Download citation
Download citation
link to html
The title compound, C18H26N4O2, is obtainable from 1,3-di­cyclo­hexyl­carbodi­imide and pyrazine-2-carboxyl­ic acid in di­methyl­form­amide in the presence of catalytic amounts of [H3Ru4(C6H6)4OH]Cl2. The intermolecular N—H...O=C hydrogen bond is responsible for the formation of infinite chains stretching along the a axis of the crystal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801020839/ya6080sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801020839/ya6080Isup2.hkl
Contains datablock I

CCDC reference: 180534

Key indicators

  • Single-crystal X-ray study
  • T = 153 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.028
  • wR factor = 0.058
  • Data-to-parameter ratio = 10.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSMU_01 Alert C The ratio of given/expected absorption coefficient lies outside the range 0.99 <> 1.01 Calculated value of mu = 0.082 Value of mu given = 0.080 STRVAL_01 From the CIF: _refine_ls_abs_structure_Flack 0.800 From the CIF: _refine_ls_abs_structure_Flack_su 0.900 Alert C Chirality of atom sites is inverted? General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 26.00 From the CIF: _reflns_number_total 3477 Count of symmetry unique reflns 2016 Completeness (_total/calc) 172.47% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1461 Fraction of Friedel pairs measured 0.725 Are heavy atom types Z>Si present no ALERT: MoKa measured Friedel data cannot be used to determine absolute structure in a light-atom study EXCEPT under VERY special conditions. It is preferred that Friedel data is merged in such cases.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

N,N'-Dicyclohexyl-N-(2-pyrazinoyl)urea, (I), is formed quantitatively from 1,3-dicyclohexylcarbodiimide and pyrazine-2-carboxylic acid in dimethylformamide at room temperature, if small amounts of [H3Ru4(C6H6)4OH]Cl2 are present as catalyst; (I) crystallizes directly from the reaction solution. In the absence of the catalyst, (I) seems to be formed as well, although much more slowly; no crystallization occurs under these conditions. The catalyst, [H3Ru4(C6H6)4OH]Cl2, is readily available according to the published methods (Chérioux et al., 2001). The precise role of the catalyst in this reaction is not well established, but it can be recovered unchanged after the reaction. Only in the presence of the catalyst, the reaction, being complete after 2 h, gives (I) as an air-stable colorless block-shaped crystalline product.

Compound (I) is analogous to N,N'-dicyclohexyl-N-nicotinoylurea, (II), which has been synthesized in a complex reaction from L-phenylalanine-L-leucine ethyl ester, nicotinic acid, 1-hydroxybenzotriazole and 1,3-dicyclohexylcarbodiimide in dichloromethane (Gallagher et al., 1999).

In the molecular structure of (I) (Fig. 1), the average values of the C—C—C bond angles in the two cyclohexane rings (111.0 and 111.2°) and the absolute values of torsion angles (average 55.9 and 55.5°), agree with the theoretically predicted values of 111.5 and 54.7° for a chair conformation (Bixon & Lifson, 1967). The bond lengths and angles are in accordance with those in related structures (Orpen et al., 1994).

Intermolecular hydrogen bonding involving the N4 amide H atom and carbonyl atom O2 leads to the formation of infinite chains running parallel to the a axis of the crystal (Fig. 2). Similar intermolecular (amide)N—H···OC hydrogen bonding leading to the formation of infinite chains is observed in the structure of N,N'-dicyclohexylurea, (III) (Govindasamy & Subramanian, 1997). The H···O distance of N—H···OC in (I) [2.929 (2) Å] is slightly shorter than that in (III) [2.962 (5) Å], which may be due to the fact that carbonyl O atom in (III), in contrast to that in (I), participates in two hydrogen bonds involving both `active' H atoms of the next molecule in the chain. In the structure of (II), however, with two independent molecules, there are three symmetry independent hydrogen bonds of two different kinds, namely [(amide)N—H···N(py) and (py)C—H···O C(amide)], which leads to the formation of a totally different, much more complex, hydrogen-bonded system.

Experimental top

N,N'-Dicyclohexyl-N-(2-pyrazinoyl)urea is formed quantitatively when pyrazine-2-carboxylic acid (1.0 g, 8 mmol), 1,3-dicyclohexylcarbodiimide (2.1 g, 10 mmol) and [H3Ru4(C6H6)4OH]Cl2 (7 mg, 0.008 mmol) are dissolved under N2 in dimethylformamide (20 ml). The red solution is stirred for 2 h at 293 K and filtered. The product crystallizes at room temperature from the filtrate. Crystals were collected by filtration. 1H NMR (200 MHz, CDCl3): 1.22 (m, 10H), 1.55 (m, 10H), 3.55(quint-d, 1H), 4.23 (quint, 1H), 5.94 (d, 1H), 8.51 (dd, 1H), 8.66 (d, 1H), 8.98 (d, 1H); IR (KBr, cm-1): 3278 (NH, sharp), 1703 (CO, amide) and 1681 (CO, urea); MS (ESI, m/z): 330.

Refinement top

Image plate experiment parameters: image plate distance 70 mm; ϕ oscillation scans: 0–200°; step: Δϕ = 1.5°; 2θ range: 3.27–52.1°; dmax-dmin = 12.45–0.81 Å. The H atoms were located from Fourier difference maps and refined isotropically [N4—H4N 0.91 (2) Å and C—H 0.95–1.04 Å]. The absolute structure could not be determined because of the lack of anomalous scatterers.

Computing details top

Data collection: EXPOSE (Stoe & Cie, 2000); cell refinement: CELL (Stoe & Cie, 2000); data reduction: INTEGRATE (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON99 (Spek, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of (I) showing the intermolecular hydrogen bonds in the crystal.
N,N'-dicyclohexyl-N-(2-pyrazinoyl)urea top
Crystal data top
C18H26N4O2Dx = 1.229 Mg m3
Mr = 330.43Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 8000 reflections
a = 9.4745 (8) Åθ = 2.5–26.0°
b = 11.9101 (7) ŵ = 0.08 mm1
c = 15.8212 (10) ÅT = 153 K
V = 1785.3 (2) Å3Block, colourless
Z = 40.50 × 0.40 × 0.35 mm
F(000) = 712
Data collection top
Stoe IPDS
diffractometer
2753 reflections with I > 2σ(I'
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 26.0°, θmin = 2.5°
Detector resolution: 0.81Å pixels mm-1h = 1111
ϕ oscillation scansk = 1414
14006 measured reflectionsl = 1919
3477 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0337P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max < 0.001
S = 0.90Δρmax = 0.13 e Å3
3477 reflectionsΔρmin = 0.13 e Å3
322 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0134 (14)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.8 (9)
Crystal data top
C18H26N4O2V = 1785.3 (2) Å3
Mr = 330.43Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.4745 (8) ŵ = 0.08 mm1
b = 11.9101 (7) ÅT = 153 K
c = 15.8212 (10) Å0.50 × 0.40 × 0.35 mm
Data collection top
Stoe IPDS
diffractometer
2753 reflections with I > 2σ(I'
14006 measured reflectionsRint = 0.039
3477 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028All H-atom parameters refined
wR(F2) = 0.058Δρmax = 0.13 e Å3
S = 0.90Δρmin = 0.13 e Å3
3477 reflectionsAbsolute structure: Flack (1983)
322 parametersAbsolute structure parameter: 0.8 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.12365 (15)1.04710 (11)0.64837 (8)0.0440 (3)
N20.07686 (13)0.87429 (11)0.66026 (8)0.0360 (3)
N30.04493 (11)0.67152 (9)0.57379 (7)0.0256 (3)
N40.05157 (13)0.79709 (10)0.46233 (7)0.0287 (3)
H4N0.1446 (18)0.7980 (13)0.4751 (9)0.037 (4)*
O10.17785 (10)0.69206 (8)0.69294 (6)0.0323 (2)
O20.15069 (9)0.70008 (8)0.48796 (6)0.0314 (2)
C10.10916 (18)0.98278 (15)0.67237 (10)0.0410 (4)
H10.2078 (17)1.0009 (14)0.6858 (10)0.045 (5)*
C20.0114 (2)1.06673 (15)0.66609 (9)0.0425 (4)
H20.0373 (18)1.1429 (16)0.6745 (11)0.051 (5)*
C30.15860 (16)0.93919 (13)0.63910 (9)0.0346 (3)
H30.2577 (16)0.9185 (12)0.6257 (10)0.033 (4)*
C40.05965 (15)0.85401 (11)0.64453 (8)0.0278 (3)
C50.10154 (13)0.73230 (11)0.63833 (9)0.0257 (3)
C60.06060 (15)0.54705 (11)0.57213 (9)0.0292 (3)
H60.1376 (17)0.5309 (14)0.6117 (11)0.044 (4)*
C70.07149 (17)0.48790 (13)0.60310 (11)0.0359 (3)
H7A0.1494 (16)0.5102 (14)0.5660 (10)0.040 (4)*
H7B0.0951 (16)0.5152 (14)0.6615 (10)0.041 (4)*
C80.0495 (2)0.36082 (13)0.60406 (11)0.0426 (4)
H8A0.0241 (17)0.3432 (13)0.6449 (10)0.038 (4)*
H8B0.1398 (19)0.3237 (15)0.6248 (12)0.058 (5)*
C90.0048 (2)0.31828 (14)0.51738 (11)0.0455 (4)
H9A0.013 (2)0.2379 (19)0.5176 (13)0.072 (6)*
H9B0.0844 (19)0.3341 (14)0.4790 (12)0.050 (5)*
C100.12585 (19)0.37844 (13)0.48638 (11)0.0420 (4)
H10A0.1516 (17)0.3531 (14)0.4297 (11)0.044 (4)*
H10B0.2078 (18)0.3610 (13)0.5228 (11)0.043 (4)*
C110.10444 (17)0.50623 (12)0.48511 (10)0.0351 (3)
H11A0.1969 (19)0.5475 (14)0.4677 (11)0.052 (5)*
H11B0.0254 (18)0.5278 (14)0.4461 (10)0.044 (4)*
C120.02807 (13)0.72465 (10)0.50482 (8)0.0251 (3)
C130.00045 (16)0.86535 (12)0.39215 (9)0.0308 (3)
H130.0960 (17)0.8426 (13)0.3830 (10)0.038 (4)*
C140.08914 (17)0.84509 (13)0.31398 (10)0.0333 (3)
H14A0.1858 (17)0.8643 (13)0.3271 (10)0.037 (4)*
H14B0.0879 (16)0.7617 (14)0.3000 (11)0.043 (4)*
C150.03838 (19)0.91729 (13)0.24048 (10)0.0395 (4)
H15A0.0616 (18)0.8943 (14)0.2252 (10)0.045 (4)*
H15B0.0989 (16)0.9050 (13)0.1933 (11)0.039 (4)*
C160.0367 (2)1.04086 (13)0.26391 (10)0.0424 (4)
H16A0.0027 (15)1.0880 (14)0.2137 (10)0.040 (4)*
H16B0.131 (2)1.0662 (15)0.2765 (11)0.052 (5)*
C170.0525 (2)1.06203 (15)0.34241 (10)0.0430 (4)
H17A0.1518 (19)1.0441 (14)0.3286 (10)0.043 (5)*
H17B0.0534 (19)1.1449 (17)0.3580 (11)0.056 (5)*
C180.00298 (18)0.98971 (14)0.41614 (10)0.0363 (4)
H18A0.0946 (17)1.0082 (14)0.4343 (10)0.038 (4)*
H18B0.0625 (17)1.0025 (14)0.4662 (10)0.044 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0591 (9)0.0307 (7)0.0421 (8)0.0022 (6)0.0050 (7)0.0075 (6)
N20.0334 (7)0.0382 (8)0.0363 (7)0.0085 (6)0.0022 (5)0.0031 (6)
N30.0278 (6)0.0226 (6)0.0265 (6)0.0006 (5)0.0027 (5)0.0020 (5)
N40.0233 (6)0.0324 (6)0.0305 (6)0.0029 (5)0.0041 (5)0.0083 (5)
O10.0352 (5)0.0345 (5)0.0273 (5)0.0040 (4)0.0044 (5)0.0032 (5)
O20.0238 (5)0.0355 (5)0.0349 (5)0.0017 (4)0.0037 (4)0.0039 (5)
C10.0440 (10)0.0436 (10)0.0355 (9)0.0160 (8)0.0015 (7)0.0042 (7)
C20.0634 (12)0.0336 (9)0.0305 (8)0.0121 (8)0.0016 (8)0.0035 (7)
C30.0374 (8)0.0312 (8)0.0351 (8)0.0014 (7)0.0004 (7)0.0050 (7)
C40.0312 (7)0.0295 (7)0.0226 (7)0.0026 (6)0.0016 (6)0.0005 (6)
C50.0244 (6)0.0290 (7)0.0238 (7)0.0012 (6)0.0023 (6)0.0022 (6)
C60.0308 (7)0.0256 (8)0.0313 (7)0.0030 (6)0.0024 (7)0.0009 (6)
C70.0416 (9)0.0284 (8)0.0377 (8)0.0015 (7)0.0051 (7)0.0021 (7)
C80.0556 (10)0.0275 (8)0.0449 (9)0.0055 (8)0.0032 (9)0.0028 (7)
C90.0625 (11)0.0282 (9)0.0458 (10)0.0010 (8)0.0052 (9)0.0042 (8)
C100.0536 (10)0.0354 (9)0.0369 (9)0.0090 (7)0.0000 (8)0.0050 (8)
C110.0388 (8)0.0304 (8)0.0361 (8)0.0025 (7)0.0052 (7)0.0000 (7)
C120.0251 (7)0.0240 (7)0.0261 (7)0.0028 (5)0.0011 (6)0.0009 (6)
C130.0263 (7)0.0348 (8)0.0312 (7)0.0031 (6)0.0049 (6)0.0089 (7)
C140.0428 (9)0.0271 (8)0.0299 (8)0.0037 (7)0.0022 (7)0.0003 (6)
C150.0489 (10)0.0419 (10)0.0276 (8)0.0030 (8)0.0017 (8)0.0043 (7)
C160.0540 (11)0.0391 (9)0.0342 (8)0.0055 (8)0.0039 (8)0.0110 (7)
C170.0488 (10)0.0395 (10)0.0408 (9)0.0117 (9)0.0060 (8)0.0091 (8)
C180.0366 (8)0.0401 (9)0.0320 (8)0.0080 (7)0.0043 (7)0.0030 (7)
Geometric parameters (Å, º) top
N1—C21.330 (2)C8—H8B1.017 (19)
N1—C31.335 (2)C9—C101.512 (3)
N2—C41.3390 (19)C9—H9A0.97 (2)
N2—C11.342 (2)C9—H9B0.986 (19)
N3—C51.3617 (17)C10—C111.536 (2)
N3—C61.4902 (17)C10—H10A0.977 (17)
N3—C121.4386 (16)C10—H10B0.989 (18)
N4—C121.3287 (17)C11—H11A1.041 (18)
N4—C131.4618 (18)C11—H11B1.004 (17)
N4—H4N0.905 (17)C13—C141.519 (2)
O1—C51.2243 (16)C13—C181.529 (2)
O2—C121.2274 (15)C13—H130.956 (17)
C1—C21.367 (3)C14—C151.524 (2)
C1—H10.983 (16)C14—H14A0.966 (16)
C2—H20.950 (19)C14—H14B1.018 (17)
C3—C41.384 (2)C15—C161.518 (2)
C3—H30.993 (15)C15—H15A1.015 (17)
C4—C51.5061 (19)C15—H15B0.953 (17)
C6—C71.517 (2)C16—C171.523 (2)
C6—C111.518 (2)C16—H16A1.043 (16)
C6—H60.980 (17)C16—H16B0.967 (18)
C7—C81.528 (2)C17—C181.524 (2)
C7—H7A0.979 (17)C17—H17A0.989 (17)
C7—H7B1.004 (16)C17—H17B1.017 (19)
C8—C91.522 (2)C18—H18A0.993 (16)
C8—H8A0.974 (17)C18—H18B0.984 (17)
C2—N1—C3115.51 (14)C11—C10—H10A109.1 (10)
C4—N2—C1114.87 (13)C9—C10—H10B110.7 (9)
C5—N3—C12121.63 (10)C11—C10—H10B108.7 (9)
C5—N3—C6120.19 (11)H10A—C10—H10B105.9 (13)
C12—N3—C6118.17 (11)C6—C11—C10109.98 (13)
C12—N4—C13123.64 (12)C6—C11—H11A108.6 (9)
C12—N4—H4N116.7 (10)C10—C11—H11A111.1 (9)
C13—N4—H4N119.4 (10)C6—C11—H11B105.8 (9)
N2—C1—C2122.66 (16)C10—C11—H11B111.1 (10)
N2—C1—H1117.4 (10)H11A—C11—H11B110.1 (13)
C2—C1—H1120.0 (10)O2—C12—N4125.62 (12)
N1—C2—C1122.59 (16)O2—C12—N3121.00 (11)
N1—C2—H2116.5 (11)N4—C12—N3113.35 (11)
C1—C2—H2120.9 (11)N4—C13—C14109.98 (12)
N1—C3—C4122.06 (14)N4—C13—C18110.81 (12)
N1—C3—H3119.8 (8)C14—C13—C18111.39 (12)
C4—C3—H3118.1 (8)N4—C13—H13106.1 (10)
N2—C4—C3122.25 (13)C14—C13—H13111.2 (10)
N2—C4—C5116.12 (12)C18—C13—H13107.3 (9)
C3—C4—C5121.53 (13)C13—C14—C15110.80 (13)
O1—C5—N3123.62 (12)C13—C14—H14A108.4 (9)
O1—C5—C4119.11 (12)C15—C14—H14A109.2 (9)
N3—C5—C4117.17 (11)C13—C14—H14B109.0 (9)
N3—C6—C7111.96 (11)C15—C14—H14B112.4 (9)
N3—C6—C11111.22 (12)H14A—C14—H14B106.8 (13)
C7—C6—C11111.71 (12)C16—C15—C14111.36 (13)
N3—C6—H6105.0 (10)C16—C15—H15A108.0 (9)
C7—C6—H6108.4 (10)C14—C15—H15A108.9 (9)
C11—C6—H6108.2 (10)C16—C15—H15B110.3 (10)
C6—C7—C8110.53 (13)C14—C15—H15B108.7 (10)
C6—C7—H7A107.6 (9)H15A—C15—H15B109.5 (13)
C8—C7—H7A112.2 (10)C15—C16—C17111.44 (14)
C6—C7—H7B109.3 (9)C15—C16—H16A109.9 (9)
C8—C7—H7B110.0 (9)C17—C16—H16A109.5 (8)
H7A—C7—H7A107.2 (13)C15—C16—H16B110.0 (11)
C9—C8—C7111.02 (14)C17—C16—H16B107.2 (10)
C9—C8—H8A109.1 (9)H16A—C16—H16B108.7 (13)
C7—C8—H8A108.5 (9)C16—C17—C18111.09 (13)
C9—C8—H8B112.3 (10)C16—C17—H17A108.2 (9)
C7—C8—H8B108.6 (10)C18—C17—H17A109.9 (9)
H8A—C8—H8B107.1 (14)C16—C17—H17B111.3 (10)
C10—C9—C8111.24 (14)C18—C17—H17B111.4 (10)
C10—C9—H9A109.0 (12)H17A—C17—H17B104.7 (14)
C8—C9—H9A111.9 (13)C17—C18—C13111.24 (13)
C10—C9—H9B109.6 (10)C17—C18—H18A112.5 (9)
C8—C9—H9B106.1 (10)C13—C18—H18A105.8 (9)
H9A—C9—H9B108.9 (16)C17—C18—H18B110.6 (9)
C9—C10—C11111.45 (14)C13—C18—H18B111.0 (10)
C9—C10—H10A110.8 (10)H18A—C18—H18B105.5 (13)
C4—N2—C1—C22.3 (2)C6—C7—C8—C955.8 (2)
C3—N1—C2—C11.6 (2)C7—C8—C9—C1055.6 (2)
N2—C1—C2—N10.7 (3)C8—C9—C10—C1155.8 (2)
C2—N1—C3—C42.3 (2)N3—C6—C11—C10177.59 (12)
C1—N2—C4—C31.6 (2)C7—C6—C11—C1056.51 (18)
C1—N2—C4—C5174.76 (13)C9—C10—C11—C655.82 (19)
N1—C3—C4—N20.7 (2)C13—N4—C12—O25.0 (2)
N1—C3—C4—C5176.86 (13)C13—N4—C12—N3177.08 (12)
C12—N3—C5—O1171.40 (12)C5—N3—C12—O2122.52 (13)
C6—N3—C5—O17.11 (19)C6—N3—C12—O258.94 (17)
C12—N3—C5—C412.32 (18)C5—N3—C12—N459.46 (16)
C6—N3—C5—C4169.17 (11)C6—N3—C12—N4119.08 (13)
N2—C4—C5—O1112.14 (14)C12—N4—C13—C14123.92 (14)
C3—C4—C5—O164.25 (19)C12—N4—C13—C18112.48 (15)
N2—C4—C5—N364.31 (17)N4—C13—C14—C15178.88 (12)
C3—C4—C5—N3119.29 (14)C18—C13—C14—C1555.62 (17)
C5—N3—C6—C7100.16 (14)C13—C14—C15—C1655.91 (19)
C12—N3—C6—C781.28 (15)C14—C15—C16—C1755.8 (2)
C5—N3—C6—C11134.08 (13)C15—C16—C17—C1855.2 (2)
C12—N3—C6—C1144.48 (16)C16—C17—C18—C1354.8 (2)
N3—C6—C7—C8177.62 (13)N4—C13—C18—C17178.13 (13)
C11—C6—C7—C856.89 (18)C14—C13—C18—C1755.35 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O2i0.905 (17)2.025 (17)2.9287 (15)176.1 (14)
Symmetry code: (i) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC18H26N4O2
Mr330.43
Crystal system, space groupOrthorhombic, P212121
Temperature (K)153
a, b, c (Å)9.4745 (8), 11.9101 (7), 15.8212 (10)
V3)1785.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.40 × 0.35
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I'] reflections
14006, 3477, 2753
Rint0.039
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.058, 0.90
No. of reflections3477
No. of parameters322
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.13, 0.13
Absolute structureFlack (1983)
Absolute structure parameter0.8 (9)

Computer programs: EXPOSE (Stoe & Cie, 2000), CELL (Stoe & Cie, 2000), INTEGRATE (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON99 (Spek, 1990), SHELXL97.

Selected geometric parameters (Å, º) top
N3—C51.3617 (17)N4—C131.4618 (18)
N3—C61.4902 (17)O1—C51.2243 (16)
N3—C121.4386 (16)O2—C121.2274 (15)
N4—C121.3287 (17)C4—C51.5061 (19)
C5—N3—C12121.63 (10)O1—C5—C4119.11 (12)
C5—N3—C6120.19 (11)N3—C5—C4117.17 (11)
C12—N3—C6118.17 (11)O2—C12—N4125.62 (12)
C12—N4—C13123.64 (12)O2—C12—N3121.00 (11)
O1—C5—N3123.62 (12)N4—C12—N3113.35 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O2i0.905 (17)2.025 (17)2.9287 (15)176.1 (14)
Symmetry code: (i) x1/2, y+3/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds