Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The molecular structure of the title compound, [Ni(C10H8N2)2(H2O){Cr2O7}], contains an NiII atom with a distorted cis-octahedral coordination formed by two chelating bi­pyridine (bipy) ligands [mean Ni—Nbipy = 2.068 (3) Å], one water mol­ecule [Ni—O = 2.086 (3) Å] and an O atom of the dichromate anion [Ni—O = 2.083 (2) Å]. One of the water H atoms is involved in the intramolecular hydrogen bond with the terminal O atom of the dichromate ligand [O...O 2.743 (5) Å], whereas its second H atom participates in the intermolecular hydrogen bonding [O...O 2.688 (4) Å]; the latter is responsible for the formation of the infinite chains stretching along the polar c axis of the crystal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536800020389/ya6000sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536800020389/ya6000Isup2.hkl
Contains datablock I

CCDC reference: 155848

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.029
  • wR factor = 0.075
  • Data-to-parameter ratio = 10.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 30.00 From the CIF: _reflns_number_total 3459 Count of symmetry unique reflns 3472 Completeness (_total/calc) 99.63% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure

Comment top

The industrial importance of chromium(VI) compounds, together with their toxic and genotoxic character, are the reasons for considerable attention attracted by the studies of the metal complexes containing compounds of chromium(VI) as ligands (Dave & Czernuszewiccz, 1994). In particular, a coordination model based on the study of chromates and dichromate complexes of transition metals with organic ligands, has been proposed to explain the decrease in the mutagenic activities of the chromium(VI) compounds (Gili & Lorenzo-Luis, 1999).

Many transition metal complexes containing [Cr2O7]2- and organic bases as ligands have been structurally characterized (Uggla et al., 1970; Jameson et al., 1986; Munno et al., 1998; Pan et al., 1998) because of their special properties in such areas as analytical chemistry, catalysis and magneto-chemistry.

In our current research on dichromate complexes of transition metals with magnetic properties, we have prepared a new nickel(II) dichromate with bipy as chelating ligand (Fig. 1). The asymmetric unit of the title complex, (I), involves an NiII atom with a distorted octahedral coordination environment provided by a pair of chelating bipy ligands, water molecule and O atom of the Cr2O7 group, oxygen ligands occupying cis positions in the octahedron. The Ni—Nbipy bond distances [mean value 2.068 (3) Å] are slightly shorter than the Ni—Owater bond length [2.086 (3) Å]. The N—Ni—N bite angles [79.04 (12) and 79.21 (12)°] agree well with those reported previously for other nickel(II) complexes containing bipy (Wada et al., 1976; Cortés et al., 1994; Román et al., 1995; Hernández-Molina et al., 1999). As expected, both bipy ligands are nearly planar [the largest deviation from their mean planes is 0.069 (4) Å for C10], the certain degree of twisting of the pyridyl rings in the bipy ligands relative to each other [in the title compound, the twist angles are 5.1 (2) and 2.1 (2)° for N1/N2/C1–C10 and N3/N4/C11–C20, respectively] is perfectly normal; angles up to 18° have been observed previously (Cano et al., 1994). The mean planes of the two bipy molecules are inclined by 71.67 (10)° with respect to one another.

Each Cr atom in (I) exhibits a slightly distorted tetahedral geometry. The two tetahedral CrO4 groups share one O atom (O4) thus forming a dichromate anion in an almost eclipsed conformation. The Cr—O—Cr bridging angle is 129.2 (2)°, a value which is in the range of previously reported dichromate-containing compounds (Mestres et al., 1993; Martín-Zarza et al., 1995). The bridging Cr—O bonds are 1.744 (3) and 1.812 (3) Å for Cr1—O4 and Cr2—O4, respectively. They are longer than the terminal Cr—O bonds, the maximum and minimum bond lengths for the latter being 1.640 (3) (Cr1—O3) and 1.580 (3) Å (Cr1—O2). The O—Cr—O bond angle range is 104.9 (2)–111.8 (2)° and Cr—O—Ni bridging angle [140.73 (14)°] is in accordance with the analogous parameters in similar compounds (Oshio et al., 1997; Ki-Young et al., 1999).

The water molecule coordinated to the NiII atom forms one intramolecular hydrogen bond with the terminal O atom of the dichromate ligand [O8···O5 2.743 (5) Å], as well as one intermolecular hydrogen bond [O8···O3i 2.688 (4) Å; symmetry code: (i) 1/2 - x, -y, 1/2 + z] (Fig. 2). The latter hydrogen bond links the molecules of the complex into the infinite chains stretching along the c axis of the crystal.

Experimental top

Prismatic brown single crystals of the title compound were grown by a slow diffusion. Into one arm of the H-double-tube glass vessel were added K2Cr2O7 (10 ml, 0.1 M water solution) and NiCl2 6H2O (10 ml, 0.1 M water solution). Into the other arm 2,2'-bipy was added (20 ml, 0.1 M in acetone). Both arms were covered by acetone and protected by parafilm to avoid acetone evaporation. The vessel was allowed to stand at room temperature. A few crystals of the compound appeared after one month. The crystals were selected and washed with some drops of cold water–ethanol (1:1) solution.

Refinement top

All H atoms have been generated at idealized geometries, except for those belonging to the water molecule which were located in difference syntheses, and refined isotropically using a riding model with displacement parameters set at 1.2Ueq·The residual electron-density maximum is 0.47 Å from the Ni1 atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1998); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of the complex showing intra- and intermolecular hydrogen bonds.
(I) top
Crystal data top
[NiCr2O7(C10H8N2)2(H2O)]F(000) = 4896
Mr = 605.07Dx = 1.763 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 25 reflections
a = 33.958 (5) Åθ = 12.0–18.2°
b = 22.880 (3) ŵ = 1.81 mm1
c = 11.735 (1) ÅT = 293 K
V = 9118 (2) Å3Prism, brown
Z = 160.45 × 0.23 × 0.15 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2927 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 30.0°, θmin = 2.7°
ω scansh = 047
Absorption correction: ψ scan
(North et al., 1968)
k = 032
Tmin = 0.613, Tmax = 0.762l = 160
3459 measured reflections3 standard reflections every 120 min
3459 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.7783P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3459 reflectionsΔρmax = 0.47 e Å3
316 parametersΔρmin = 0.28 e Å3
1 restraintAbsolute structure: (Flack, 1983). No Fridel pairs.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (2)
Crystal data top
[NiCr2O7(C10H8N2)2(H2O)]V = 9118 (2) Å3
Mr = 605.07Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 33.958 (5) ŵ = 1.81 mm1
b = 22.880 (3) ÅT = 293 K
c = 11.735 (1) Å0.45 × 0.23 × 0.15 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2927 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.613, Tmax = 0.7623 standard reflections every 120 min
3459 measured reflections intensity decay: none
3459 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.47 e Å3
S = 1.08Δρmin = 0.28 e Å3
3459 reflectionsAbsolute structure: (Flack, 1983). No Fridel pairs.
316 parametersAbsolute structure parameter: 0.07 (2)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.25588 (1)0.09675 (2)0.14283 (3)0.0284 (1)
Cr10.20367 (1)0.02439 (2)0.04115 (5)0.0286 (1)
Cr20.25111 (2)0.13232 (2)0.14984 (7)0.0424 (2)
O10.23561 (7)0.02875 (11)0.0404 (2)0.0403 (7)
O20.17587 (8)0.02053 (13)0.1489 (3)0.0495 (9)
O30.17684 (8)0.02120 (14)0.0749 (2)0.0460 (9)
O40.22817 (11)0.09131 (12)0.0356 (3)0.0583 (10)
O50.27291 (13)0.08786 (16)0.2335 (4)0.0788 (15)
O60.21848 (12)0.1695 (2)0.2144 (4)0.0793 (16)
O70.28208 (11)0.17435 (16)0.0877 (4)0.0690 (12)
O80.28768 (9)0.02981 (12)0.2210 (3)0.0498 (9)
N10.28594 (8)0.15630 (13)0.2407 (3)0.0316 (8)
N20.30522 (7)0.11169 (12)0.0417 (3)0.0327 (8)
N30.20643 (8)0.09356 (13)0.2439 (3)0.0337 (8)
N40.21845 (8)0.15257 (12)0.0538 (3)0.0341 (8)
C10.27398 (11)0.17877 (15)0.3397 (3)0.0380 (10)
C20.29693 (11)0.21599 (17)0.4057 (4)0.0447 (11)
C30.33377 (12)0.22989 (17)0.3668 (4)0.0470 (12)
C40.34674 (10)0.20709 (19)0.2650 (4)0.0461 (11)
C50.32259 (9)0.16983 (15)0.2027 (3)0.0324 (9)
C60.33366 (9)0.14291 (14)0.0939 (3)0.0331 (9)
C70.37086 (10)0.14878 (17)0.0439 (4)0.0432 (11)
C80.37863 (12)0.1224 (2)0.0580 (4)0.0504 (13)
C90.34898 (11)0.09138 (18)0.1117 (4)0.0480 (11)
C100.31252 (11)0.08739 (17)0.0599 (3)0.0401 (10)
C110.20256 (12)0.06450 (18)0.3416 (3)0.0433 (11)
C120.16805 (13)0.06398 (19)0.4039 (4)0.0533 (14)
C130.13607 (14)0.0937 (2)0.3630 (4)0.0620 (17)
C140.13961 (12)0.1241 (2)0.2622 (4)0.0527 (14)
C150.17513 (10)0.12408 (16)0.2046 (3)0.0365 (10)
C160.18188 (10)0.15614 (15)0.0966 (3)0.0345 (9)
C170.15272 (11)0.18777 (18)0.0412 (4)0.0493 (11)
C180.16187 (14)0.21594 (19)0.0607 (4)0.0537 (12)
C190.19928 (12)0.21221 (18)0.1028 (4)0.0481 (11)
C200.22671 (11)0.17984 (17)0.0446 (3)0.0422 (11)
H10.249000.169000.366000.0460*
H20.287600.231000.474100.0540*
H30.349900.254600.409000.0560*
H40.371700.216600.237800.0550*
H70.390300.170600.080000.0520*
H80.403500.125300.090800.0600*
H90.353500.073500.181600.0580*
H100.292500.067200.096700.0480*
H110.224000.043600.369100.0520*
H120.166600.043700.472500.0640*
H130.112400.093400.402700.0740*
H140.118200.144600.232900.0630*
H170.127500.190100.071700.0590*
H180.142700.237000.099600.0650*
H190.206100.231300.169900.0580*
H200.252000.176700.074400.0510*
H810.283900.010400.222900.0600*
H820.301400.029300.273600.0600*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0252 (2)0.0302 (2)0.0298 (2)0.0039 (1)0.0005 (2)0.0007 (2)
Cr10.0261 (2)0.0332 (2)0.0266 (2)0.0036 (2)0.0007 (2)0.0016 (2)
Cr20.0535 (3)0.0312 (2)0.0425 (3)0.0009 (2)0.0066 (3)0.0028 (3)
O10.0386 (12)0.0434 (13)0.0389 (12)0.0137 (10)0.0002 (12)0.0056 (12)
O20.0471 (14)0.0634 (18)0.0380 (14)0.0111 (12)0.0122 (13)0.0054 (13)
O30.0293 (12)0.0728 (19)0.0359 (13)0.0046 (12)0.0068 (10)0.0028 (13)
O40.085 (2)0.0444 (16)0.0456 (16)0.0190 (14)0.0013 (17)0.0017 (15)
O50.109 (3)0.0484 (18)0.079 (3)0.0069 (19)0.033 (2)0.0191 (19)
O60.088 (3)0.078 (3)0.072 (2)0.025 (2)0.001 (2)0.025 (2)
O70.065 (2)0.063 (2)0.079 (2)0.0189 (17)0.0118 (18)0.020 (2)
O80.0637 (18)0.0398 (14)0.0458 (16)0.0027 (13)0.0226 (14)0.0048 (12)
N10.0287 (12)0.0322 (14)0.0340 (14)0.0041 (10)0.0004 (11)0.0009 (12)
N20.0292 (12)0.0343 (14)0.0345 (13)0.0015 (10)0.0018 (12)0.0001 (12)
N30.0328 (13)0.0369 (14)0.0313 (13)0.0077 (12)0.0003 (11)0.0025 (12)
N40.0328 (14)0.0316 (14)0.0379 (16)0.0026 (11)0.0009 (12)0.0008 (12)
C10.0391 (17)0.0362 (18)0.0387 (17)0.0036 (14)0.0028 (14)0.0053 (16)
C20.053 (2)0.0390 (18)0.042 (2)0.0019 (15)0.0050 (17)0.0076 (16)
C30.048 (2)0.050 (2)0.043 (2)0.0158 (17)0.0069 (16)0.0072 (18)
C40.0343 (17)0.056 (2)0.048 (2)0.0175 (16)0.0015 (15)0.0031 (18)
C50.0264 (14)0.0342 (16)0.0365 (16)0.0044 (12)0.0002 (12)0.0015 (13)
C60.0253 (14)0.0356 (16)0.0384 (17)0.0011 (12)0.0003 (12)0.0036 (14)
C70.0286 (15)0.053 (2)0.048 (2)0.0053 (14)0.0046 (15)0.0029 (19)
C80.0353 (18)0.065 (3)0.051 (2)0.0004 (18)0.0116 (16)0.005 (2)
C90.050 (2)0.056 (2)0.0379 (18)0.0054 (16)0.0113 (17)0.0012 (19)
C100.0409 (18)0.0447 (19)0.0346 (17)0.0021 (15)0.0023 (14)0.0017 (15)
C110.048 (2)0.046 (2)0.0359 (17)0.0089 (16)0.0019 (15)0.0020 (16)
C120.067 (3)0.052 (2)0.041 (2)0.012 (2)0.019 (2)0.0011 (19)
C130.059 (3)0.064 (3)0.063 (3)0.004 (2)0.034 (2)0.009 (2)
C140.044 (2)0.055 (2)0.059 (3)0.0080 (18)0.0168 (18)0.007 (2)
C150.0334 (16)0.0370 (17)0.0391 (18)0.0003 (14)0.0049 (14)0.0078 (15)
C160.0314 (15)0.0329 (16)0.0392 (17)0.0023 (12)0.0024 (13)0.0080 (14)
C170.0399 (18)0.056 (2)0.052 (2)0.0160 (16)0.0000 (18)0.003 (2)
C180.058 (2)0.049 (2)0.054 (2)0.021 (2)0.011 (2)0.002 (2)
C190.063 (2)0.0373 (18)0.044 (2)0.0046 (16)0.003 (2)0.0024 (17)
C200.0406 (19)0.043 (2)0.043 (2)0.0020 (15)0.0033 (15)0.0082 (16)
Geometric parameters (Å, º) top
Ni1—O12.083 (2)C6—C71.399 (5)
Ni1—O82.086 (3)C7—C81.365 (6)
Ni1—N12.054 (3)C8—C91.384 (6)
Ni1—N22.081 (3)C9—C101.382 (5)
Ni1—N32.057 (3)C11—C121.381 (6)
Ni1—N42.083 (3)C12—C131.368 (6)
Cr1—O11.629 (3)C13—C141.377 (7)
Cr1—O21.580 (3)C14—C151.383 (5)
Cr1—O31.640 (3)C15—C161.482 (5)
Cr1—O41.744 (3)C16—C171.388 (5)
Cr2—O41.812 (3)C17—C181.394 (6)
Cr2—O51.596 (4)C18—C191.366 (6)
Cr2—O61.589 (4)C19—C201.372 (6)
Cr2—O71.601 (4)C1—H10.9299
O8—H810.9292C2—H20.9288
O8—H820.7734C3—H30.9300
N1—C11.334 (5)C4—H40.9315
N1—C51.358 (4)C7—H70.9298
N2—C101.339 (5)C8—H80.9305
N2—C61.348 (4)C9—H90.9294
N3—C151.353 (5)C10—H100.9285
N3—C111.332 (5)C11—H110.9289
N4—C201.342 (5)C12—H120.9305
N4—C161.342 (4)C13—H130.9291
C1—C21.390 (5)C14—H140.9310
C2—C31.369 (6)C17—H170.9297
C3—C41.376 (6)C18—H180.9297
C4—C51.391 (5)C19—H190.9298
C5—C61.467 (5)C20—H200.9300
Cr1···C154.020 (4)C7···C18viii3.510 (6)
Cr1···C4i3.956 (4)C9···O2iii3.351 (6)
Cr1···C14ii3.943 (4)C10···C12iii3.551 (6)
Cr1···O8iii3.770 (4)C10···O6iii3.414 (6)
Cr2···C20iv3.822 (4)C11···O23.118 (5)
Cr2···C19iv3.822 (5)C11···C13.566 (5)
Cr2···C1iii3.886 (4)C11···O4iv3.331 (5)
Cr2···C2iii3.812 (4)C12···C10iv3.551 (6)
Cr1···H813.4747C14···C3i3.488 (6)
Cr1···H4i3.1446C14···Cr1xi3.943 (4)
Cr1···H11iii3.2097C15···Cr14.020 (4)
Cr1···H82iii3.1464C15···O23.373 (5)
Cr1···H14ii3.1399C17···O3xi3.263 (5)
Cr2···H813.1236C17···C4viii3.562 (6)
Cr2···H1iii3.4350C18···C7viii3.510 (6)
Cr2···H2iii3.3284C18···C7i3.426 (6)
Cr2···H19iv3.4227C19···Cr2iii3.822 (5)
Cr2···H20iv3.3933C19···C20viii3.589 (6)
Cr2···H8v3.2459C20···C20viii3.579 (5)
O2···C9iv3.351 (6)C20···O5iii3.348 (6)
O2···N33.022 (4)C20···Cr2iii3.822 (4)
O2···C113.118 (5)C20···O6iii3.394 (6)
O2···C153.373 (5)C20···C19viii3.589 (6)
O2···C3i3.285 (5)C2···H1viii3.0942
O3···C4i3.265 (5)C4···H72.7565
O3···C17ii3.263 (5)C7···H42.7543
O3···O8iii2.688 (4)C10···H202.9031
O4···C1iii3.049 (5)C11···H12.8785
O4···C11iii3.331 (5)C14···H172.7289
O4···C2iii3.345 (5)C17···H142.7222
O5···O82.743 (5)C19···H20viii3.0510
O5···C20iv3.348 (6)H1···N32.6687
O6···C10iv3.414 (6)H1···C112.8785
O6···C20iv3.394 (6)H1···Cr2iv3.4350
O7···C2vi3.333 (6)H1···O4iv2.7788
O8···O3iv2.688 (4)H1···O7iv2.8102
O8···Cr1iv3.770 (4)H1···C2viii3.0942
O8···O52.743 (5)H2···O7ix2.5499
O1···H102.6636H2···Cr2iv3.3285
O2···H3i2.6081H3···O2x2.6081
O2···H9iv2.5338H4···C72.7543
O2···H4i2.9121H4···H72.2217
O3···H7i2.8431H4···Cr1x3.1446
O3···H82iii1.9342H4···O2x2.9121
O3···H14ii2.5516H4···O3x2.3681
O3···H4i2.3681H7···C42.7565
O3···H17ii2.3794H7···H42.2217
O3···H81iii2.8161H7···O3x2.8431
O4···H1iii2.7788H8···Cr2xii3.2458
O4···H11iii2.7654H8···O5xii2.7777
O5···H811.8154H8···O7xii2.6038
O5···H8v2.7777H9···O2iii2.5338
O5···H822.8885H10···O12.6636
O6···H13ii2.8557H11···O82.7922
O6···H20iv2.6786H11···Cr1iv3.2097
O6···H19vii2.6780H11···O4iv2.7654
O7···H1iii2.8102H13···O6xi2.8557
O7···H8v2.6038H14···C172.7222
O7···H2vi2.5499H14···H172.1822
O8···H112.7922H14···Cr1xi3.1399
N3···O23.022 (4)H14···O3xi2.5516
N2···H202.7083H17···C142.7289
N3···H12.6687H17···H142.1822
C1···C113.566 (5)H17···O3xi2.3794
C1···Cr2iv3.886 (4)H19···O6xiii2.6780
C1···O4iv3.049 (5)H19···Cr2iii3.4227
C1···C2viii3.492 (5)H20···N22.7083
C2···O7ix3.333 (6)H20···C102.9031
C2···Cr2iv3.812 (4)H20···Cr2iii3.3933
C2···O4iv3.345 (5)H20···O6iii2.6786
C2···C1viii3.492 (5)H20···C19viii3.0510
C2···C2viii3.547 (5)H81···Cr13.4747
C3···O2x3.285 (5)H81···Cr23.1236
C3···C14x3.488 (6)H81···O51.8154
C4···O3x3.265 (5)H81···O3iv2.8161
C4···C17viii3.562 (6)H82···O52.8885
C4···Cr1x3.956 (4)H82···Cr1iv3.1464
C7···C18x3.426 (6)H82···O3iv1.9342
O1—Ni1—O882.90 (11)N2—C6—C5115.7 (3)
O1—Ni1—N1169.26 (10)N2—C6—C7120.5 (3)
O1—Ni1—N293.42 (11)C6—C7—C8120.0 (4)
O1—Ni1—N392.09 (11)C7—C8—C9119.0 (4)
O1—Ni1—N488.10 (11)C8—C9—C10119.0 (4)
O8—Ni1—N189.08 (12)N2—C10—C9122.0 (3)
O8—Ni1—N287.40 (12)N3—C11—C12122.9 (4)
O8—Ni1—N398.22 (13)C11—C12—C13118.9 (4)
O8—Ni1—N4170.57 (12)C12—C13—C14118.9 (4)
N1—Ni1—N279.04 (12)C13—C14—C15119.7 (4)
N1—Ni1—N396.13 (12)N3—C15—C14121.3 (3)
N1—Ni1—N4100.20 (12)N3—C15—C16115.2 (3)
N2—Ni1—N3172.58 (11)C14—C15—C16123.6 (3)
N2—Ni1—N496.00 (12)C15—C16—C17123.2 (3)
N3—Ni1—N479.21 (12)N4—C16—C15115.7 (3)
O1—Cr1—O2111.12 (14)N4—C16—C17121.1 (3)
O1—Cr1—O3109.40 (14)C16—C17—C18118.9 (4)
O1—Cr1—O4109.72 (15)C17—C18—C19119.3 (4)
O2—Cr1—O3109.27 (15)C18—C19—C20119.0 (4)
O2—Cr1—O4111.34 (16)N4—C20—C19122.5 (3)
O3—Cr1—O4105.85 (16)N1—C1—H1118.31
O4—Cr2—O5108.93 (18)C2—C1—H1118.28
O4—Cr2—O6109.3 (2)C1—C2—H2121.12
O4—Cr2—O7104.9 (2)C3—C2—H2120.93
O5—Cr2—O6111.8 (2)C2—C3—H3120.12
O5—Cr2—O7111.0 (2)C4—C3—H3120.28
O6—Cr2—O7110.7 (2)C3—C4—H4120.01
Ni1—O1—Cr1140.73 (14)C5—C4—H4119.98
Cr1—O4—Cr2129.2 (2)C6—C7—H7120.10
Ni1—O8—H82132.35C8—C7—H7119.95
H81—O8—H8292.82C7—C8—H8120.41
Ni1—O8—H81131.75C9—C8—H8120.57
Ni1—N1—C1126.3 (2)C8—C9—H9120.50
Ni1—N1—C5115.0 (2)C10—C9—H9120.46
C1—N1—C5118.5 (3)N2—C10—H10119.03
C6—N2—C10119.5 (3)C9—C10—H10118.96
Ni1—N2—C6113.9 (2)N3—C11—H11118.60
Ni1—N2—C10126.1 (2)C12—C11—H11118.47
Ni1—N3—C11126.5 (3)C11—C12—H12120.47
Ni1—N3—C15115.2 (3)C13—C12—H12120.62
C11—N3—C15118.3 (3)C12—C13—H13120.47
C16—N4—C20119.1 (3)C14—C13—H13120.65
Ni1—N4—C20126.1 (2)C13—C14—H14120.22
Ni1—N4—C16114.5 (2)C15—C14—H14120.06
N1—C1—C2123.4 (3)C16—C17—H17120.44
C1—C2—C3118.0 (4)C18—C17—H17120.61
C2—C3—C4119.6 (4)C17—C18—H18120.33
C3—C4—C5120.0 (3)C19—C18—H18120.40
N1—C5—C4120.5 (3)C18—C19—H19120.58
N1—C5—C6115.2 (3)C20—C19—H19120.40
C4—C5—C6124.3 (3)N4—C20—H20118.72
C5—C6—C7123.8 (3)C19—C20—H20118.78
O8—Ni1—O1—Cr179.9 (2)C1—N1—C5—C6179.4 (3)
N2—Ni1—O1—Cr1166.9 (2)Ni1—N1—C5—C64.1 (4)
N3—Ni1—O1—Cr118.1 (2)Ni1—N2—C6—C510.7 (4)
N4—Ni1—O1—Cr197.2 (2)Ni1—N2—C6—C7170.0 (3)
O8—Ni1—N1—C194.8 (3)C10—N2—C6—C5177.7 (3)
O8—Ni1—N1—C580.1 (3)C10—N2—C6—C71.6 (5)
N2—Ni1—N1—C1177.7 (3)Ni1—N2—C10—C9168.0 (3)
N2—Ni1—N1—C57.4 (2)C6—N2—C10—C92.5 (5)
N3—Ni1—N1—C13.4 (3)Ni1—N3—C11—C12179.2 (3)
N3—Ni1—N1—C5178.3 (3)Ni1—N3—C15—C14177.8 (3)
N4—Ni1—N1—C183.5 (3)Ni1—N3—C15—C161.5 (4)
N4—Ni1—N1—C5101.6 (3)C11—N3—C15—C141.7 (5)
O1—Ni1—N2—C6162.4 (2)C11—N3—C15—C16178.9 (3)
O1—Ni1—N2—C108.5 (3)C15—N3—C11—C120.3 (6)
O8—Ni1—N2—C679.7 (2)Ni1—N4—C16—C17174.6 (3)
O8—Ni1—N2—C1091.2 (3)C20—N4—C16—C15179.2 (3)
N1—Ni1—N2—C69.9 (2)Ni1—N4—C16—C154.9 (4)
N1—Ni1—N2—C10179.2 (3)C16—N4—C20—C191.0 (6)
N4—Ni1—N2—C6109.1 (2)C20—N4—C16—C170.4 (5)
N4—Ni1—N2—C1079.9 (3)Ni1—N4—C20—C19174.5 (3)
O1—Ni1—N3—C1195.0 (3)N1—C1—C2—C30.3 (6)
O1—Ni1—N3—C1584.5 (3)C1—C2—C3—C40.2 (6)
O8—Ni1—N3—C1111.8 (3)C2—C3—C4—C50.5 (6)
O8—Ni1—N3—C15167.6 (3)C3—C4—C5—N10.9 (6)
N1—Ni1—N3—C1178.1 (3)C3—C4—C5—C6179.6 (4)
N1—Ni1—N3—C15102.4 (3)N1—C5—C6—N24.5 (4)
N4—Ni1—N3—C11177.4 (3)N1—C5—C6—C7176.2 (3)
N4—Ni1—N3—C153.1 (3)C4—C5—C6—N2175.0 (3)
O1—Ni1—N4—C1688.1 (3)C4—C5—C6—C74.2 (6)
O1—Ni1—N4—C2085.7 (3)N2—C6—C7—C80.5 (6)
N1—Ni1—N4—C1698.8 (3)C5—C6—C7—C8179.7 (4)
N1—Ni1—N4—C2087.4 (3)C6—C7—C8—C91.7 (6)
N2—Ni1—N4—C16178.7 (3)C7—C8—C9—C100.8 (6)
N2—Ni1—N4—C207.5 (3)C8—C9—C10—N21.3 (6)
N3—Ni1—N4—C164.4 (2)N3—C11—C12—C131.2 (7)
N3—Ni1—N4—C20178.2 (3)C11—C12—C13—C141.3 (7)
O2—Cr1—O4—Cr242.0 (3)C12—C13—C14—C150.0 (7)
O3—Cr1—O4—Cr2160.7 (2)C13—C14—C15—N31.6 (6)
O2—Cr1—O1—Ni17.9 (3)C13—C14—C15—C16179.1 (4)
O3—Cr1—O1—Ni1128.6 (2)N3—C15—C16—N42.3 (5)
O4—Cr1—O1—Ni1115.7 (2)N3—C15—C16—C17177.3 (4)
O1—Cr1—O4—Cr281.4 (3)C14—C15—C16—C172.1 (6)
O6—Cr2—O4—Cr183.0 (3)C14—C15—C16—N4178.3 (4)
O7—Cr2—O4—Cr1158.3 (3)N4—C16—C17—C180.2 (6)
O5—Cr2—O4—Cr139.4 (3)C15—C16—C17—C18179.3 (4)
C5—N1—C1—C20.8 (5)C16—C17—C18—C190.6 (6)
Ni1—N1—C5—C4176.4 (3)C17—C18—C19—C201.2 (6)
Ni1—N1—C1—C2175.5 (3)C18—C19—C20—N41.5 (6)
C1—N1—C5—C41.1 (5)
Symmetry codes: (i) x1/4, y+1/4, z1/4; (ii) x+1/4, y1/4, z1/4; (iii) x+1/2, y, z1/2; (iv) x+1/2, y, z+1/2; (v) x+3/4, y1/4, z+1/4; (vi) x, y1/2, z1/2; (vii) x, y1/2, z+1/2; (viii) x+1/2, y+1/2, z; (ix) x, y+1/2, z+1/2; (x) x+1/4, y+1/4, z+1/4; (xi) x+1/4, y+1/4, z+1/4; (xii) x+3/4, y+1/4, z1/4; (xiii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H81···O50.9291.8152.743 (5)175.30
O8—H82···O3iv0.7731.9342.688 (4)164.83
C2—H2···O7ix0.9292.5503.333 (6)142.27
C4—H4···O3x0.9322.3683.265 (5)161.66
C9—H9···O2iii0.9292.5343.351 (6)146.97
C14—H14···O3xi0.9312.5523.446 (5)161.19
C17—H17···O3xi0.9302.3793.263 (5)158.75
Symmetry codes: (iii) x+1/2, y, z1/2; (iv) x+1/2, y, z+1/2; (ix) x, y+1/2, z+1/2; (x) x+1/4, y+1/4, z+1/4; (xi) x+1/4, y+1/4, z+1/4.

Experimental details

Crystal data
Chemical formula[NiCr2O7(C10H8N2)2(H2O)]
Mr605.07
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)293
a, b, c (Å)33.958 (5), 22.880 (3), 11.735 (1)
V3)9118 (2)
Z16
Radiation typeMo Kα
µ (mm1)1.81
Crystal size (mm)0.45 × 0.23 × 0.15
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.613, 0.762
No. of measured, independent and
observed [I > 2σ(I)] reflections
3459, 3459, 2927
Rint0.000
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.08
No. of reflections3459
No. of parameters316
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.28
Absolute structure(Flack, 1983). No Fridel pairs.
Absolute structure parameter0.07 (2)

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, HELENA (Spek, 1997), SIR97 (Altomare et al., 1998), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1990), PLATON.

Selected geometric parameters (Å, º) top
Ni1—O12.083 (2)Cr1—O21.580 (3)
Ni1—O82.086 (3)Cr1—O31.640 (3)
Ni1—N12.054 (3)Cr1—O41.744 (3)
Ni1—N22.081 (3)Cr2—O41.812 (3)
Ni1—N32.057 (3)Cr2—O51.596 (4)
Ni1—N42.083 (3)Cr2—O61.589 (4)
Cr1—O11.629 (3)Cr2—O71.601 (4)
O1—Ni1—N1169.26 (10)Ni1—O1—Cr1140.73 (14)
O8—Ni1—N4170.57 (12)Cr1—O4—Cr2129.2 (2)
N2—Ni1—N3172.58 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H81···O50.9291.8152.743 (5)175.30
O8—H82···O3i0.7731.9342.688 (4)164.83
Symmetry code: (i) x+1/2, y, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds