Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of the proton-transfer complex of (8-quinolinyl)­urea (QUR) with 3,5-di­nitro­salicylic acid (DNSA), 8-ureidoquinolinium 3,5-di­nitro­salicylate, [(QUR)+ (DNSA)] or C10H10N3O+·C7H3N2O7, the hetero–N atom of QUR is protonated and, together with all urea protons, is involved in extensive hydrogen-bonding associations which result in a three-dimensional network polymer [N...O 2.711–3.251 (2) Å]. In addition, the quinolinium proton is involved in an intramolecular hydrogen bond with a urea–N atom [N—N 2.841 (2) Å] and within the DNSA anions a short intramolecular O(carboxyl)...O(hydroxy) hydrogen bond is also present [O...O 2.492 (2) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801013666/ya6046sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801013666/ya6046Isup2.hkl
Contains datablock I

CCDC reference: 172226

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.045
  • wR factor = 0.125
  • Data-to-parameter ratio = 13.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The nitro-substituted aromatic acid 3,5-dinitrosalicylic acid (DNSA) has proved a very useful compound for structure formation, giving a number of complexes which acquire stable crystalline lattices through hydrogen-bonding associations. These compounds may be either neutral or ionic, the latter involving proton transfer to a Lewis base acceptor. In addition, association may involve ππ interactions through the aromatic ring and its interactive nitro substituents, although the majority of reported examples primarily interact via the carboxylate group, the ortho-related hydroxy group, and to a lesser extent, the nitro groups. Issa and co-workers have categorized a large number of examples using IR spectroscopy (Hindawey et al., 1980; Issa et al., 1980, 1981), while those characterized to date by our group using X-ray diffraction are the compounds with 3-amino-1H-1,2,4-triazole (Smith et al., 1995), 8-aminoquinoline (Smith, Wermuth, Bott et al., 2001), 8-hydroxyquinoline (Smith, Wermuth & White, 2001), guanidine (Smith, Bott & Wermuth, 2001) and the isomeric aminobenzoic acids (Smith et al., 1995). In the case of the compound with 4-aminobenzoic acid, the only example is a 1:2 adduct. Neutral compounds are less common but the 1:1 adducts with urea (Smith, Baldry et al., 1997), 1,1-diethylurea (Smith et al., 2000), and a series of polymorphic solvates with dioxane (1:1) (two) and (2:1) (two) (Kumar et al., 1999) have been characterized. A series of four polymorphs is also known for the hydrates [all (1:1)] (Smith et al., 1995; Kumar et al., 1999)].

Taking into account the potential for proton transfer and the associative nature of the urea molecule, we expected the structure of the product of the interaction of the unsymmetrically substituted urea, 8-quinolinylurea (QUR) with DNSA, the (1:1) proton-transfer complex [(QUR)+(DNSA)-], to be of considerable interest. QUR is also known for its biological effects, such as cytotoxicity or mutagenic properties (Pagani et al., 1983: Smith, Hansch & Morton, 1997).

The structure (Fig. 1) shows that the hetero-N atom of QUR is protonated and gives strong intermolecular hydrogen-bonding associations with a hydroxyl O atom [N11···O2i 2.711 (2) Å; symmetry code: (i) 1 - x, -y, 1 - z] and a nitro-O atom of the same DNSA anion [N11···O31i 2.837 (2) Å]. Completing a four-centre association about the quinolinium proton is an intramolecular hydrogen bond to the first urea-N atom [N11–H11···N1 2.841 (2) Å]. The urea residue is twisted out of the plane of the quinolinyl ring [torsion angles: C17–C18–N1–C182 115.2 (2)°; C18–N1–C182–N2 - 167.3 (2)°]. All available hydrogen-bonding sites on the urea residue are utilized [N1···O182 2.800 (2) Å; N2···O71 2.981 (2) Å; N2···O71 3.251 (2) Å; N2···O72 3.101 (2) Å], giving a three-dimensional network polymer (Fig. 2). A number of C–H···O associations (Table 1) add to the stability of the structure.

The intramolecular hydrogen bond between the carboxylate group and the ortho-related hydroxyl group is dimensionally similar to those found in all of the complexes and adducts of DNSA [O72—O2 2.492 (2) Å; range 2.409–2.464 Å]. The type of intramolecular bond found here places this compound in a minor category within the series of those compounds in which the hydroxyl proton is anti-located adjacent to the carboxyl oxygen within the hydrogen bond, rather than being on the hydroxyl oxygen (this type of hydrogen bonds was also reported in the proton-transfer compounds with 3-amino-1H-1,2,4-triazole, 3-aminobenzoic acid and 4-aminobenzoic acid).

Experimental top

Synthesis was carried out by initially mixing together equimolar quantities (1 mmol) of 3,5-dinitrosalicylic acid and (8-quinolinyl)urea at which stage reaction was observed as a colour change to orange-yellow. 50 ml of 80% ethanol/water were added to the product and the mixture was heated with stirring until the volume was reduced to ca 40 ml. Crystals were obtained after partial room temperature evaporation of the filtered solution.

Refinement top

The positional parameters only for those atoms which are involved in hydrogen bonding (H1, H11, H21, H22 and H72; located by difference methods) were refined. All other H atoms were placed in calculated positions and included in the refinement in the riding-model approximation.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1999a).; cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1999b); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON for Windows (Spek, 1999); software used to prepare material for publication: TEXSAN for Windows.

Figures top
[Figure 1] Fig. 1. The (8-quinolinyl)urea cation and the 3,5-dinitrosalicylate anion in the structure of [QUR+][DNSA-]. Atoms are shown as 30% probability ellipsoids.
[Figure 2] Fig. 2. The hydrogen-bonding scheme (hydrogen bonds shown as broken lines) viewed down the a axis of the crystal.
(I) top
Crystal data top
C10H10N3O+·C7H3N2O7Z = 2
Mr = 415.32F(000) = 428
Triclinic, P1Dx = 1.594 Mg m3
Hall symbol: -P 1Melting point = 512–517 K
a = 13.061 (2) ÅMo Kα radiation, λ = 0.71069 Å
b = 13.898 (2) ÅCell parameters from 25 reflections
c = 4.8910 (17) Åθ = 12.6–17.7°
α = 93.33 (2)°µ = 0.13 mm1
β = 93.21 (2)°T = 295 K
γ = 101.764 (14)°Blocky prism, yellow
V = 865.6 (4) Å30.45 × 0.42 × 0.20 mm
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.058
Radiation source: Rigaku rotating anodeθmax = 27.5°, θmin = 3.0°
Graphite monochromatorh = 1616
ω–2θ scansk = 1818
4728 measured reflectionsl = 62
3980 independent reflections3 standard reflections every 150 reflections
3117 reflections with I > 2σ(I) intensity decay: 1.4%
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.3656P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.30 e Å3
3980 reflectionsΔρmin = 0.20 e Å3
287 parametersExtinction correction: SHELXL97, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
0 restraintsExtinction coefficient: 0.024 (4)
Crystal data top
C10H10N3O+·C7H3N2O7γ = 101.764 (14)°
Mr = 415.32V = 865.6 (4) Å3
Triclinic, P1Z = 2
a = 13.061 (2) ÅMo Kα radiation
b = 13.898 (2) ŵ = 0.13 mm1
c = 4.8910 (17) ÅT = 295 K
α = 93.33 (2)°0.45 × 0.42 × 0.20 mm
β = 93.21 (2)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.058
4728 measured reflections3 standard reflections every 150 reflections
3980 independent reflections intensity decay: 1.4%
3117 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.30 e Å3
3980 reflectionsΔρmin = 0.20 e Å3
287 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.78301 (10)0.20887 (8)0.3893 (3)0.0393 (4)
O310.91186 (12)0.30995 (9)0.0466 (3)0.0524 (4)
O321.02715 (15)0.23432 (13)0.0948 (5)0.0863 (7)
O510.91153 (15)0.10639 (12)0.4119 (4)0.0655 (5)
O520.77274 (14)0.19269 (10)0.2574 (4)0.0641 (5)
O710.60217 (11)0.06037 (10)0.4942 (3)0.0468 (4)
O720.64625 (10)0.09837 (10)0.6262 (3)0.0414 (4)
N30.94176 (12)0.23420 (11)0.0062 (3)0.0395 (4)
N50.83816 (14)0.11582 (11)0.2629 (3)0.0433 (5)
C10.73654 (12)0.03735 (11)0.2635 (3)0.0282 (4)
C20.79740 (12)0.13500 (11)0.2375 (3)0.0284 (4)
C30.87482 (12)0.14005 (11)0.0394 (3)0.0309 (4)
C40.89063 (13)0.05914 (12)0.1164 (3)0.0332 (5)
C50.82707 (13)0.03127 (12)0.0861 (3)0.0324 (5)
C60.75062 (13)0.04258 (11)0.1025 (3)0.0306 (4)
C70.65524 (13)0.02073 (12)0.4699 (3)0.0314 (4)
O1820.43791 (10)0.29935 (9)0.6084 (2)0.0382 (3)
N10.38575 (12)0.31732 (10)1.0419 (3)0.0334 (4)
N20.48421 (14)0.17027 (12)0.9232 (3)0.0441 (5)
N110.22207 (11)0.40209 (9)0.6391 (3)0.0314 (4)
C120.14806 (14)0.43657 (13)0.4414 (4)0.0388 (5)
C130.11796 (15)0.53707 (14)0.3695 (4)0.0441 (6)
C140.16347 (15)0.60047 (13)0.5134 (4)0.0419 (5)
C150.28873 (17)0.62749 (13)0.8874 (4)0.0451 (6)
C160.36099 (16)0.58817 (15)1.0964 (4)0.0466 (6)
C170.39303 (14)0.48532 (14)1.1474 (4)0.0390 (5)
C180.35236 (13)0.42061 (12)0.9929 (3)0.0314 (4)
C190.27294 (12)0.46119 (11)0.7850 (3)0.0294 (4)
C1100.24178 (14)0.56459 (12)0.7264 (4)0.0348 (5)
C1820.43746 (12)0.26271 (12)0.8434 (3)0.0298 (4)
H40.94650.06480.24570.0340*
H60.70980.10340.11950.0340*
H720.697 (2)0.149 (2)0.570 (6)0.069*
H10.4043 (17)0.2990 (16)1.205 (5)0.049*
H110.2348 (18)0.3373 (16)0.677 (5)0.051*
H120.12110.38920.35620.0340*
H130.06020.55680.22080.0340*
H140.14090.67750.46510.0340*
H150.27440.70170.84410.0340*
H160.39210.63231.22650.0340*
H170.43900.45781.27200.0340*
H210.5174 (18)0.1329 (17)0.802 (5)0.050*
H220.4795 (19)0.1461 (18)1.080 (6)0.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0519 (7)0.0261 (6)0.0395 (7)0.0053 (5)0.0147 (5)0.0020 (5)
O310.0616 (9)0.0281 (6)0.0656 (9)0.0007 (6)0.0193 (7)0.0037 (6)
O320.0673 (11)0.0536 (10)0.1358 (19)0.0062 (8)0.0629 (12)0.0030 (10)
O510.0839 (12)0.0546 (9)0.0649 (10)0.0233 (8)0.0402 (9)0.0041 (7)
O520.0858 (12)0.0294 (7)0.0744 (11)0.0052 (7)0.0227 (9)0.0100 (7)
O710.0488 (8)0.0400 (7)0.0477 (8)0.0046 (6)0.0176 (6)0.0059 (6)
O720.0455 (7)0.0408 (7)0.0383 (7)0.0067 (6)0.0175 (6)0.0004 (5)
N30.0411 (8)0.0329 (7)0.0415 (8)0.0021 (6)0.0123 (6)0.0023 (6)
N50.0593 (10)0.0318 (7)0.0426 (8)0.0170 (7)0.0124 (7)0.0004 (6)
C10.0297 (7)0.0278 (7)0.0271 (7)0.0048 (6)0.0047 (6)0.0035 (6)
C20.0311 (8)0.0248 (7)0.0288 (7)0.0049 (6)0.0027 (6)0.0016 (6)
C30.0318 (8)0.0266 (7)0.0330 (8)0.0015 (6)0.0058 (6)0.0030 (6)
C40.0340 (8)0.0342 (8)0.0327 (8)0.0087 (6)0.0081 (6)0.0030 (6)
C50.0404 (9)0.0273 (7)0.0310 (8)0.0105 (6)0.0049 (6)0.0005 (6)
C60.0345 (8)0.0240 (7)0.0326 (8)0.0038 (6)0.0040 (6)0.0039 (6)
C70.0319 (8)0.0337 (8)0.0284 (7)0.0047 (6)0.0050 (6)0.0046 (6)
O1820.0518 (7)0.0381 (6)0.0210 (5)0.0011 (5)0.0059 (5)0.0022 (5)
N10.0437 (8)0.0327 (7)0.0194 (6)0.0016 (6)0.0051 (5)0.0025 (5)
N20.0557 (10)0.0385 (8)0.0290 (7)0.0118 (7)0.0144 (7)0.0069 (6)
N110.0371 (7)0.0239 (6)0.0318 (7)0.0034 (5)0.0045 (5)0.0012 (5)
C120.0387 (9)0.0373 (9)0.0384 (9)0.0046 (7)0.0000 (7)0.0011 (7)
C130.0390 (9)0.0428 (10)0.0441 (10)0.0022 (8)0.0015 (8)0.0103 (8)
C140.0444 (10)0.0286 (8)0.0490 (10)0.0014 (7)0.0152 (8)0.0085 (7)
C150.0555 (11)0.0291 (8)0.0546 (11)0.0126 (8)0.0210 (9)0.0062 (8)
C160.0539 (11)0.0451 (10)0.0493 (11)0.0218 (9)0.0181 (9)0.0187 (9)
C170.0406 (9)0.0459 (10)0.0322 (8)0.0103 (8)0.0076 (7)0.0070 (7)
C180.0367 (8)0.0328 (8)0.0251 (7)0.0057 (6)0.0108 (6)0.0028 (6)
C190.0341 (8)0.0259 (7)0.0285 (7)0.0051 (6)0.0113 (6)0.0004 (6)
C1100.0403 (9)0.0256 (7)0.0386 (9)0.0047 (6)0.0155 (7)0.0005 (6)
C1820.0322 (8)0.0329 (8)0.0224 (7)0.0026 (6)0.0035 (6)0.0011 (6)
Geometric parameters (Å, º) top
O2—C21.283 (2)C1—C21.443 (2)
O31—N31.214 (2)C2—C31.433 (2)
O32—N31.219 (3)C3—C41.379 (2)
O51—N51.227 (3)C4—C51.378 (2)
O52—N51.227 (2)C5—C61.389 (2)
O71—C71.213 (2)C4—H40.99
O72—C71.315 (2)C6—H60.91
O72—H720.93 (3)C12—C131.390 (3)
O182—C1821.2306 (18)C13—C141.365 (3)
N3—C31.454 (2)C14—C1101.412 (3)
N5—C51.454 (2)C15—C1101.416 (3)
N1—C181.415 (2)C15—C161.361 (3)
N1—C1821.387 (2)C16—C171.408 (3)
N2—C1821.331 (2)C17—C181.375 (3)
N11—C191.365 (2)C18—C191.416 (2)
N11—C121.323 (2)C19—C1101.419 (2)
N1—H10.83 (2)C12—H120.92
N2—H220.83 (3)C13—H131.00
N2—H210.88 (2)C14—H141.06
N11—H110.89 (2)C15—H151.02
C1—C61.373 (2)C16—H161.03
C1—C71.499 (2)C17—H170.85
C7—O72—H72104.1 (17)C3—C4—H4121
O31—N3—O32121.99 (17)C5—C6—H6120
O32—N3—C3118.44 (15)C1—C6—H6120
O31—N3—C3119.56 (15)N11—C12—C13120.98 (17)
O51—N5—O52123.40 (17)C12—C13—C14118.80 (18)
O51—N5—C5118.45 (16)C13—C14—C110120.67 (17)
O52—N5—C5118.14 (17)C16—C15—C110119.76 (17)
C18—N1—C182119.66 (14)C15—C16—C17120.74 (18)
C12—N11—C19123.13 (14)C16—C17—C18122.05 (18)
C18—N1—H1113.9 (15)C17—C18—C19117.39 (15)
C182—N1—H1117.3 (16)N1—C18—C17121.96 (15)
C182—N2—H21118.7 (15)N1—C18—C19120.63 (14)
H21—N2—H22120 (2)N11—C19—C110117.85 (14)
C182—N2—H22121.6 (17)N11—C19—C18120.98 (14)
C19—N11—H11121 (2)C18—C19—C110121.15 (15)
C12—N11—H11115 (2)C14—C110—C15122.74 (16)
C2—C1—C7120.22 (13)C14—C110—C19118.48 (16)
C6—C1—C7118.05 (14)C15—C110—C19118.77 (17)
C2—C1—C6121.73 (14)N11—C12—H12114
O2—C2—C3124.58 (14)C13—C12—H12124
C1—C2—C3114.52 (13)C12—C13—H13116
O2—C2—C1120.87 (14)C14—C13—H13125
N3—C3—C2120.06 (13)C13—C14—H14120
C2—C3—C4123.52 (14)C110—C14—H14119
N3—C3—C4116.42 (14)C110—C15—H15122
C3—C4—C5118.55 (15)C16—C15—H15118
N5—C5—C4119.00 (15)C15—C16—H16121
C4—C5—C6121.51 (15)C17—C16—H16118
N5—C5—C6119.45 (15)C16—C17—H17124
C1—C6—C5120.11 (15)C18—C17—H17114
O72—C7—C1116.34 (14)O182—C182—N2123.37 (15)
O71—C7—C1121.63 (15)N1—C182—N2116.05 (14)
O71—C7—O72122.02 (16)O182—C182—N1120.57 (15)
C5—C4—H4120
O31—N3—C3—C4155.18 (16)C1—C2—C3—N3179.79 (14)
O32—N3—C3—C2154.66 (19)C1—C2—C3—C40.3 (2)
O31—N3—C3—C224.7 (2)C2—C3—C4—C51.7 (2)
O32—N3—C3—C425.4 (2)N3—C3—C4—C5178.18 (14)
O51—N5—C5—C6174.05 (17)C3—C4—C5—N5175.75 (15)
O51—N5—C5—C48.1 (2)C3—C4—C5—C62.1 (2)
O52—N5—C5—C66.8 (2)N5—C5—C6—C1177.51 (15)
O52—N5—C5—C4171.07 (17)C4—C5—C6—C10.3 (2)
C18—N1—C182—O18213.3 (2)N11—C12—C13—C142.4 (3)
C182—N1—C18—C1966.4 (2)C12—C13—C14—C1101.7 (3)
C18—N1—C182—N2167.31 (16)C13—C14—C110—C15177.82 (19)
C182—N1—C18—C17115.24 (19)C13—C14—C110—C190.8 (3)
C12—N11—C19—C18179.37 (17)C16—C15—C110—C14177.5 (2)
C19—N11—C12—C130.3 (3)C110—C15—C16—C172.7 (3)
C12—N11—C19—C1102.2 (2)C16—C15—C110—C191.1 (3)
C6—C1—C7—O710.7 (2)C15—C16—C17—C180.9 (3)
C7—C1—C2—C3177.93 (14)C16—C17—C18—N1179.06 (17)
C2—C1—C7—O722.1 (2)C16—C17—C18—C192.6 (3)
C2—C1—C6—C51.9 (2)C17—C18—C19—N11174.15 (16)
C6—C1—C2—O2179.85 (15)C17—C18—C19—C1104.2 (2)
C6—C1—C2—C32.1 (2)N1—C18—C19—C110177.40 (16)
C2—C1—C7—O71179.20 (16)N1—C18—C19—N114.2 (2)
C7—C1—C6—C5178.16 (15)N11—C19—C110—C15175.94 (17)
C7—C1—C2—O20.1 (2)C18—C19—C110—C152.5 (3)
C6—C1—C7—O72177.93 (15)N11—C19—C110—C142.7 (2)
O2—C2—C3—N31.9 (2)C18—C19—C110—C14178.88 (17)
O2—C2—C3—C4178.25 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O182i0.83 (2)2.00 (2)2.800 (2)162 (2)
N11—H11···N10.89 (2)2.54 (2)2.841 (2)100.3 (17)
N11—H11···O2ii0.89 (2)1.89 (2)2.7111 (19)152.7 (17)
N11—H11···O31ii0.89 (2)2.48 (2)2.837 (2)104.4 (17)
N2—H21···O710.88 (2)2.10 (2)2.981 (2)173 (2)
N2—H22···O71i0.83 (3)2.58 (3)3.251 (2)139 (2)
N2—H22···O72iii0.83 (3)2.41 (3)3.101 (2)142 (2)
O72—H72···O20.93 (3)1.60 (3)2.492 (2)161 (3)
C4—H4···O51iv0.9892.573.547 (3)171
C12—H12···O31v0.922.373.201 (3)150
C13—H13···O31vi1.002.473.326 (3)144
C14—H14···O52vii1.062.523.347 (3)135
C15—H15···O52viii1.022.603.168 (3)115
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z+2; (iv) x+2, y, z1; (v) x+1, y, z; (vi) x1, y1, z; (vii) x+1, y1, z; (viii) x+1, y1, z+1.

Experimental details

Crystal data
Chemical formulaC10H10N3O+·C7H3N2O7
Mr415.32
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)13.061 (2), 13.898 (2), 4.8910 (17)
α, β, γ (°)93.33 (2), 93.21 (2), 101.764 (14)
V3)865.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.45 × 0.42 × 0.20
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4728, 3980, 3117
Rint0.058
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.125, 1.04
No. of reflections3980
No. of parameters287
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.20

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1999a)., MSC/AFC Diffractometer Control Software, TEXSAN for Windows (Molecular Structure Corporation, 1999b), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON for Windows (Spek, 1999), TEXSAN for Windows.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O182i0.83 (2)2.00 (2)2.800 (2)162 (2)
N11—H11···N10.89 (2)2.54 (2)2.841 (2)100.3 (17)
N11—H11···O2ii0.89 (2)1.89 (2)2.7111 (19)152.7 (17)
N11—H11···O31ii0.89 (2)2.48 (2)2.837 (2)104.4 (17)
N2—H21···O710.88 (2)2.10 (2)2.981 (2)173 (2)
N2—H22···O71i0.83 (3)2.58 (3)3.251 (2)139 (2)
N2—H22···O72iii0.83 (3)2.41 (3)3.101 (2)142 (2)
O72—H72···O20.93 (3)1.60 (3)2.492 (2)161 (3)
C4—H4···O51iv0.9892.573.547 (3)171
C12—H12···O31v0.922.373.201 (3)150
C13—H13···O31vi1.002.473.326 (3)144
C14—H14···O52vii1.062.523.347 (3)135
C15—H15···O52viii1.022.603.168 (3)115
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z+2; (iv) x+2, y, z1; (v) x+1, y, z; (vi) x1, y1, z; (vii) x+1, y1, z; (viii) x+1, y1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds