Download citation
Download citation
link to html
The crystal structure of the title complex, C13H10N+·C8H5O4, confirmed the full proton transfer, i.e. protonation of the acridine N atom and deprotonation of one of the carboxyl­ic acid groups, in the isophthalic (1,3-benzene­di­carboxyl­ic) acid. In the title complex, isophthalate anions are linked via strong O—H...O bonds and weak C—H...O bonds into infinite chains along the a axis of the crystal. The acridinium cations are attached to the anionic chains via strong hydrogen bonds involving the carboxyl­ate groups of the isophthalate anion and the NH group of the acridinium cation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801013927/ya6049sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801013927/ya6049Isup2.hkl
Contains datablock I

CCDC reference: 175361

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.045
  • wR factor = 0.120
  • Data-to-parameter ratio = 12.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSMU_01 Alert C The ratio of given/expected absorption coefficient lies outside the range 0.99 <> 1.01 Calculated value of mu = 0.097 Value of mu given = 0.100
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Isophthalic acid is an organic dicarboxylic acid which crystallizes in space group P21/c, and forms supramolecular acid chains in its solid-state structure (Derissen, 1974). It is one of the organic acids that we are interested in for our research into the molecular self-assembly of carboxylic acids with N-aromatic complexes. As part of our analysis of the molecular interactions, the structure of the title complex, (I), was determined.

In (I), the cations and anions form a 1:1 cocrystal. The asymmetric unit and atomic numbering scheme of (I) is shown in Fig. 1. Supramolecular acid chains are formed along the a axis via strong O3—H101···O2 and weak C19—H19···O4 hydrogen bonds (Table 2). In addition, acridinium cations are joined to the acid chains (Fig. 2) by N1—H1···O1 hydrogen bonds (Table 2). Proton transfer occurs between the carboxylic acid group and the acridine N atom so that the aromatic N atom is positively charged while the corresponding carboxylic acid group is negatively charged (Table 1). Acridinium cations form infinite stacks along the a axis, the distance between the planes of adjacent acridinium cations being ca 3.5 Å.

Experimental top

Acridine and isophthalic acid were obtained from Aldrich. 33 mg of the acid and 36 mg of the base were used to dissolve into 15 ml of ethanol. Crystals of (I) were obtained by slow evaporation of the ethanol solution at the room temperature.

Refinement top

The H101 atom on the carboxylic acid group was located from the difference Fourier map and refined without restraint. All other H atoms were placed geometrically and allowed to ride on their parent atom during subsequent refinement, with an isotropic displacement parameter fixed at 1.2 times the Ueq value of the corresponding C or N atom.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1988); cell refinement: CAD-4 Software; data reduction: TEXSAN (Molecular Structure Corporation, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Sheldrick, 1993); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The acridinium cation and isophthalate anion in the crystal structure of (I). Displacement ellipsoids are drawn at the 50% probability level (XP; Sheldrick, 1993).
[Figure 2] Fig. 2. Projection of the molecular packing of (I) onto the (010) plane showing isophthalate chains and acridinium stacks (CAMERON; Watkin et al., 1996).
Acridine–isophthalic acid top
Crystal data top
C13H10N+·C8H5O4Z = 2
Mr = 345.34F(000) = 360
Triclinic, P1Dx = 1.389 Mg m3
a = 8.5196 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.144 (1) ÅCell parameters from 25 reflections
c = 11.386 (4) Åθ = 8.0–15.0°
α = 69.41 (2)°µ = 0.10 mm1
β = 89.44 (1)°T = 295 K
γ = 84.22 (1)°Block, yellow
V = 825.8 (3) Å30.50 × 0.25 × 0.15 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.023
Radiation source: fine-focus sealed tubeθmax = 24.9°, θmin = 3.5°
Graphite monochromatorh = 1010
ω/2θ scansk = 1010
3032 measured reflectionsl = 013
2874 independent reflections3 standard reflections every 200 reflections
2054 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.2511P]
where P = (Fo2 + 2Fc2)/3
2874 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C13H10N+·C8H5O4γ = 84.22 (1)°
Mr = 345.34V = 825.8 (3) Å3
Triclinic, P1Z = 2
a = 8.5196 (9) ÅMo Kα radiation
b = 9.144 (1) ŵ = 0.10 mm1
c = 11.386 (4) ÅT = 295 K
α = 69.41 (2)°0.50 × 0.25 × 0.15 mm
β = 89.44 (1)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.023
3032 measured reflections3 standard reflections every 200 reflections
2874 independent reflections intensity decay: none
2054 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.16 e Å3
2874 reflectionsΔρmin = 0.27 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1914 (2)0.5425 (2)0.05355 (18)0.0397 (5)
C20.0934 (3)0.5486 (3)0.1533 (2)0.0524 (6)
H20.05450.45780.20670.063*
C30.0565 (3)0.6866 (3)0.1706 (3)0.0683 (7)
H30.00650.68960.23710.082*
C40.1114 (4)0.8249 (3)0.0903 (3)0.0736 (8)
H40.08510.91850.10430.088*
C50.2023 (3)0.8243 (3)0.0074 (3)0.0675 (7)
H50.23660.91760.06080.081*
C60.2458 (2)0.6823 (2)0.02912 (19)0.0466 (5)
C70.3398 (3)0.6711 (3)0.1264 (2)0.0544 (6)
H70.37760.76120.18200.065*
C80.3784 (2)0.5298 (3)0.14236 (19)0.0476 (5)
C90.4724 (3)0.5118 (4)0.2416 (2)0.0694 (7)
H90.51100.59920.30010.083*
C100.5058 (3)0.3697 (5)0.2515 (3)0.0838 (10)
H100.56670.35980.31710.101*
C110.4492 (3)0.2358 (4)0.1633 (3)0.0792 (9)
H110.47370.13850.17150.095*
C120.3600 (3)0.2459 (3)0.0673 (2)0.0604 (6)
H120.32390.15640.00950.072*
C130.3222 (2)0.3933 (2)0.05556 (19)0.0419 (5)
C140.1152 (2)0.9353 (2)0.36771 (18)0.0371 (4)
C150.0485 (2)0.9496 (2)0.36344 (18)0.0387 (5)
H150.10371.04050.30840.046*
C160.1309 (2)0.8297 (2)0.44059 (18)0.0393 (5)
C170.0475 (3)0.6944 (2)0.52102 (19)0.0492 (5)
H170.10120.61230.57150.059*
C180.1157 (3)0.6809 (3)0.5266 (2)0.0548 (6)
H180.17110.58990.58120.066*
C190.1963 (2)0.8011 (2)0.4518 (2)0.0487 (5)
H190.30590.79220.45780.058*
C200.2007 (2)1.0627 (2)0.2786 (2)0.0430 (5)
O10.11318 (16)1.16990 (17)0.19597 (15)0.0576 (5)
O20.34385 (17)1.0593 (2)0.28384 (17)0.0726 (5)
O30.36907 (18)0.98302 (19)0.36458 (17)0.0673 (5)
H1010.493 (4)0.986 (3)0.363 (3)0.102 (9)*
O40.38280 (19)0.7372 (2)0.49132 (16)0.0697 (5)
C210.3057 (2)0.8430 (3)0.43635 (19)0.0460 (5)
N10.23126 (18)0.40482 (19)0.03912 (15)0.0408 (4)
H10.19800.32130.09160.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C140.0353 (10)0.0420 (11)0.0359 (10)0.0065 (8)0.0056 (8)0.0155 (9)
O30.0354 (9)0.0595 (10)0.0841 (13)0.0094 (7)0.0016 (8)0.0044 (9)
O10.0406 (8)0.0522 (9)0.0624 (10)0.0115 (7)0.0028 (7)0.0035 (8)
C160.0400 (10)0.0440 (11)0.0346 (10)0.0090 (8)0.0044 (8)0.0133 (9)
C200.0368 (11)0.0458 (12)0.0462 (12)0.0089 (9)0.0045 (9)0.0150 (10)
C170.0526 (13)0.0466 (12)0.0408 (12)0.0136 (10)0.0058 (10)0.0040 (10)
O40.0526 (10)0.0711 (11)0.0677 (11)0.0270 (8)0.0117 (8)0.0027 (9)
C150.0384 (11)0.0386 (11)0.0377 (11)0.0052 (8)0.0016 (8)0.0112 (9)
O20.0326 (9)0.0817 (12)0.0804 (12)0.0141 (8)0.0030 (8)0.0024 (10)
C190.0393 (11)0.0524 (13)0.0506 (13)0.0007 (9)0.0002 (10)0.0145 (10)
C210.0442 (11)0.0532 (13)0.0367 (11)0.0141 (10)0.0078 (9)0.0087 (10)
C180.0517 (13)0.0463 (13)0.0528 (13)0.0012 (10)0.0043 (11)0.0013 (10)
N10.0403 (9)0.0406 (9)0.0386 (9)0.0108 (7)0.0080 (7)0.0088 (7)
C10.0393 (10)0.0415 (12)0.0372 (11)0.0033 (9)0.0014 (8)0.0125 (9)
C130.0340 (10)0.0536 (13)0.0421 (11)0.0073 (9)0.0041 (9)0.0212 (10)
C60.0516 (12)0.0421 (12)0.0414 (12)0.0037 (9)0.0055 (10)0.0090 (9)
C80.0401 (11)0.0657 (15)0.0344 (11)0.0134 (10)0.0043 (9)0.0124 (10)
C20.0499 (12)0.0633 (15)0.0434 (12)0.0009 (11)0.0060 (10)0.0194 (11)
C70.0587 (14)0.0504 (13)0.0432 (13)0.0169 (10)0.0008 (11)0.0001 (10)
C90.0527 (14)0.114 (2)0.0395 (13)0.0197 (14)0.0138 (11)0.0226 (14)
C120.0554 (14)0.0638 (16)0.0724 (17)0.0088 (11)0.0059 (12)0.0364 (13)
C50.0873 (19)0.0416 (13)0.0670 (17)0.0020 (12)0.0231 (15)0.0115 (12)
C30.0666 (16)0.083 (2)0.0591 (16)0.0171 (14)0.0077 (13)0.0366 (15)
C40.091 (2)0.0623 (17)0.0710 (18)0.0233 (15)0.0254 (16)0.0352 (15)
C100.0548 (16)0.150 (3)0.0654 (19)0.0049 (18)0.0110 (14)0.064 (2)
C110.0625 (16)0.108 (2)0.093 (2)0.0015 (16)0.0070 (16)0.070 (2)
Geometric parameters (Å, º) top
C14—C191.384 (3)C13—C121.406 (3)
C14—C151.388 (3)C13—C81.417 (3)
C14—C201.497 (3)C6—C71.387 (3)
O3—H1011.06 (3)C6—C51.419 (3)
O1—C201.272 (2)C8—C71.375 (3)
C16—C171.383 (3)C8—C91.425 (3)
C16—C151.390 (3)C2—C31.351 (3)
C16—C211.482 (3)C2—H20.9300
O2—C201.219 (2)C7—H70.9300
O3—C211.316 (3)C9—C101.345 (4)
C17—C181.383 (3)C9—H90.9300
C17—H170.9300C12—C111.350 (4)
O4—C211.205 (2)C12—H120.9300
C15—H150.9300C5—C41.351 (4)
C19—C181.374 (3)C5—H50.9300
C19—H190.9300C3—C41.397 (4)
C18—H180.9300C3—H30.9300
N1—C11.336 (2)C4—H40.9300
N1—C131.349 (3)C10—C111.409 (5)
N1—H10.8600C10—H100.9300
C1—C61.414 (3)C11—H110.9300
C1—C21.417 (3)
C19—C14—C15119.20 (19)C7—C6—C1117.49 (19)
C19—C14—C20121.34 (18)C7—C6—C5124.1 (2)
C15—C14—C20119.43 (18)C1—C6—C5118.4 (2)
C21—O3—H101110.1 (16)C7—C8—C13118.58 (19)
C17—C16—C15119.10 (18)C7—C8—C9123.8 (2)
C17—C16—C21119.63 (18)C13—C8—C9117.6 (2)
C15—C16—C21121.26 (18)C3—C2—C1119.9 (2)
O2—C20—O1123.42 (19)C3—C2—H2120.1
O2—C20—C14121.59 (19)C1—C2—H2120.1
O1—C20—C14114.95 (17)C8—C7—C6121.4 (2)
C18—C17—C16120.23 (19)C8—C7—H7119.3
C18—C17—H17119.9C6—C7—H7119.3
C16—C17—H17119.9C10—C9—C8120.7 (3)
C14—C15—C16120.72 (18)C10—C9—H9119.6
C14—C15—H15119.6C8—C9—H9119.6
C16—C15—H15119.6C11—C12—C13119.2 (3)
C18—C19—C14120.33 (19)C11—C12—H12120.4
C18—C19—H19119.8C13—C12—H12120.4
C14—C19—H19119.8C4—C5—C6120.4 (3)
O4—C21—O3123.1 (2)C4—C5—H5119.8
O4—C21—C16124.1 (2)C6—C5—H5119.8
O3—C21—C16112.81 (17)C2—C3—C4121.1 (3)
C19—C18—C17120.4 (2)C2—C3—H3119.5
C19—C18—H18119.8C4—C3—H3119.5
C17—C18—H18119.8C5—C4—C3120.8 (2)
C1—N1—C13121.77 (17)C5—C4—H4119.6
C1—N1—H1119.1C3—C4—H4119.6
C13—N1—H1119.1C9—C10—C11120.4 (3)
N1—C1—C6121.01 (19)C9—C10—H10119.8
N1—C1—C2119.56 (19)C11—C10—H10119.8
C6—C1—C2119.43 (19)C12—C11—C10121.4 (3)
N1—C13—C12119.6 (2)C12—C11—H11119.3
N1—C13—C8119.74 (19)C10—C11—H11119.3
C12—C13—C8120.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H101···O2i1.06 (3)1.61 (3)2.562 (2)147 (3)
N1—H1···O1ii0.861.702.553 (2)173
C19—H19···O4iii0.932.663.582 (3)174
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H10N+·C8H5O4
Mr345.34
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.5196 (9), 9.144 (1), 11.386 (4)
α, β, γ (°)69.41 (2), 89.44 (1), 84.22 (1)
V3)825.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.25 × 0.15
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3032, 2874, 2054
Rint0.023
(sin θ/λ)max1)0.592
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.120, 1.11
No. of reflections2874
No. of parameters239
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.27

Computer programs: CAD-4 Software (Enraf-Nonius, 1988), CAD-4 Software, TEXSAN (Molecular Structure Corporation, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Sheldrick, 1993), SHELXL97.

Selected bond lengths (Å) top
O1—C201.272 (2)O3—C211.316 (3)
O2—C201.219 (2)O4—C211.205 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H101···O2i1.06 (3)1.61 (3)2.562 (2)147 (3)
N1—H1···O1ii0.861.702.553 (2)173.3
C19—H19···O4iii0.932.663.582 (3)174.1
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds