—C4—C7—C961.6 (4)N12—C13—C14—C151.0 (6)
C5—C4—C7—C9172.1 (4)C13—C14—C15—C160.3 (6)
C3—C4—C7—C8173.1 (3)C14—C15—C16—C170.7 (6)
C5—C4—C7—C862.6 (4)C13—N12—C17—C161.5 (6)
C3—C4—C7—C156.2 (3)C15—C16—C17—N120.1 (6)
C5—C4—C7—C154.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12···O30.862.002.718 (5)141
O1W—H1W···O21.011.862.864 (4)172
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds