metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(liriodenine-κ2N,O)lead(II)]-di-μ-chlorido]

aKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry & Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: chenzfgxnu@yahoo.com

(Received 1 November 2009; accepted 28 November 2009; online 9 December 2009)

The title compound, [PbCl2(C17H9NO3)]n, was synthesized by the hydro­thermal reaction of PbCl2 and liriodenine. The lead(II) atom has a distorted octa­hedral environment made up of the O and N atoms of the liriodenine ligand [Pb—O 2.666 (4) Å, Pb—N 2.587 (5) Å, O—Pb—N 61.78 (14)°] and four bridging chloro ligands, which link the complex mol­ecules into infinite chains along the a axis. Both crystallographically independent chloro-bridges are asymmetric, so that the Pb atom participates in two short [2.6872 (18) and 2.7952 (18) Å] and two noticeably longer Pb—Cl bonds [2.9626 (18) and 3.031 (2) Å].

Related literature

For liriodenine metal complexes, see: Chen et al. (2009[Chen, Z.-F., Liu, Y.-C., Liu, L.-M., Wang, H.-S., Qin, S.-H., Wang, B.-L., Bian, H.-D., Yang, B., Fun, H.-G., Liu, H.-G., Liang, H. & Orvig, C. (2009). J. Chem. Soc. Dalton Trans. pp. 262-272.]). For the structure of a similar lead(II) coordination polymer, see: Engelhardt et al. (1987[Engelhardt, L. M., Patrick, J. M., Whitaker, C. R. & White, A. H. (1987). Aust. J. Chem. 40, 2107-2114.]).

[Scheme 1]

Experimental

Crystal data
  • [PbCl2(C17H9NO3)]

  • Mr = 553.34

  • Triclinic, [P \overline 1]

  • a = 7.2280 (18) Å

  • b = 10.332 (3) Å

  • c = 11.307 (3) Å

  • α = 104.481 (6)°

  • β = 100.479 (4)°

  • γ = 99.686 (4)°

  • V = 783.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 11.13 mm−1

  • T = 293 K

  • 0.35 × 0.20 × 0.15 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.077, Tmax = 0.188

  • 7685 measured reflections

  • 2847 independent reflections

  • 2545 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.065

  • S = 1.05

  • 2847 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −1.28 e Å−3

Data collection: CrystalClear (Rigaku, 1999[Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2000[Rigaku/MSC & Rigaku (2000). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Coporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Liriodenine, 8H-[1,3]benzodioxolo[6,5,4-de]benzo[g]quinolin-8-one, is an oxo-aporphine alkaloid, which was isolated from the Z. nitidum (TCM) spiders found in China (Chen et al., 2009). With its N and carbonyl O donor atoms, liriodenine can serve as bidentate chelate ligand in metal complex. In our previous work, the synthesis, crystal structures and anticancer activity of platinum(II) and ruthenium(II) complexes of liriodenine were reported (Chen et al., 2009). In order to extend our knowledge on liriodenine coordination chemistry we turned to the main-group metals and report herein the the first structure of lead(II) complex with liriodenine.

As shown in Fig.1, similarly to what was observed in the structure of catena-[cis-bis(µ2-chloro)-(3-methylpyridine-N)]lead(II) (Engelhardt et al., 1987), the Pb1 atom in the title compound is six-coordinated by the O1 and N1 atoms of the liriodenine ligand [Pb1—O1 2.666 (4) Å, Pb1—N1 2.587 (5) Å] and four µ2-chloro-atoms which link the complex molecules into infinite chains running along the a axis. The chloro-bridges show noticeable asymmetry with the Pb1—Cl1 [2.7952 (18) Å] and Pb1—Cl2 [2.6872 (18) Å] bonds being significantly shorter than Pb1—Cl1ii [3.031 (2) Å], and Pb1—Cl2i [2.9626 (18) Å] (see Fig. 1). The octahedral coordination of the Pb1 atom shows considerable distortion due to the presence of the chelate ligand [angle O1—Pb1—N1 is equal to 61.78 (14)°] and the asymmetry of the chloro-bridges, e.g. the N1—Pb1—Cl2 and O1—Pb1—Cl2 angles are 84.80 (11)° and 136.98 (11)°, respectively. The overall geometry of the complex compares quite well with that of catena-(cis-bis((µ2-chloro)-(3-methylpyridine-N)) lead(II) (Engelhardt et al. 1987), and the geometric parameters of liriodenine are close to those reported previously (Chen et al., 2009).

Related literature top

For liriodenine metal complexes, see: Chen et al. (2009). For the structure of similar lead(II) coordination polymer, see: Engelhardt et al. (1987).

Experimental top

PbCl2 (0.8 mmol, 0.222 g) and liriodenine (0.8 mmol, 0.220 g) were thoroughly mixed in a mortar with a pestle, and placed in a thick-walled Pyrex tube (ca 20 cm long). After addition of EtOH (0.6 ml) and H2O (0.3 ml), the tube was frozen with liquid nitrogen, evacuated under vacuum and sealed with a torch. The tube was heated at 110°C for 2 days and then slowly cooled down to room temperature; brown-red block crystals were obtained. Yield: 40%.

Refinement top

The H atoms bonded to C atoms were positioned geometrically (C—H 0.93 Å for aromatic and 0.97 Å for aliphatic qroups). and included in the refinement in riding model approximation with Uiso(H) = 1.2Ueq(C). The highest peak of 1.19 e Å-3 is located at 1.65 Å from O3; the deepest hole of -1.28 is found at a distance of 0.94 Å from Pb1.

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme; displacement ellipsoids are drawn at the 50% probability level. Symmetry transformations (i): -x + 1, -y + 1, -z + 1; (ii): -x,-y + 1,-z + 1.
catena-Poly[[(liriodenine-κ2N,O)lead(II)]- di-µ-chlorido] top
Crystal data top
[PbCl2(C17H9NO3)]Z = 2
Mr = 553.34F(000) = 516
Triclinic, P1Dx = 2.346 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 7.2280 (18) ÅCell parameters from 3068 reflections
b = 10.332 (3) Åθ = 3.1–25.3°
c = 11.307 (3) ŵ = 11.13 mm1
α = 104.481 (6)°T = 293 K
β = 100.479 (4)°Block, brown-red
γ = 99.686 (4)°0.35 × 0.20 × 0.15 mm
V = 783.4 (3) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
2847 independent reflections
Radiation source: fine-focus sealed tube2545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 7.31 pixels mm-1θmax = 25.3°, θmin = 3.1°
ω scansh = 88
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1212
Tmin = 0.077, Tmax = 0.188l = 1311
7685 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0269P)2]
where P = (Fo2 + 2Fc2)/3
2847 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = 1.28 e Å3
Crystal data top
[PbCl2(C17H9NO3)]γ = 99.686 (4)°
Mr = 553.34V = 783.4 (3) Å3
Triclinic, P1Z = 2
a = 7.2280 (18) ÅMo Kα radiation
b = 10.332 (3) ŵ = 11.13 mm1
c = 11.307 (3) ÅT = 293 K
α = 104.481 (6)°0.35 × 0.20 × 0.15 mm
β = 100.479 (4)°
Data collection top
Rigaku Mercury CCD
diffractometer
2847 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2545 reflections with I > 2σ(I)
Tmin = 0.077, Tmax = 0.188Rint = 0.040
7685 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.05Δρmax = 1.19 e Å3
2847 reflectionsΔρmin = 1.28 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.19801 (4)0.42620 (2)0.40684 (2)0.03726 (11)
Cl10.1055 (3)0.29827 (18)0.4893 (2)0.0629 (6)
Cl20.4274 (3)0.44005 (18)0.62730 (15)0.0502 (5)
O10.1822 (7)0.3210 (4)0.1636 (4)0.0497 (12)
O20.3150 (8)0.4078 (5)0.0294 (4)0.0578 (14)
O30.2905 (7)0.2806 (4)0.1103 (4)0.0480 (12)
N10.2587 (7)0.1823 (5)0.3329 (4)0.0326 (12)
C10.2820 (9)0.1075 (7)0.4135 (6)0.0398 (16)
H10.29000.14880.49790.048*
C20.2945 (9)0.0270 (7)0.3773 (6)0.0395 (15)
H20.30660.07510.43660.047*
C30.2895 (8)0.0921 (6)0.2529 (5)0.0313 (14)
C40.2695 (8)0.0126 (6)0.1654 (5)0.0273 (13)
C50.2517 (8)0.1231 (6)0.2115 (5)0.0276 (13)
C60.2153 (8)0.2068 (6)0.1253 (5)0.0302 (14)
C70.2194 (8)0.1492 (6)0.0059 (5)0.0303 (14)
C80.1938 (9)0.2315 (6)0.0863 (6)0.0365 (15)
H80.17830.32030.05490.044*
C90.1914 (9)0.1812 (7)0.2120 (6)0.0420 (16)
H90.17750.23600.26550.050*
C100.2102 (9)0.0463 (7)0.2573 (6)0.0447 (17)
H100.20590.01110.34210.054*
C110.2351 (9)0.0361 (6)0.1792 (5)0.0349 (15)
H110.24880.12500.21170.042*
C120.2399 (7)0.0135 (6)0.0515 (5)0.0252 (13)
C130.2642 (8)0.0694 (6)0.0357 (5)0.0259 (13)
C140.2808 (9)0.2026 (6)0.0034 (6)0.0360 (15)
C150.2995 (9)0.2795 (6)0.0903 (6)0.0374 (15)
C160.3033 (9)0.2300 (6)0.2118 (6)0.0401 (16)
H160.31440.28370.26660.048*
C170.2998 (14)0.4135 (7)0.0990 (7)0.066 (2)
H17A0.18450.48020.15110.079*
H17B0.41110.44050.12610.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.04943 (18)0.03102 (16)0.03286 (16)0.01243 (12)0.01518 (11)0.00575 (10)
Cl10.0760 (14)0.0351 (10)0.0866 (14)0.0132 (9)0.0457 (12)0.0144 (9)
Cl20.0624 (12)0.0544 (11)0.0345 (9)0.0071 (9)0.0160 (8)0.0146 (8)
O10.086 (4)0.034 (3)0.032 (3)0.023 (3)0.013 (2)0.008 (2)
O20.101 (4)0.032 (3)0.048 (3)0.027 (3)0.027 (3)0.011 (2)
O30.080 (4)0.032 (3)0.035 (3)0.022 (2)0.020 (2)0.005 (2)
N10.040 (3)0.033 (3)0.024 (3)0.011 (2)0.006 (2)0.008 (2)
C10.053 (4)0.044 (4)0.024 (3)0.016 (3)0.007 (3)0.009 (3)
C20.052 (4)0.038 (4)0.034 (4)0.017 (3)0.011 (3)0.015 (3)
C30.033 (3)0.032 (4)0.030 (3)0.009 (3)0.006 (3)0.012 (3)
C40.022 (3)0.028 (3)0.032 (3)0.006 (3)0.009 (2)0.008 (3)
C50.031 (3)0.023 (3)0.027 (3)0.006 (3)0.007 (2)0.004 (2)
C60.032 (3)0.023 (3)0.029 (3)0.002 (3)0.004 (3)0.002 (3)
C70.028 (3)0.031 (3)0.030 (3)0.004 (3)0.008 (3)0.006 (3)
C80.047 (4)0.030 (4)0.031 (3)0.003 (3)0.009 (3)0.010 (3)
C90.055 (4)0.037 (4)0.040 (4)0.010 (3)0.014 (3)0.019 (3)
C100.049 (4)0.053 (5)0.028 (3)0.006 (4)0.014 (3)0.006 (3)
C110.039 (4)0.034 (4)0.031 (3)0.006 (3)0.012 (3)0.007 (3)
C120.023 (3)0.024 (3)0.028 (3)0.004 (2)0.008 (2)0.004 (2)
C130.025 (3)0.023 (3)0.030 (3)0.009 (2)0.010 (2)0.003 (2)
C140.043 (4)0.033 (4)0.033 (4)0.011 (3)0.017 (3)0.003 (3)
C150.046 (4)0.024 (3)0.048 (4)0.014 (3)0.018 (3)0.012 (3)
C160.054 (4)0.031 (4)0.044 (4)0.013 (3)0.018 (3)0.018 (3)
C170.116 (7)0.034 (4)0.046 (5)0.021 (4)0.024 (5)0.003 (3)
Geometric parameters (Å, º) top
Pb1—N12.587 (5)C4—C51.405 (8)
Pb1—O12.666 (4)C4—C131.428 (7)
Pb1—Cl22.6872 (18)C5—C61.474 (8)
Pb1—Cl12.7952 (18)C6—C71.462 (8)
Pb1—Cl2i2.9626 (18)C7—C81.401 (8)
Pb1—Cl1ii3.031 (2)C7—C121.411 (8)
Cl1—Pb1ii3.031 (2)C8—C91.382 (8)
Cl2—Pb1i2.9626 (18)C8—H80.9300
O1—C61.230 (7)C9—C101.399 (9)
O2—C151.366 (7)C9—H90.9300
O2—C171.422 (8)C10—C111.380 (9)
O3—C141.356 (7)C10—H100.9300
O3—C171.422 (8)C11—C121.397 (8)
N1—C11.340 (7)C11—H110.9300
N1—C51.344 (7)C12—C131.465 (8)
C1—C21.370 (9)C13—C141.365 (8)
C1—H10.9300C14—C151.412 (8)
C2—C31.390 (8)C15—C161.334 (8)
C2—H20.9300C16—H160.9300
C3—C161.411 (8)C17—H17A0.9700
C3—C41.438 (8)C17—H17B0.9700
N1—Pb1—O161.78 (14)O1—C6—C5120.5 (5)
N1—Pb1—Cl284.80 (11)C7—C6—C5117.8 (5)
O1—Pb1—Cl2136.98 (11)C8—C7—C12121.0 (5)
N1—Pb1—Cl184.76 (11)C8—C7—C6117.6 (5)
O1—Pb1—Cl1114.05 (11)C12—C7—C6121.3 (5)
Cl2—Pb1—Cl186.77 (6)C9—C8—C7120.2 (6)
N1—Pb1—Cl2i93.28 (11)C9—C8—H8119.9
O1—Pb1—Cl2i75.61 (11)C7—C8—H8119.9
Cl2—Pb1—Cl2i80.49 (5)C8—C9—C10118.7 (6)
Cl1—Pb1—Cl2i167.23 (6)C8—C9—H9120.6
N1—Pb1—Cl1ii174.35 (11)C10—C9—H9120.6
O1—Pb1—Cl1ii122.56 (10)C11—C10—C9121.7 (6)
Cl2—Pb1—Cl1ii92.96 (6)C11—C10—H10119.2
Cl1—Pb1—Cl1ii89.95 (5)C9—C10—H10119.2
Cl2i—Pb1—Cl1ii91.45 (5)C10—C11—C12120.4 (6)
Pb1—Cl1—Pb1ii90.05 (5)C10—C11—H11119.8
Pb1—Cl2—Pb1i99.51 (5)C12—C11—H11119.8
C6—O1—Pb1120.2 (4)C11—C12—C7118.0 (5)
C15—O2—C17107.0 (5)C11—C12—C13122.9 (5)
C14—O3—C17107.2 (5)C7—C12—C13119.1 (5)
C1—N1—C5118.2 (5)C14—C13—C4114.7 (5)
C1—N1—Pb1120.4 (4)C14—C13—C12125.1 (5)
C5—N1—Pb1121.2 (4)C4—C13—C12120.3 (5)
N1—C1—C2123.1 (5)O3—C14—C13127.8 (6)
N1—C1—H1118.5O3—C14—C15109.0 (5)
C2—C1—H1118.5C13—C14—C15123.1 (5)
C1—C2—C3120.7 (6)C16—C15—O2127.3 (6)
C1—C2—H2119.7C16—C15—C14123.8 (6)
C3—C2—H2119.7O2—C15—C14108.8 (5)
C2—C3—C16122.5 (5)C15—C16—C3116.5 (6)
C2—C3—C4117.1 (5)C15—C16—H16121.8
C16—C3—C4120.4 (5)C3—C16—H16121.8
C5—C4—C13120.8 (5)O2—C17—O3107.6 (5)
C5—C4—C3117.6 (5)O2—C17—H17A110.2
C13—C4—C3121.6 (5)O3—C17—H17A110.2
N1—C5—C4123.2 (5)O2—C17—H17B110.2
N1—C5—C6116.2 (5)O3—C17—H17B110.2
C4—C5—C6120.5 (5)H17A—C17—H17B108.5
O1—C6—C7121.7 (5)
N1—Pb1—Cl1—Pb1ii178.04 (11)N1—C5—C6—C7176.0 (5)
O1—Pb1—Cl1—Pb1ii126.08 (11)C4—C5—C6—C76.5 (8)
Cl2—Pb1—Cl1—Pb1ii92.96 (6)O1—C6—C7—C83.1 (9)
Cl2i—Pb1—Cl1—Pb1ii96.4 (2)C5—C6—C7—C8177.1 (5)
Cl1ii—Pb1—Cl1—Pb1ii0.0O1—C6—C7—C12174.1 (5)
N1—Pb1—Cl2—Pb1i94.22 (11)C5—C6—C7—C125.7 (8)
O1—Pb1—Cl2—Pb1i56.71 (16)C12—C7—C8—C91.1 (9)
Cl1—Pb1—Cl2—Pb1i179.24 (6)C6—C7—C8—C9178.3 (6)
Cl2i—Pb1—Cl2—Pb1i0.0C7—C8—C9—C101.6 (9)
Cl1ii—Pb1—Cl2—Pb1i90.98 (6)C8—C9—C10—C111.4 (10)
N1—Pb1—O1—C61.9 (4)C9—C10—C11—C120.8 (10)
Cl2—Pb1—O1—C641.5 (5)C10—C11—C12—C70.3 (8)
Cl1—Pb1—O1—C671.3 (5)C10—C11—C12—C13179.4 (6)
Cl2i—Pb1—O1—C699.9 (5)C8—C7—C12—C110.4 (8)
Cl1ii—Pb1—O1—C6177.8 (4)C6—C7—C12—C11177.6 (5)
O1—Pb1—N1—C1174.8 (5)C8—C7—C12—C13179.3 (5)
Cl2—Pb1—N1—C133.3 (4)C6—C7—C12—C132.2 (8)
Cl1—Pb1—N1—C153.9 (4)C5—C4—C13—C14179.2 (5)
Cl2i—Pb1—N1—C1113.5 (4)C3—C4—C13—C140.5 (8)
O1—Pb1—N1—C50.4 (4)C5—C4—C13—C120.0 (8)
Cl2—Pb1—N1—C5152.2 (4)C3—C4—C13—C12178.8 (5)
Cl1—Pb1—N1—C5120.5 (4)C11—C12—C13—C141.3 (9)
Cl2i—Pb1—N1—C572.1 (4)C7—C12—C13—C14178.4 (5)
C5—N1—C1—C21.5 (9)C11—C12—C13—C4179.5 (5)
Pb1—N1—C1—C2173.0 (5)C7—C12—C13—C40.8 (8)
N1—C1—C2—C32.0 (10)C17—O3—C14—C13177.9 (7)
C1—C2—C3—C16179.6 (6)C17—O3—C14—C154.7 (7)
C1—C2—C3—C40.4 (9)C4—C13—C14—O3176.3 (6)
C2—C3—C4—C51.6 (8)C12—C13—C14—O34.5 (10)
C16—C3—C4—C5178.4 (5)C4—C13—C14—C150.8 (9)
C2—C3—C4—C13179.6 (5)C12—C13—C14—C15178.5 (6)
C16—C3—C4—C130.4 (8)C17—O2—C15—C16179.0 (7)
C1—N1—C5—C40.7 (8)C17—O2—C15—C141.8 (8)
Pb1—N1—C5—C4175.2 (4)O3—C14—C15—C16177.3 (6)
C1—N1—C5—C6176.8 (5)C13—C14—C15—C160.2 (10)
Pb1—N1—C5—C62.2 (7)O3—C14—C15—O21.8 (7)
C13—C4—C5—N1179.0 (5)C13—C14—C15—O2179.4 (6)
C3—C4—C5—N12.2 (8)O2—C15—C16—C3178.3 (6)
C13—C4—C5—C63.7 (8)C14—C15—C16—C30.7 (10)
C3—C4—C5—C6175.1 (5)C2—C3—C16—C15179.0 (6)
Pb1—O1—C6—C7176.2 (4)C4—C3—C16—C150.9 (9)
Pb1—O1—C6—C53.9 (7)C15—O2—C17—O34.7 (8)
N1—C5—C6—O14.1 (8)C14—O3—C17—O25.8 (8)
C4—C5—C6—O1173.4 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[PbCl2(C17H9NO3)]
Mr553.34
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2280 (18), 10.332 (3), 11.307 (3)
α, β, γ (°)104.481 (6), 100.479 (4), 99.686 (4)
V3)783.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)11.13
Crystal size (mm)0.35 × 0.20 × 0.15
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.077, 0.188
No. of measured, independent and
observed [I > 2σ(I)] reflections
7685, 2847, 2545
Rint0.040
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.065, 1.05
No. of reflections2847
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 1.28

Computer programs: CrystalClear (Rigaku, 1999), CrystalStructure (Rigaku/MSC & Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 20861002), the National Basic Research Program of China (2009CB526503), the Natural Science Foundation of Guangxi of China (No. 0991003,0991012Z) and the Open Foundation of the Key Laboratory for the Chemistry and Mol­ecular Engineering of Medicinal Resources (Ministry of Education of China) for financial support.

References

First citationChen, Z.-F., Liu, Y.-C., Liu, L.-M., Wang, H.-S., Qin, S.-H., Wang, B.-L., Bian, H.-D., Yang, B., Fun, H.-G., Liu, H.-G., Liang, H. & Orvig, C. (2009). J. Chem. Soc. Dalton Trans. pp. 262–272.  CrossRef CAS Google Scholar
First citationEngelhardt, L. M., Patrick, J. M., Whitaker, C. R. & White, A. H. (1987). Aust. J. Chem. 40, 2107–2114.  CrossRef CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC & Rigaku (2000). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Coporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds