Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the title compound, [Au2Fe(C21H23NP)(C17H14P)Cl2], displays the pseudo-linear [P–Au–Cl = 175.4 (1) and 174.0 (1)°] two-coordinate geometry usually observed in gold(I) complexes. The Au—P bond distances are 2.237 (2) and 2.224 (2) Å and the Au—Cl distances are 2.271 (3) and 2.278 (2) Å. The bis­(diphenyl­phosphino)ferrocenyl ligand links the gold metal centres in a bidentate fashion via the ferrocene group, thus leading to a binuclear gold system.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805029582/xu6048sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805029582/xu6048Isup2.hkl
Contains datablock I

CCDC reference: 287762

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.015 Å
  • R factor = 0.049
  • wR factor = 0.109
  • Data-to-parameter ratio = 19.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.70 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C55 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Au1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C51 PLAT331_ALERT_2_C Small Average Phenyl C-C Dist. C51 -C56 1.36 Ang. PLAT342_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 15
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Research towards the synthesis and reactivity of the transition metal complexes with ferrocene-bridged bis(tertiary phosphine) ligands such as 1,1'-bis(diphenylphosphino)ferrocene (dppf) has been increasingly interesting (Bruce et al., 1990, Hor et al., 1992). The use of these ferrocenylphosphines as ligands in coordination chemistry has enlarged the scope of metal complexes in the design of catalysts (Togni & Pastor, 1990), drugs (Hill et al., 1989; Houlton et al., 1991) and materials (Hayashi et al., 1980). Catalytic reactions found in literature include the gold(I)-catalysed aldol reactions of enolates with aldehydes to give optically active β-hydroxycarbonyl compounds (Ito et al., 1986, 1987). Several chiral phosphine ligands have been employed in catalytic asymmetric reactions yielding high enantioselectivity. An example is the effect observed in the rhodium-catalysed asymmetric hydrogenation of α-(acylamino)acrylic acids and/or their analogues leading to the hydrogenation products of over 90% ee (Morrison, 1985). However, few of them displayed this high enantioselectivity in other types of catalytic asymmetric reactions (Noyori & Takaya, 1990, and references therein). Reported in this paper is a modified bis(diphenylphosphino)ferrocenyl gold(I) analogue, (I), which has a ethylamine group specifically designed for improved solubility of the gold complex.

The compound is a AuI complex comprising a diphenylphosphine ferrocenyl ligand bearing phosphorus and nitrogen coordination sites. As gold is a soft metal, it preferentially coordinates to the P atom, the soft coordination site in the ferrocenyl ligand. Since there are two of these sites in the complex, gold coordinates to each site and hence leads to a binuclear gold system, as shown in Fig. 1.

The coordination mode of the diphenylphosphine is of an open-bridging fashion, with the direction of displacement of P atom from coplanarity with cyclopentadienyl ring. The angle involving the two P atoms in the system (P—Fe—P) is 165.97 (7)°, and the cyclopentadienyl rings are partially eclipsed anticlinical relative to each other. The phenyl groups in the system are twisted slightly perpendicular to each other, with a (Car—P—Car)av of 104.6 (4)°. The coordination around the gold atoms is pseudo-linear (Table 1). The Au—P and Au—Cl bond distances are within the normal range compared with (diphenylphosphino)ferrocenyl complexes found in literature (Hill et al., 1989; Crespo et al., 2000; Canales et al., 1997). For comparison, selected bond distances and angles for other similar AuI complexes are presented in Table 3.

The packing of the molecules in the unit cell is illustrated in Fig. 2. The molecules orientate so the centre of the Fe atom lies directly on the c axis. The molecule was also investigated for possible ππ interactions, but did not show any significant effects. However, weak intermolecular C—H···Cl hydrogen bonding is observed (Table 2).

Experimental top

The title compound was prepared according to a procedure similar to one described earlier by Gimeno et al. (1993). A solution of [(THT)AuCl] (THT = tetrahydrothiophene) (0.092 g, 0.3 mmol) in dichloromethane (30 ml) was treated with dppf-CH(CH3)N(CH3)2 (Bjelosevic et al., 2005) (0.094 g, 0.15 mmol) and the mixture was stirred for 30 min. The solution was concentrated to approximately 10 ml and addition of diethyl ether (25 ml) gave the desired product (0.15 g, 92%). 1H NMR (CDCl3, 300 MHz): δ 0.81 (d, 3H, CHCH3), 1.52 (s, 6H, NCH3), 3.74–4.91 (m, 8H), 7.34–7.74 (m, 20H, PC6H5) 31P{1H} NMR (CDCl3, 121.5 MHz): δ 26.963 (s), 28.68 (s) IR (KBr, ν, cm−1): 692 (s), 750 (m), 1023 (w), 1100 (m), 1434 (s), 1480 (m)

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq of the parent atom. The minimum and maximum residual electron density are located within 1.2 Å of the Au2 atom, indicating no physical meaning.

Computing details top

Data collection: Please supply; cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus and XPREP (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of (I). H atoms have been omitted for clarity.
{µ-2-[1-(N,N-Dimethylamino)ethyl]ferrocene-1,1'-diylbis(diphenylphosphine)- κ2P:P'}bis[chlorogold(I)] top
Crystal data top
[Au2Fe(C21H23NP)(C17H14P)Cl2]F(000) = 2080
Mr = 1090.31Dx = 1.97 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 824 reflections
a = 17.136 (3) Åθ = 2.2–21.3°
b = 10.946 (2) ŵ = 8.61 mm1
c = 20.658 (4) ÅT = 293 K
β = 108.39 (3)°Needles, orange
V = 3676.7 (13) Å30.17 × 0.05 × 0.03 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
8020 independent reflections
Radiation source: fine-focus sealed tube4488 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2118
Tmin = 0.600, Tmax = 0.772k = 1313
30273 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.044P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
8020 reflectionsΔρmax = 2.10 e Å3
415 parametersΔρmin = 1.15 e Å3
0 restraints
Crystal data top
[Au2Fe(C21H23NP)(C17H14P)Cl2]V = 3676.7 (13) Å3
Mr = 1090.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.136 (3) ŵ = 8.61 mm1
b = 10.946 (2) ÅT = 293 K
c = 20.658 (4) Å0.17 × 0.05 × 0.03 mm
β = 108.39 (3)°
Data collection top
Bruker SMART CCD
diffractometer
8020 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
4488 reflections with I > 2σ(I)
Tmin = 0.600, Tmax = 0.772Rint = 0.098
30273 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 0.99Δρmax = 2.10 e Å3
8020 reflectionsΔρmin = 1.15 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.07005 (2)0.35943 (3)0.28527 (2)0.04780 (13)
Au20.12000 (2)0.35119 (3)0.127362 (18)0.04006 (12)
Fe0.00262 (8)0.00152 (10)0.20019 (6)0.0378 (3)
P10.15261 (14)0.20977 (19)0.27198 (12)0.0356 (6)
P20.17475 (14)0.17948 (19)0.15122 (12)0.0352 (6)
N10.1206 (5)0.1108 (7)0.4088 (4)0.049 (2)
Cl10.0061 (2)0.5148 (3)0.30690 (18)0.1114 (14)
Cl20.07468 (18)0.5271 (2)0.09230 (15)0.0650 (8)
C110.2501 (5)0.2132 (8)0.3413 (4)0.039 (2)
C120.2700 (6)0.3173 (8)0.3815 (4)0.045 (2)
H120.23310.38220.37350.054*
C130.3437 (7)0.3250 (9)0.4331 (5)0.063 (3)
H130.35690.39450.46020.075*
C140.3975 (7)0.2291 (11)0.4439 (5)0.071 (3)
H140.44840.23550.47750.085*
C150.3782 (7)0.1256 (10)0.4069 (6)0.070 (4)
H150.41490.06040.41610.084*
C160.3039 (6)0.1164 (8)0.3554 (5)0.049 (3)
H160.29030.04460.33020.059*
C210.1802 (6)0.2267 (8)0.1933 (4)0.039 (2)
C220.2515 (6)0.1742 (9)0.1860 (5)0.054 (3)
H220.28840.13330.22240.065*
C230.2662 (7)0.1836 (10)0.1245 (6)0.064 (3)
H230.31320.14820.11930.077*
C240.2117 (8)0.2452 (10)0.0703 (6)0.067 (3)
H240.22280.25160.02920.08*
C250.1412 (8)0.2972 (10)0.0768 (5)0.069 (3)
H250.10370.33580.03980.083*
C260.1274 (6)0.2912 (8)0.1383 (5)0.051 (3)
H260.08180.33090.14380.061*
C310.1130 (5)0.0554 (7)0.2656 (4)0.033 (2)
C320.1253 (6)0.0367 (8)0.2201 (5)0.047 (2)
H320.1550.02740.18970.056*
C330.0837 (6)0.1451 (8)0.2299 (5)0.052 (3)
H330.0810.21880.20690.062*
C340.0477 (6)0.1192 (7)0.2810 (5)0.041 (2)
H340.01760.17450.29780.049*
C350.0640 (5)0.0038 (7)0.3031 (4)0.037 (2)
C360.0416 (5)0.0694 (8)0.3590 (4)0.040 (2)
H360.01010.14250.33890.048*
C370.0124 (6)0.0080 (10)0.3886 (5)0.069 (3)
H37A0.02560.03710.42360.104*
H37B0.01640.08140.40770.104*
H37C0.06220.02880.35310.104*
C380.1743 (7)0.0133 (11)0.4451 (6)0.084 (4)
H38A0.18070.04620.4130.126*
H38B0.15050.0250.47630.126*
H38C0.22710.04650.470.126*
C390.1085 (7)0.2036 (10)0.4549 (6)0.079 (4)
H39A0.07280.26620.42910.118*
H39B0.16060.23880.47990.118*
H39C0.0840.16720.48610.118*
C410.1160 (5)0.0468 (7)0.1476 (4)0.038 (2)
C420.1124 (6)0.0710 (8)0.1799 (5)0.051 (3)
H420.13710.09220.21240.062*
C430.0647 (6)0.1473 (9)0.1531 (6)0.066 (4)
H430.0540.22920.16440.079*
C440.0355 (7)0.0839 (10)0.1070 (5)0.065 (3)
H440.0020.11520.08330.079*
C450.0661 (6)0.0373 (9)0.1029 (5)0.050 (3)
H450.05590.09970.07610.06*
C510.2739 (5)0.1520 (8)0.0864 (5)0.040 (2)
C520.2901 (6)0.0496 (9)0.0471 (6)0.068 (3)
H520.25070.01160.05390.082*
C530.3637 (7)0.0371 (11)0.0020 (6)0.079 (4)
H530.37290.03250.02910.095*
C540.4242 (6)0.1201 (11)0.0134 (6)0.071 (3)
H540.47530.10720.04580.085*
C550.4071 (7)0.2247 (12)0.0249 (7)0.089 (4)
H550.44650.28620.01660.107*
C560.3334 (6)0.2410 (10)0.0751 (5)0.067 (3)
H560.32370.31170.10140.08*
C610.1986 (5)0.1766 (7)0.2315 (4)0.037 (2)
C620.2569 (6)0.0997 (10)0.2389 (5)0.062 (3)
H620.28380.0470.20360.074*
C630.2771 (7)0.0987 (11)0.2990 (7)0.075 (4)
H630.31680.0450.30390.09*
C640.2380 (7)0.1775 (11)0.3512 (6)0.070 (3)
H640.25060.17720.39180.084*
C650.1803 (7)0.2561 (9)0.3421 (5)0.058 (3)
H650.15410.31010.37690.07*
C660.1602 (6)0.2572 (8)0.2826 (5)0.044 (2)
H660.12110.31180.27710.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.0454 (2)0.0383 (2)0.0513 (3)0.01094 (18)0.00322 (19)0.00698 (19)
Au20.0450 (2)0.03126 (19)0.0473 (2)0.00300 (17)0.01926 (18)0.00059 (17)
Fe0.0380 (7)0.0298 (6)0.0394 (8)0.0020 (6)0.0035 (6)0.0016 (6)
P10.0311 (13)0.0302 (12)0.0412 (15)0.0003 (10)0.0055 (11)0.0003 (10)
P20.0365 (13)0.0271 (11)0.0404 (14)0.0002 (10)0.0098 (11)0.0020 (10)
N10.052 (5)0.053 (5)0.041 (5)0.004 (4)0.014 (4)0.007 (4)
Cl10.101 (3)0.105 (3)0.097 (3)0.065 (2)0.013 (2)0.042 (2)
Cl20.081 (2)0.0431 (14)0.081 (2)0.0124 (14)0.0397 (17)0.0070 (13)
C110.041 (5)0.035 (5)0.039 (6)0.001 (4)0.009 (4)0.009 (4)
C120.053 (6)0.044 (5)0.036 (6)0.005 (5)0.013 (5)0.003 (4)
C130.066 (8)0.056 (7)0.052 (7)0.013 (6)0.001 (6)0.008 (5)
C140.055 (7)0.080 (9)0.052 (8)0.008 (7)0.018 (6)0.008 (6)
C150.059 (7)0.063 (8)0.069 (8)0.007 (6)0.007 (6)0.024 (6)
C160.042 (6)0.038 (5)0.059 (7)0.004 (4)0.004 (5)0.004 (5)
C210.047 (6)0.035 (5)0.033 (5)0.012 (4)0.010 (4)0.000 (4)
C220.052 (7)0.061 (7)0.048 (7)0.007 (5)0.013 (5)0.009 (5)
C230.071 (8)0.072 (8)0.065 (8)0.007 (6)0.042 (7)0.015 (6)
C240.094 (10)0.061 (7)0.061 (8)0.030 (7)0.046 (8)0.013 (6)
C250.104 (10)0.065 (7)0.039 (7)0.022 (8)0.024 (7)0.008 (6)
C260.063 (7)0.034 (5)0.051 (7)0.011 (5)0.011 (5)0.001 (5)
C310.022 (5)0.038 (5)0.035 (5)0.005 (4)0.004 (4)0.001 (4)
C320.046 (6)0.044 (6)0.054 (7)0.001 (5)0.021 (5)0.017 (5)
C330.048 (6)0.041 (5)0.058 (7)0.002 (5)0.004 (5)0.009 (5)
C340.040 (5)0.028 (5)0.044 (6)0.000 (4)0.003 (5)0.010 (4)
C350.036 (5)0.027 (5)0.042 (6)0.009 (4)0.006 (4)0.002 (4)
C360.040 (5)0.037 (5)0.044 (6)0.004 (4)0.014 (5)0.002 (4)
C370.061 (7)0.096 (9)0.055 (7)0.025 (7)0.025 (6)0.014 (6)
C380.068 (8)0.100 (10)0.068 (9)0.014 (7)0.002 (7)0.000 (7)
C390.088 (9)0.082 (8)0.066 (8)0.024 (7)0.022 (7)0.034 (7)
C410.036 (5)0.032 (5)0.037 (6)0.003 (4)0.003 (4)0.000 (4)
C420.047 (6)0.044 (6)0.044 (6)0.010 (5)0.013 (5)0.007 (5)
C430.055 (7)0.033 (5)0.080 (9)0.013 (5)0.021 (6)0.022 (6)
C440.082 (9)0.068 (8)0.033 (6)0.017 (7)0.002 (6)0.018 (6)
C450.059 (7)0.054 (6)0.031 (6)0.017 (5)0.004 (5)0.003 (5)
C510.040 (5)0.036 (5)0.046 (6)0.004 (5)0.014 (4)0.000 (5)
C520.055 (7)0.045 (6)0.082 (9)0.002 (5)0.010 (6)0.005 (6)
C530.068 (9)0.083 (9)0.068 (9)0.002 (7)0.005 (7)0.019 (7)
C540.037 (6)0.088 (9)0.070 (8)0.008 (6)0.007 (6)0.005 (7)
C550.053 (8)0.092 (10)0.096 (11)0.004 (7)0.012 (7)0.011 (8)
C560.058 (7)0.061 (7)0.065 (8)0.017 (6)0.006 (6)0.012 (6)
C610.033 (5)0.034 (5)0.038 (5)0.004 (4)0.002 (4)0.006 (4)
C620.061 (7)0.081 (8)0.044 (7)0.036 (6)0.018 (6)0.006 (6)
C630.064 (8)0.076 (8)0.092 (10)0.020 (7)0.037 (8)0.005 (7)
C640.078 (9)0.096 (9)0.043 (7)0.004 (7)0.028 (6)0.015 (6)
C650.067 (8)0.061 (7)0.038 (7)0.011 (6)0.004 (5)0.012 (5)
C660.045 (6)0.042 (5)0.044 (6)0.003 (5)0.011 (5)0.001 (5)
Geometric parameters (Å, º) top
Au1—P12.237 (2)C32—H320.93
Au1—Cl12.271 (3)C33—C341.411 (13)
Au2—P22.224 (2)C33—H330.93
Au2—Cl22.278 (2)C34—C351.421 (11)
Fe—C452.022 (9)C34—H340.93
Fe—C412.041 (8)C35—C361.508 (12)
Fe—C422.042 (9)C36—C371.518 (12)
Fe—C312.045 (8)C36—H360.98
Fe—C322.047 (9)C37—H37A0.96
Fe—C442.052 (9)C37—H37B0.96
Fe—C352.054 (8)C37—H37C0.96
Fe—C432.055 (9)C38—H38A0.96
Fe—C342.057 (8)C38—H38B0.96
Fe—C332.059 (9)C38—H38C0.96
P1—C311.810 (9)C39—H39A0.96
P1—C111.825 (9)C39—H39B0.96
P1—C211.839 (9)C39—H39C0.96
P2—C411.781 (9)C41—C421.444 (12)
P2—C511.826 (9)C41—C451.447 (13)
P2—C611.828 (9)C42—C431.399 (14)
N1—C391.451 (12)C42—H420.93
N1—C381.454 (12)C43—C441.392 (15)
N1—C361.489 (11)C43—H430.93
C11—C161.374 (12)C44—C451.419 (13)
C11—C121.388 (11)C44—H440.93
C12—C131.375 (13)C45—H450.93
C12—H120.93C51—C521.359 (12)
C13—C141.367 (14)C51—C561.377 (12)
C13—H130.93C52—C531.353 (14)
C14—C151.348 (14)C52—H520.93
C14—H140.93C53—C541.342 (14)
C15—C161.382 (13)C53—H530.93
C15—H150.93C54—C551.369 (15)
C16—H160.93C54—H540.93
C21—C261.400 (12)C55—C561.370 (14)
C21—C221.401 (12)C55—H550.93
C22—C231.375 (13)C56—H560.93
C22—H220.93C61—C621.353 (12)
C23—C241.386 (15)C61—C661.374 (11)
C23—H230.93C62—C631.388 (14)
C24—C251.380 (15)C62—H620.93
C24—H240.93C63—C641.379 (15)
C25—C261.366 (13)C63—H630.93
C25—H250.93C64—C651.367 (14)
C26—H260.93C64—H640.93
C31—C351.428 (12)C65—C661.378 (13)
C31—C321.438 (11)C65—H650.93
C32—C331.431 (12)C66—H660.93
P1—Au1—Cl1175.4 (1)Fe—C32—H32126.1
P2—Au2—Cl2174.0 (1)C34—C33—C32107.1 (8)
C45—Fe—C4141.7 (4)C34—C33—Fe69.8 (5)
C45—Fe—C4269.5 (4)C32—C33—Fe69.1 (5)
C41—Fe—C4241.4 (3)C34—C33—H33126.5
C45—Fe—C31147.5 (4)C32—C33—H33126.5
C41—Fe—C31169.9 (3)Fe—C33—H33126.1
C42—Fe—C31130.5 (3)C33—C34—C35110.1 (9)
C45—Fe—C32113.7 (4)C33—C34—Fe70.1 (5)
C41—Fe—C32148.0 (3)C35—C34—Fe69.7 (5)
C42—Fe—C32167.9 (4)C33—C34—H34125
C31—Fe—C3241.1 (3)C35—C34—H34125
C45—Fe—C4440.8 (4)Fe—C34—H34126.9
C41—Fe—C4469.1 (4)C34—C35—C31106.8 (8)
C42—Fe—C4468.2 (5)C34—C35—C36128.7 (9)
C31—Fe—C44115.8 (4)C31—C35—C36124.3 (7)
C32—Fe—C44106.0 (5)C34—C35—Fe69.9 (5)
C45—Fe—C35169.1 (3)C31—C35—Fe69.2 (5)
C41—Fe—C35131.0 (4)C36—C35—Fe129.4 (6)
C42—Fe—C35110.3 (4)N1—C36—C35106.1 (7)
C31—Fe—C3540.8 (3)N1—C36—C37115.4 (8)
C32—Fe—C3568.9 (4)C35—C36—C37112.1 (8)
C44—Fe—C35149.9 (4)N1—C36—H36107.6
C45—Fe—C4367.6 (4)C35—C36—H36107.6
C41—Fe—C4367.9 (3)C37—C36—H36107.6
C42—Fe—C4339.9 (4)C36—C37—H37A109.5
C31—Fe—C43109.6 (4)C36—C37—H37B109.5
C32—Fe—C43129.2 (4)H37A—C37—H37B109.5
C44—Fe—C4339.6 (4)C36—C37—H37C109.5
C35—Fe—C43119.7 (4)H37A—C37—H37C109.5
C45—Fe—C34129.6 (4)H37B—C37—H37C109.5
C41—Fe—C34109.6 (4)N1—C38—H38A109.5
C42—Fe—C34120.1 (4)N1—C38—H38B109.5
C31—Fe—C3467.8 (3)H38A—C38—H38B109.5
C32—Fe—C3467.7 (4)N1—C38—H38C109.5
C44—Fe—C34166.8 (4)H38A—C38—H38C109.5
C35—Fe—C3440.4 (3)H38B—C38—H38C109.5
C43—Fe—C34153.1 (5)N1—C39—H39A109.5
C45—Fe—C33106.0 (4)N1—C39—H39B109.5
C41—Fe—C33116.0 (3)H39A—C39—H39B109.5
C42—Fe—C33151.0 (4)N1—C39—H39C109.5
C31—Fe—C3368.8 (3)H39A—C39—H39C109.5
C32—Fe—C3340.8 (3)H39B—C39—H39C109.5
C44—Fe—C33127.7 (5)C42—C41—C45106.4 (8)
C35—Fe—C3368.7 (3)C42—C41—P2130.6 (8)
C43—Fe—C33166.3 (5)C45—C41—P2122.8 (7)
C34—Fe—C3340.1 (4)C42—C41—Fe69.3 (5)
C31—P1—C11107.8 (4)C45—C41—Fe68.4 (5)
C31—P1—C21102.9 (4)P2—C41—Fe131.0 (5)
C11—P1—C21105.3 (4)C43—C42—C41107.2 (10)
C31—P1—Au1117.1 (3)C43—C42—Fe70.6 (6)
C11—P1—Au1110.3 (3)C41—C42—Fe69.3 (5)
C21—P1—Au1112.5 (3)C43—C42—H42126.4
C41—P2—C51104.0 (4)C41—C42—H42126.4
C41—P2—C61108.3 (4)Fe—C42—H42125.4
C51—P2—C61103.9 (4)C44—C43—C42110.7 (9)
C41—P2—Au2113.3 (3)C44—C43—Fe70.1 (6)
C51—P2—Au2109.7 (3)C42—C43—Fe69.5 (5)
C61—P2—Au2116.5 (3)C44—C43—H43124.6
C39—N1—C38112.0 (9)C42—C43—H43124.6
C39—N1—C36112.3 (8)Fe—C43—H43127.4
C38—N1—C36115.0 (8)C43—C44—C45107.5 (10)
C16—C11—C12119.0 (8)C43—C44—Fe70.3 (6)
C16—C11—P1122.5 (7)C45—C44—Fe68.5 (5)
C12—C11—P1118.5 (7)C43—C44—H44126.2
C13—C12—C11120.4 (9)C45—C44—H44126.2
C13—C12—H12119.8Fe—C44—H44126.5
C11—C12—H12119.8C44—C45—C41108.1 (9)
C14—C13—C12119.1 (10)C44—C45—Fe70.8 (5)
C14—C13—H13120.4C41—C45—Fe69.9 (5)
C12—C13—H13120.4C44—C45—H45125.9
C15—C14—C13121.4 (10)C41—C45—H45125.9
C15—C14—H14119.3Fe—C45—H45125
C13—C14—H14119.3C52—C51—C56118.8 (9)
C14—C15—C16120.0 (10)C52—C51—P2122.8 (7)
C14—C15—H15120C56—C51—P2118.4 (7)
C16—C15—H15120C53—C52—C51119.8 (10)
C11—C16—C15120.0 (9)C53—C52—H52120.1
C11—C16—H16120C51—C52—H52120.1
C15—C16—H16120C54—C53—C52123.3 (11)
C26—C21—C22118.8 (9)C54—C53—H53118.3
C26—C21—P1119.2 (8)C52—C53—H53118.3
C22—C21—P1122.0 (7)C53—C54—C55116.9 (10)
C23—C22—C21119.4 (10)C53—C54—H54121.6
C23—C22—H22120.3C55—C54—H54121.6
C21—C22—H22120.3C54—C55—C56121.6 (11)
C22—C23—C24120.6 (11)C54—C55—H55119.2
C22—C23—H23119.7C56—C55—H55119.2
C24—C23—H23119.7C55—C56—C51119.5 (10)
C25—C24—C23120.7 (10)C55—C56—H56120.2
C25—C24—H24119.7C51—C56—H56120.2
C23—C24—H24119.7C62—C61—C66120.3 (9)
C26—C25—C24119.0 (11)C62—C61—P2119.9 (7)
C26—C25—H25120.5C66—C61—P2119.7 (7)
C24—C25—H25120.5C61—C62—C63120.5 (10)
C25—C26—C21121.5 (11)C61—C62—H62119.8
C25—C26—H26119.3C63—C62—H62119.8
C21—C26—H26119.3C64—C63—C62119.9 (10)
C35—C31—C32108.1 (7)C64—C63—H63120.1
C35—C31—P1126.9 (6)C62—C63—H63120.1
C32—C31—P1125.0 (7)C65—C64—C63118.7 (10)
C35—C31—Fe70.0 (5)C65—C64—H64120.7
C32—C31—Fe69.5 (5)C63—C64—H64120.7
P1—C31—Fe125.4 (4)C64—C65—C66121.6 (10)
C33—C32—C31107.9 (8)C64—C65—H65119.2
C33—C32—Fe70.1 (5)C66—C65—H65119.2
C31—C32—Fe69.3 (5)C61—C66—C65119.1 (9)
C33—C32—H32126.1C61—C66—H66120.5
C31—C32—H32126.1C65—C66—H66120.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C66—H66···Cl1i0.932.673.552 (10)160
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formula[Au2Fe(C21H23NP)(C17H14P)Cl2]
Mr1090.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)17.136 (3), 10.946 (2), 20.658 (4)
β (°) 108.39 (3)
V3)3676.7 (13)
Z4
Radiation typeMo Kα
µ (mm1)8.61
Crystal size (mm)0.17 × 0.05 × 0.03
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.600, 0.772
No. of measured, independent and
observed [I > 2σ(I)] reflections
30273, 8020, 4488
Rint0.098
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.109, 0.99
No. of reflections8020
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.10, 1.15

Computer programs: Please supply, SAINT-Plus (Bruker, 1999), SAINT-Plus and XPREP (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Au1—P12.237 (2)P1—C111.825 (9)
Au1—Cl12.271 (3)P1—C211.839 (9)
Au2—P22.224 (2)P2—C411.781 (9)
Au2—Cl22.278 (2)P2—C511.826 (9)
P1—C311.810 (9)P2—C611.828 (9)
P1—Au1—Cl1175.4 (1)C31—P1—Au1117.1 (3)
P2—Au2—Cl2174.0 (1)C51—P2—C61103.9 (4)
C11—P1—C21105.3 (4)C41—P2—Au2113.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C66—H66···Cl1i0.9302.673.552 (10)160
Symmetry code: (i) x, y1, z.
Comparative geometrical parameters (Å, °) for selected gold(I) ferrocenyl complexes top
ComplexAu–PAu–ClP–Au–Cl
[(dppf-R)(AuCl)2]a2.237 (2)2.271 (3)175.4 (1)
2.224 (2)2.278 (2)174.0 (1)
[(dppf)(AuCl)2]b2.2262 (13)2.2815 (13)179.59 (5)
[(dppf)(AuCl2]c2.239 (3)2.300 (3)176.0 (1)
2.222 (3)2.273 (4)175.5 (1)
[(dppf)(AuCl)2]d2.226 (1)2.278 (1)177.56 (8)
[(C27H28FeNP)(AuCl)]e2.24 (1)2.32 (1)176.5 (5)
[(dppf-L)2(AuCl)3]f2.31 (2)2.52 (3)113 (2)
2.28 (2)2.20 (2)177 (2)
Notes: (a) this work, R = –CH(CH3)N(CH3)2, dppf is 1,1'-bis(diphenylphosphino)ferrocene; (b) Canales et al. (1997), isolated as the CH2Cl2 solvate; (c) Hill et al. (1989), isolated as the CH3Cl solvate; (d) Canales et al. (1997); (e) Viotte et al. (1996), isolated as the C6H6 1.5-solvate, C27H28FeNP = (α-dimethylamino[3]ferrocenophanyl)diphenylphosphine; (f) Togni et al. (1990), L = –CH(CH3)N(CH3)CH2CH2N(CH3)2, isolated as the Et2O solvate.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds