Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The tetrameric title complex in the crystal of its toluene disolvate, i.e. tetra-μ-cyano-tetrakis­[(penta­fluoro­phenyl)(tri­ethyl­phosphine)­palladium(II)] toluene disolvate, [Pd4(μ-CN)4(C6F5)4(PEt3)4]·2C7H8, occupies a special position on a crystallographic inversion centre and contains a square arrangement of four square-planar palladium centres.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801014994/ya6040sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801014994/ya6040Isup2.hkl
Contains datablock I

CCDC reference: 175332

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in main residue
  • R factor = 0.025
  • wR factor = 0.061
  • Data-to-parameter ratio = 19.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.695 0.801 Tmin' and Tmax expected: 0.710 0.717 RR' = 0.876 Please check that your absorption correction is appropriate. PLAT_301 Alert C Main Residue Disorder ........................ 9.00 Perc. General Notes
ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.895 Tmax scaled 0.717 Tmin scaled 0.622
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

The construction of cyclic nanostructures using coordination chemistry is a topic of growing interest (Olenyuk et al., 1998; Fujita 1998; Navarro & Lippert, 1999). One of the most popular patterns is that of a molecular square where transition metal building blocks affording coordination sites at 90° are linked by bidentate ligands defining bonds at 180°. The latter are usually neutral symmetric N-donor ligands such as 4,4'-bipyridyl, 1,4-dicyanobenzene, 4,4'-dicyano-1,1'-diphenyl, linear bis(pyridyl)porphirines and the like (Stang et al., 1995, 1997; Fujita et al., 1994; Wu et al., 1998).

The two simplest bridging ligands making two linear bonds are C22- and CN-. While their short length does not afford a square hole useful to host anything inside, they both offer excellent electronic communication and might be used to constitute tetrametallic knots in a more sophisticated network containing other ligands. The CN- bridge seems to offer two potential advantages over an acetylene bridge. Firstly, N—M bond formation is easily reversible, thus allowing rearrangements in solution towards favorable structures; this ability is usually needed for the self-assembly of nanostructures and cannot be easily achieved with the irreversible formation of acetylide–M bonds. Secondly, when coordinated to building blocks with different ligands, the asymmetric CN- should be able, in principle, to discriminate between different trans ligands according to their different trans influences.

Different structural patterns based on CN- bridges can be found in the structures of metallic cyanide complexes, ranging from chain structures (e.g. AgCN) to three-dimensional frameworks, e.g. Prussian Blue (Wells, 1984). The structures of [Rh4(µ-CN)4(C2B10H11)4(PPh3)4] (Kalb et al., 1982), [Ti4(µ-CN)4(C5H5)8] (Schinnerling & Thewalt, 1992) and [Cu4(µ-CN)4(tmtch)4] (tmtch = SC10H6, 3,3,6,6-tetramethyl-1-thia-cycloheptyne; Olbrich et al., 1993), have been determined. They all are folded to a greater or lesser extent towards a butterfly geometry, due to the lack of 90° bond angles at the metal. The structure of a box-shaped framework formed from squares of [{RhCl(C5Me5)}2{Co(C5H5)(CN)}2(µ-CN)4] has also been reported (Klausmeyer et al., 1998). Surprisingly, the only structural determination of a complex with a metal ideally suited to produce 90° bond angles is that of [Au4(µ-CN)4(n-C3H7)8] (Phillips & Powell, 1939); this molecule was structurally characterized as early as 1939, and the precision of the data is severely limited by the technology available at that time.

Some time ago, one of the authors reported a number of tetrameric and polymeric Pd complexes containing bridging cyano ligands. Vapour-pressure-based molecular-weight determinations on solutions of some of them suggested a tetranuclear structure [Pd4(µ-CN)4R4L4] (R = C6F5, C6Cl5; L = PEt3, PPh3, AsPh3), but this proposal could not be supported by a single-crystal structure determination. Now we have succeeded in crystallizing and solving the structure of the compound with R = C6F5 and L = PEt3.

As anticipated, the structure contains a square array of palladium centres linked by bridging cyanide ligands (Fig. 1). This perfectly flat arrangement allows the molecule to sit on an inversion centre: any deviation towards a tetrahedral arrangement of Pd atoms would break this symmetry. The asymmetric unit also contains a molecule of toluene solvent.

As mentioned in the Experimental section, disorder is observed in the positions of the C and N atoms of the bridging cyanide ligands. The 1H and 19F NMR spectra show that a complicated mixture of isomers is present in solution. Solid-state IR shows a single sharp absorption at 2176 cm-1 supporting a model with a symmetric arrangement of cyanide ligands and the `square' having virtual fourfold symmetry.

Experimental top

The title compound was prepared as reported in the literature (Usón et al., 1983). Colourless single crystals were grown on cooling a toluene solution of the complex at 253 K for several weeks.

Refinement top

Disorder is observed in the positions of the C and N atoms of the bridging cyanide ligands. The eventual strategy adopted to model this was to fix the occupancy of each atomic position with a C:N ratio of 1:1 and to constrain the coordinates and displacement parameters of the C and N atoms at each position to be equivalent. This constrains the Pd—N and Pd—C distances to be equivalent and these distances should thus be treated with caution. All H atoms were constrained to ideal geometries. Methyl H atoms were positioned with a rotating group refinement and isotropic displacement parameters 1.5 times that of their adjacent C atom. All other H atoms were assigned isotropic displacement parameters 1.2 times that of their adjacent C atom. The highest residual electron-density peak (1.01 e Å-3) is found 0.84 Å from P1. All other residual electron-density peaks have values less than 1 e Å-3.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Bruker, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the tetrameric Pd complex in the crystal of the title compound showing 50% probability displacement ellipsoids. The H atoms have been omitted for clarity. The second component atoms of the disordered part of the structure are shown in parentheses.
Palladium, tetrakis[µ-(cyano-C:N)]tetrakis(pentafluorophenyl) tetrakis(triethylphosphine)tetra-, cyclo (9CI), ditoluene top
Crystal data top
[Pd4(CN)4(C6F5)4(C6H15P)4]·2C7H8F(000) = 1848
Mr = 1854.79Dx = 1.625 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.8845 (10) ÅCell parameters from 441 reflections
b = 14.8554 (18) Åθ = 2–25°
c = 21.652 (3) ŵ = 1.11 mm1
β = 97.372 (9)°T = 173 K
V = 3791.0 (8) Å3Block, colourless
Z = 20.3 × 0.3 × 0.3 mm
Data collection top
CCD area-detector
diffractometer
8699 independent reflections
Radiation source: fine-focus sealed tube6789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1515
Tmin = 0.695, Tmax = 0.801k = 1919
38987 measured reflectionsl = 2728
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0336P)2]
where P = (Fo2 + 2Fc2)/3
8699 reflections(Δ/σ)max = 0.001
449 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Pd4(CN)4(C6F5)4(C6H15P)4]·2C7H8V = 3791.0 (8) Å3
Mr = 1854.79Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.8845 (10) ŵ = 1.11 mm1
b = 14.8554 (18) ÅT = 173 K
c = 21.652 (3) Å0.3 × 0.3 × 0.3 mm
β = 97.372 (9)°
Data collection top
CCD area-detector
diffractometer
8699 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
6789 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 0.801Rint = 0.038
38987 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 0.97Δρmax = 1.01 e Å3
8699 reflectionsΔρmin = 0.75 e Å3
449 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.549498 (14)0.223794 (11)0.065058 (8)0.02383 (5)
Pd20.246938 (14)0.025756 (11)0.083650 (8)0.02292 (5)
C1A0.42579 (17)0.12888 (14)0.06457 (10)0.0278 (5)0.50
C2A0.30701 (18)0.09898 (14)0.01589 (10)0.0301 (5)0.50
N1A0.35909 (18)0.07465 (14)0.07015 (10)0.0285 (5)0.50
N2A0.64715 (16)0.14097 (13)0.01756 (10)0.0237 (4)0.50
N1B0.42579 (17)0.12888 (14)0.06457 (10)0.0278 (5)0.50
N2B0.30701 (18)0.09898 (14)0.01589 (10)0.0301 (5)0.50
C1B0.35909 (18)0.07465 (14)0.07015 (10)0.0285 (5)0.50
C2B0.64715 (16)0.14097 (13)0.01756 (10)0.0237 (4)0.50
P10.43375 (6)0.31907 (4)0.10737 (3)0.03429 (15)
P20.11997 (5)0.13484 (4)0.10126 (3)0.02513 (13)
C100.67556 (19)0.31656 (15)0.07088 (11)0.0270 (5)
C110.7011 (2)0.36491 (16)0.02030 (12)0.0339 (6)
F110.63377 (14)0.35788 (11)0.03497 (7)0.0503 (4)
C120.7944 (2)0.42179 (17)0.02241 (15)0.0437 (7)
F120.81750 (15)0.46538 (11)0.02906 (9)0.0643 (5)
C130.8634 (2)0.43295 (17)0.07789 (17)0.0479 (8)
F130.95275 (15)0.48974 (12)0.08120 (11)0.0752 (6)
C140.8396 (2)0.38786 (17)0.12962 (14)0.0416 (7)
F140.90451 (13)0.40133 (11)0.18475 (9)0.0600 (5)
C150.7478 (2)0.33019 (16)0.12516 (12)0.0327 (5)
F150.72855 (13)0.28742 (10)0.17839 (7)0.0439 (4)
C200.19911 (19)0.04493 (15)0.15670 (11)0.0265 (5)
C210.2478 (2)0.03018 (15)0.21721 (12)0.0325 (5)
F210.32964 (14)0.03387 (10)0.22920 (7)0.0500 (4)
C220.2184 (2)0.07704 (18)0.26800 (12)0.0410 (6)
F220.27015 (18)0.05946 (12)0.32598 (7)0.0659 (5)
C230.1357 (2)0.14152 (18)0.25910 (14)0.0438 (7)
F230.10380 (17)0.18584 (12)0.30849 (9)0.0682 (6)
C240.0861 (2)0.16043 (17)0.19995 (14)0.0413 (7)
F240.00538 (15)0.22464 (11)0.19080 (10)0.0670 (5)
C250.1193 (2)0.11361 (16)0.15038 (12)0.0335 (5)
F250.06995 (14)0.13713 (11)0.09261 (8)0.0559 (5)
C300.3051 (2)0.33575 (19)0.04913 (15)0.0483 (7)
H30A0.25510.38090.06540.058*
H30B0.26260.27840.04370.058*
C310.3336 (3)0.3668 (3)0.01369 (16)0.0711 (10)
H31A0.37880.32050.03130.107*
H31B0.26330.37700.04180.107*
H31C0.37710.42300.00860.107*
C400.4880 (2)0.43085 (17)0.12880 (13)0.0400 (6)
H40A0.50690.46100.09060.048*
H40B0.55970.42380.15720.048*
C410.4104 (3)0.49317 (19)0.16005 (14)0.0493 (7)
H41A0.39710.46760.20020.074*
H41B0.44640.55230.16680.074*
H41C0.33790.49960.13330.074*
C500.3752 (2)0.27189 (19)0.17340 (13)0.0439 (7)
H50A0.33080.21740.15980.053*
H50B0.32280.31610.18850.053*
C510.4655 (3)0.2471 (3)0.22655 (15)0.0681 (10)
H51A0.51330.29960.23830.102*
H51B0.42910.22730.26240.102*
H51C0.51240.19820.21340.102*
C600.1715 (2)0.20602 (17)0.16768 (12)0.0367 (6)
H60A0.11310.25190.17320.044*
H60B0.18210.16850.20570.044*
C610.2820 (2)0.2532 (2)0.16072 (14)0.0523 (8)
H61A0.33910.20860.15280.078*
H61B0.30820.28620.19910.078*
H61C0.27010.29550.12570.078*
C700.01827 (19)0.09583 (17)0.11888 (12)0.0334 (6)
H70A0.00640.05410.15480.040*
H70B0.06160.14820.13140.040*
C710.0887 (2)0.0482 (2)0.06484 (14)0.0458 (7)
H71A0.11080.09140.03130.069*
H71B0.15690.02260.07910.069*
H71C0.04370.00020.04940.069*
C800.0884 (2)0.21135 (16)0.03553 (11)0.0304 (5)
H80A0.15980.24140.02800.036*
H80B0.06170.17530.00200.036*
C810.0001 (2)0.28380 (19)0.04288 (15)0.0484 (7)
H81A0.07180.25520.04940.073*
H81B0.01140.32090.00520.073*
H81C0.02660.32180.07880.073*
C900.4079 (3)0.4081 (3)0.38117 (18)0.0876 (13)
H90A0.48270.42300.36950.131*
H90B0.39970.43560.42150.131*
H90C0.40050.34260.38420.131*
C910.3177 (3)0.4434 (2)0.33287 (14)0.0549 (8)
C920.2981 (3)0.5363 (2)0.32470 (16)0.0613 (9)
H920.34350.57810.35010.074*
C930.2134 (3)0.5675 (2)0.27999 (17)0.0627 (9)
H930.20060.63040.27540.075*
C940.1490 (3)0.5096 (3)0.24281 (17)0.0616 (9)
H940.09120.53160.21210.074*
C950.1669 (2)0.4188 (2)0.24934 (16)0.0564 (9)
H950.12210.37820.22270.068*
C960.2488 (2)0.3858 (2)0.29394 (14)0.0458 (7)
H960.25870.32260.29830.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02402 (9)0.02250 (9)0.02620 (10)0.00150 (7)0.00799 (7)0.00186 (7)
Pd20.02295 (9)0.02252 (9)0.02429 (9)0.00100 (7)0.00689 (7)0.00197 (7)
C1A0.0278 (11)0.0279 (11)0.0294 (12)0.0017 (9)0.0100 (9)0.0047 (9)
C2A0.0283 (11)0.0280 (11)0.0346 (13)0.0062 (9)0.0066 (10)0.0009 (9)
N1A0.0290 (11)0.0279 (11)0.0300 (12)0.0000 (9)0.0087 (9)0.0046 (9)
N2A0.0238 (10)0.0212 (10)0.0278 (11)0.0031 (8)0.0095 (9)0.0033 (8)
N1B0.0278 (11)0.0279 (11)0.0294 (12)0.0017 (9)0.0100 (9)0.0047 (9)
N2B0.0283 (11)0.0280 (11)0.0346 (13)0.0062 (9)0.0066 (10)0.0009 (9)
C1B0.0290 (11)0.0279 (11)0.0300 (12)0.0000 (9)0.0087 (9)0.0046 (9)
C2B0.0238 (10)0.0212 (10)0.0278 (11)0.0031 (8)0.0095 (9)0.0033 (8)
P10.0366 (4)0.0275 (3)0.0418 (4)0.0042 (3)0.0166 (3)0.0006 (3)
P20.0246 (3)0.0265 (3)0.0250 (3)0.0023 (2)0.0061 (2)0.0008 (2)
C100.0253 (11)0.0222 (11)0.0351 (14)0.0018 (9)0.0103 (10)0.0034 (10)
C110.0341 (13)0.0290 (12)0.0404 (15)0.0015 (11)0.0120 (11)0.0008 (11)
F110.0627 (11)0.0529 (10)0.0370 (9)0.0052 (8)0.0127 (8)0.0090 (8)
C120.0445 (16)0.0264 (13)0.066 (2)0.0002 (12)0.0304 (15)0.0070 (13)
F120.0674 (12)0.0477 (10)0.0863 (14)0.0028 (9)0.0421 (11)0.0236 (9)
C130.0290 (14)0.0266 (13)0.090 (3)0.0077 (11)0.0159 (15)0.0056 (15)
F130.0442 (10)0.0461 (10)0.137 (2)0.0238 (8)0.0192 (11)0.0014 (11)
C140.0303 (13)0.0305 (13)0.062 (2)0.0022 (11)0.0009 (13)0.0094 (13)
F140.0413 (9)0.0504 (10)0.0821 (14)0.0071 (8)0.0166 (9)0.0142 (9)
C150.0308 (13)0.0259 (12)0.0423 (15)0.0007 (10)0.0084 (11)0.0021 (11)
F150.0476 (9)0.0447 (9)0.0375 (9)0.0047 (7)0.0012 (7)0.0000 (7)
C200.0255 (11)0.0261 (11)0.0289 (13)0.0026 (9)0.0081 (10)0.0032 (9)
C210.0397 (14)0.0268 (12)0.0309 (13)0.0006 (11)0.0046 (11)0.0019 (10)
F210.0630 (10)0.0422 (9)0.0400 (9)0.0174 (8)0.0122 (8)0.0039 (7)
C220.0627 (18)0.0351 (14)0.0265 (14)0.0111 (14)0.0103 (12)0.0041 (11)
F220.1157 (16)0.0535 (11)0.0264 (9)0.0065 (11)0.0016 (9)0.0049 (8)
C230.0562 (17)0.0358 (14)0.0450 (17)0.0119 (13)0.0282 (14)0.0183 (12)
F230.0927 (14)0.0564 (11)0.0648 (12)0.0111 (10)0.0455 (11)0.0326 (9)
C240.0339 (14)0.0294 (13)0.063 (2)0.0027 (11)0.0155 (13)0.0124 (13)
F240.0523 (10)0.0486 (10)0.1005 (16)0.0206 (9)0.0109 (10)0.0240 (10)
C250.0316 (13)0.0307 (13)0.0378 (15)0.0011 (11)0.0032 (11)0.0020 (11)
F250.0646 (11)0.0455 (9)0.0519 (11)0.0229 (8)0.0149 (8)0.0033 (8)
C300.0361 (15)0.0385 (15)0.070 (2)0.0060 (12)0.0064 (14)0.0045 (14)
C310.074 (2)0.083 (3)0.052 (2)0.025 (2)0.0048 (18)0.0018 (19)
C400.0383 (14)0.0344 (14)0.0486 (17)0.0001 (12)0.0102 (12)0.0152 (12)
C410.0579 (19)0.0395 (15)0.0518 (19)0.0122 (14)0.0124 (15)0.0121 (13)
C500.0460 (16)0.0426 (15)0.0463 (17)0.0001 (13)0.0183 (13)0.0061 (13)
C510.054 (2)0.115 (3)0.0368 (18)0.021 (2)0.0110 (15)0.0038 (18)
C600.0423 (15)0.0371 (14)0.0304 (14)0.0065 (12)0.0037 (11)0.0075 (11)
C610.0505 (18)0.0564 (18)0.0478 (18)0.0141 (15)0.0014 (14)0.0162 (14)
C700.0282 (12)0.0355 (13)0.0397 (15)0.0041 (10)0.0167 (11)0.0028 (11)
C710.0324 (14)0.0542 (17)0.0530 (18)0.0110 (13)0.0141 (13)0.0049 (14)
C800.0288 (12)0.0313 (13)0.0317 (13)0.0041 (10)0.0060 (10)0.0069 (10)
C810.0459 (16)0.0442 (16)0.0571 (19)0.0184 (13)0.0137 (14)0.0152 (14)
C900.070 (2)0.134 (4)0.057 (2)0.002 (3)0.002 (2)0.004 (2)
C910.0488 (18)0.082 (2)0.0376 (17)0.0106 (17)0.0179 (14)0.0087 (16)
C920.072 (2)0.065 (2)0.050 (2)0.0305 (18)0.0223 (18)0.0268 (17)
C930.077 (2)0.0516 (19)0.065 (2)0.0111 (18)0.030 (2)0.0057 (17)
C940.0497 (19)0.077 (2)0.062 (2)0.0007 (18)0.0185 (17)0.0057 (18)
C950.0393 (16)0.066 (2)0.068 (2)0.0114 (15)0.0213 (16)0.0264 (17)
C960.0369 (15)0.0482 (16)0.0570 (19)0.0057 (13)0.0234 (14)0.0107 (14)
Geometric parameters (Å, º) top
Pd1—C1A2.036 (2)C14—C151.381 (3)
Pd1—N2A2.0554 (19)C15—F151.361 (3)
Pd1—P12.2490 (7)C20—C211.380 (3)
Pd1—C102.028 (2)C20—C251.388 (3)
Pd2—C2A2.028 (2)C21—F211.361 (3)
Pd2—N1A2.046 (2)C21—C221.384 (3)
Pd2—P22.2795 (6)C22—F221.351 (3)
Pd2—C202.039 (2)C22—C231.368 (4)
C1A—N1A1.147 (3)C23—F231.351 (3)
C2A—N2Ai1.145 (3)C23—C241.368 (4)
N2A—C2Ai1.145 (3)C24—F241.350 (3)
P1—C501.809 (3)C24—C251.378 (4)
P1—C401.820 (3)C25—F251.357 (3)
P1—C301.870 (3)C30—C311.515 (4)
P2—C801.822 (2)C40—C411.525 (3)
P2—C601.826 (3)C50—C511.514 (4)
P2—C701.828 (2)C60—C611.513 (4)
C10—C111.376 (3)C70—C711.523 (4)
C10—C151.379 (3)C80—C811.526 (3)
C11—F111.356 (3)C90—C911.493 (5)
C11—C121.390 (3)C91—C961.391 (4)
C12—F121.347 (3)C91—C921.407 (5)
C12—C131.375 (4)C92—C931.384 (5)
C13—F131.351 (3)C93—C941.348 (5)
C13—C141.366 (4)C94—C951.369 (5)
C14—F141.350 (3)C95—C961.371 (4)
C1A—Pd1—N2A92.09 (8)C14—C13—C12119.6 (2)
C1A—Pd1—P187.65 (6)F14—C14—C13119.8 (2)
N2A—Pd1—P1174.08 (6)F14—C14—C15120.7 (3)
C10—Pd1—C1A176.64 (9)C13—C14—C15119.5 (3)
C10—Pd1—N2A88.73 (8)F15—C15—C10120.0 (2)
C10—Pd1—P191.87 (6)F15—C15—C14116.6 (2)
C2A—Pd2—N1A89.51 (8)C10—C15—C14123.4 (2)
C2A—Pd2—P292.39 (6)C21—C20—C25114.1 (2)
C2A—Pd2—C20175.01 (9)C21—C20—Pd2121.99 (17)
N1A—Pd2—P2178.10 (6)C25—C20—Pd2123.86 (18)
C20—Pd2—N1A89.25 (8)F21—C21—C20119.6 (2)
C20—Pd2—P288.85 (6)F21—C21—C22116.6 (2)
N1A—C1A—Pd1173.6 (2)C20—C21—C22123.8 (2)
N2Ai—C2A—Pd2171.7 (2)F22—C22—C23120.0 (2)
C1A—N1A—Pd2176.7 (2)F22—C22—C21120.6 (3)
C2Ai—N2A—Pd1170.9 (2)C23—C22—C21119.4 (3)
C50—P1—C40108.15 (13)F23—C23—C22119.9 (3)
C50—P1—C30102.73 (13)F23—C23—C24120.7 (3)
C40—P1—C30106.47 (13)C22—C23—C24119.4 (2)
C50—P1—Pd1113.28 (9)F24—C24—C23119.7 (2)
C40—P1—Pd1117.56 (8)F24—C24—C25120.8 (3)
C30—P1—Pd1107.38 (10)C23—C24—C25119.6 (2)
C80—P2—C60105.57 (12)F25—C25—C24117.1 (2)
C80—P2—C70105.09 (11)F25—C25—C20119.3 (2)
C60—P2—C70103.80 (12)C24—C25—C20123.7 (2)
C80—P2—Pd2112.77 (8)C31—C30—P1112.8 (2)
C60—P2—Pd2112.41 (9)C41—C40—P1116.88 (19)
C70—P2—Pd2116.20 (8)C51—C50—P1112.8 (2)
C11—C10—C15115.1 (2)C61—C60—P2113.42 (19)
C11—C10—Pd1122.84 (18)C71—C70—P2114.02 (17)
C15—C10—Pd1121.82 (17)C81—C80—P2115.71 (18)
F11—C11—C10119.8 (2)C96—C91—C92116.9 (3)
F11—C11—C12117.0 (2)C96—C91—C90121.5 (3)
C10—C11—C12123.2 (3)C92—C91—C90121.7 (3)
F12—C12—C13120.2 (2)C93—C92—C91120.7 (3)
F12—C12—C11120.8 (3)C94—C93—C92120.7 (3)
C13—C12—C11119.1 (3)C93—C94—C95119.9 (4)
F13—C13—C14120.5 (3)C94—C95—C96120.8 (3)
F13—C13—C12119.9 (3)C95—C96—C91121.1 (3)
C10—Pd1—P1—C50127.35 (13)Pd2—C20—C21—C22179.56 (19)
C1A—Pd1—P1—C5049.32 (12)F21—C21—C22—F220.6 (4)
C10—Pd1—P1—C400.03 (13)C20—C21—C22—F22179.6 (2)
C1A—Pd1—P1—C40176.70 (13)F21—C21—C22—C23179.2 (2)
C10—Pd1—P1—C30119.93 (12)C20—C21—C22—C230.6 (4)
C1A—Pd1—P1—C3063.40 (12)F22—C22—C23—F231.8 (4)
C2A—Pd2—P2—C8021.14 (11)C21—C22—C23—F23178.0 (2)
C20—Pd2—P2—C80163.69 (11)F22—C22—C23—C24178.2 (2)
C2A—Pd2—P2—C6098.07 (11)C21—C22—C23—C242.0 (4)
C20—Pd2—P2—C6077.10 (12)F23—C23—C24—F240.7 (4)
C2A—Pd2—P2—C70142.56 (11)C22—C23—C24—F24179.3 (2)
C20—Pd2—P2—C7042.27 (12)F23—C23—C24—C25179.3 (2)
N2A—Pd1—C10—C1171.23 (19)C22—C23—C24—C250.7 (4)
P1—Pd1—C10—C11102.87 (19)F24—C24—C25—F252.1 (4)
N2A—Pd1—C10—C15103.36 (19)C23—C24—C25—F25177.9 (2)
P1—Pd1—C10—C1582.53 (18)F24—C24—C25—C20177.9 (2)
C15—C10—C11—F11178.5 (2)C23—C24—C25—C202.1 (4)
Pd1—C10—C11—F116.6 (3)C21—C20—C25—F25176.7 (2)
C15—C10—C11—C121.7 (3)Pd2—C20—C25—F250.9 (3)
Pd1—C10—C11—C12173.22 (18)C21—C20—C25—C243.3 (4)
F11—C11—C12—F121.9 (3)Pd2—C20—C25—C24179.14 (19)
C10—C11—C12—F12177.9 (2)C50—P1—C30—C31174.4 (2)
F11—C11—C12—C13178.3 (2)C40—P1—C30—C3172.1 (3)
C10—C11—C12—C131.9 (4)Pd1—P1—C30—C3154.7 (2)
F12—C12—C13—F131.9 (4)C50—P1—C40—C4147.6 (3)
C11—C12—C13—F13178.3 (2)C30—P1—C40—C4162.2 (3)
F12—C12—C13—C14179.5 (2)Pd1—P1—C40—C41177.38 (18)
C11—C12—C13—C140.3 (4)C40—P1—C50—C5171.0 (3)
F13—C13—C14—F141.2 (4)C30—P1—C50—C51176.7 (2)
C12—C13—C14—F14177.4 (2)Pd1—P1—C50—C5161.2 (2)
F13—C13—C14—C15179.9 (2)C80—P2—C60—C6164.6 (2)
C12—C13—C14—C151.4 (4)C70—P2—C60—C61174.9 (2)
C11—C10—C15—F15178.3 (2)Pd2—P2—C60—C6158.7 (2)
Pd1—C10—C15—F156.7 (3)C80—P2—C70—C7159.0 (2)
C11—C10—C15—C140.1 (3)C60—P2—C70—C71169.67 (19)
Pd1—C10—C15—C14175.05 (18)Pd2—P2—C70—C7166.4 (2)
F14—C14—C15—F151.2 (3)C60—P2—C80—C8159.4 (2)
C13—C14—C15—F15179.9 (2)C70—P2—C80—C8149.9 (2)
F14—C14—C15—C10177.2 (2)Pd2—P2—C80—C81177.46 (17)
C13—C14—C15—C101.6 (4)C96—C91—C92—C930.3 (4)
N1A—Pd2—C20—C2193.8 (2)C90—C91—C92—C93179.4 (3)
P2—Pd2—C20—C2186.29 (19)C91—C92—C93—C940.9 (5)
N1A—Pd2—C20—C2583.6 (2)C92—C93—C94—C950.2 (5)
P2—Pd2—C20—C2596.32 (19)C93—C94—C95—C960.9 (5)
C25—C20—C21—F21178.2 (2)C94—C95—C96—C911.5 (4)
Pd2—C20—C21—F210.6 (3)C92—C91—C96—C950.8 (4)
C25—C20—C21—C221.9 (3)C90—C91—C96—C95179.4 (3)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Pd4(CN)4(C6F5)4(C6H15P)4]·2C7H8
Mr1854.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)11.8845 (10), 14.8554 (18), 21.652 (3)
β (°) 97.372 (9)
V3)3791.0 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.3 × 0.3 × 0.3
Data collection
DiffractometerCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.695, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
38987, 8699, 6789
Rint0.038
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.061, 0.97
No. of reflections8699
No. of parameters449
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 0.75

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Pd1—C1A2.036 (2)Pd2—N1A2.046 (2)
Pd1—N2A2.0554 (19)Pd2—P22.2795 (6)
Pd1—P12.2490 (7)Pd2—C202.039 (2)
Pd1—C102.028 (2)C1A—N1A1.147 (3)
Pd2—C2A2.028 (2)C2A—N2Ai1.145 (3)
C1A—Pd1—N2A92.09 (8)C2A—Pd2—C20175.01 (9)
C1A—Pd1—P187.65 (6)N1A—Pd2—P2178.10 (6)
N2A—Pd1—P1174.08 (6)C20—Pd2—N1A89.25 (8)
C10—Pd1—C1A176.64 (9)C20—Pd2—P288.85 (6)
C10—Pd1—N2A88.73 (8)N1A—C1A—Pd1173.6 (2)
C10—Pd1—P191.87 (6)N2Ai—C2A—Pd2171.7 (2)
C2A—Pd2—N1A89.51 (8)C1A—N1A—Pd2176.7 (2)
C2A—Pd2—P292.39 (6)C2Ai—N2A—Pd1170.9 (2)
Symmetry code: (i) x+1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds