Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
One acetate chelates to an Ni atom and the other bridges two Ni atoms in the title compound, catena-poly[[di-μ-acetato-1κO:2κO′-bis­[(acetato-κ2O,O′)nickel(II)]]-di-μ-4,4′-bipyridine-1κN:1′κN′;2κN:2′κN′], [Ni2(C2H3O2)4(C10H8N2)2]n. The Ni atoms in the centrosymmetric [Ni2(C2H3O2)4] arrangement are bridged by the C10H8N2 ligands to afford a ribbon structure. The Ni atom, both acetates and the heterocyclic ligand all lie on special positions of m site symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805027078/xu6044sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805027078/xu6044Isup2.hkl
Contains datablock I

CCDC reference: 287760

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.074
  • wR factor = 0.148
  • Data-to-parameter ratio = 12.0

checkCIF/PLATON results

No syntax errors found



Alert level B ABSTM02_ALERT_3_B The ratio of expected to reported Tmax/Tmin(RR') is < 0.75 Tmin and Tmax reported: 0.440 0.921 Tmin(prime) and Tmax expected: 0.855 0.920 RR(prime) = 0.514 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_B Tmax/Tmin Range Test RR' too Large ............. 0.51
Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.79 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C7 PLAT341_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 9 PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.15 Ratio
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The 4,4'-bipyridine heterocycle has been used in the formation of a large number of metal complexes; in these, the ligand typically functions as a rigid spacer in the resulting linear, layer and network motifs. With nickel(II) carboxylates in particular, the crystallographically authenticated adducts include the 2-methyl-but-2-enedioate (Liao et al., 2001), benzoate (Biradha et al., 1999), phthalate (Yang et al., 2003), benzene-1,2,4,5-tetracarboxylate (Wu et al., 2002), pyridine-2,6-dicarboxylate (Wang et al., 2002) and pyridine-1,3,5-tricarboxylate (Prior et al., 2003). The list now includes the title acetate homologue, (I).

The title adduct of nickel(II) acetate with 4,4'-bipyridine is a centrosymmetric compound in which two acetates function in the bridging mode to two acetate-chelated Ni atoms across a centre of inversion. The planar four-membered Ni—OCO ring lies on a mirror plane so that the two C—O distances are equivalent. The buckled eight-membered Ni—OC O—Ni—OCO— ring lies on another special position of m site symmetry. The O atoms surrounding the Ni atom comprise a rhombus, and the presence of the N atoms above and below it leads to a distorted octahedral environment for the metal atom (Fig. 1). The mode of coordination of the pair of N-heterocycles gives rise to the formation of a ribbon structure that propagates along the a axis (Fig. 2).

Only few metal acetates of this spacer heterocycle have been reported to date, these being the cobalt(II) derivative, a diaqua compound that crystallizes with both methanol and water (Zhang et al., 1999), and a copper(II) monohydrate that crystallizes in two forms (Castiñeriras et al., 2002; Conerney et al., 2003).

Experimental top

Nickel acetate tetrahydrate (0.5 mmol) and 4,4'-bipyridine (0.5 mmol) were dissolved in N,N-dimethylformamide (8 ml). The mixture was placed in a 15 ml Teflon-lined Parr bomb which was then heated at 383 K for 48 h. Blue crystals of (I) were obtained from the cooled solution in about 50% yield.

Refinement top

The C-bound H atoms were generated geometrically, with C—Hpyridyl = 0.93 Å and Uiso(H) = 1.2Ueq(C), and C—Hmethyl = 0.98 Å and Uiso(H) = 1.5Ueq(C)], and were included in the refinement in the riding-model approximation. The methyl groups were rotated to fit the electron density.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A plot showing the numbering scheme of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Symmetry codes are as given in Table 1.
[Figure 2] Fig. 2. A plot showing the formation of the ribbon in the unit cell.
catena-poly[[di-µ-acetato-1κO:2κO'-bis[(acetato-κ2O,O')nickel(II)]]- di-µ-4,4'-bipyridine-1κN:1'κN';2κN:2'κN'] top
Crystal data top
[Ni2(C2H3O2)4(C10H8N2)2]F(000) = 688
Mr = 332.96Dx = 1.574 Mg m3
Orthorhombic, PnnmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2 2nCell parameters from 416 reflections
a = 11.278 (2) Åθ = 2.5–19.2°
b = 11.532 (2) ŵ = 1.40 mm1
c = 10.802 (2) ÅT = 295 K
V = 1404.9 (4) Å3Block, blue
Z = 40.11 × 0.08 × 0.06 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
1307 independent reflections
Radiation source: fine-focus sealed tube975 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 813
Tmin = 0.440, Tmax = 0.921k = 139
5686 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.059P)2 + 0.0628P]
where P = (Fo2 + 2Fc2)/3
1307 reflections(Δ/σ)max = 0.001
109 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Ni2(C2H3O2)4(C10H8N2)2]V = 1404.9 (4) Å3
Mr = 332.96Z = 4
Orthorhombic, PnnmMo Kα radiation
a = 11.278 (2) ŵ = 1.40 mm1
b = 11.532 (2) ÅT = 295 K
c = 10.802 (2) Å0.11 × 0.08 × 0.06 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
1307 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
975 reflections with I > 2σ(I)
Tmin = 0.440, Tmax = 0.921Rint = 0.094
5686 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.18Δρmax = 0.74 e Å3
1307 reflectionsΔρmin = 0.69 e Å3
109 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.42858 (9)0.33337 (9)0.50000.0228 (4)
O10.4331 (3)0.4287 (3)0.6565 (4)0.035 (1)
O20.4008 (4)0.1756 (4)0.6000 (4)0.038 (1)
N10.6137 (6)0.3129 (6)0.50000.023 (2)
N21.2438 (6)0.3547 (5)0.50000.024 (2)
C10.6757 (5)0.3149 (5)0.6049 (6)0.033 (2)
C20.7976 (5)0.3201 (5)0.6089 (5)0.032 (2)
C30.8609 (7)0.3278 (7)0.50000.024 (2)
C40.9925 (7)0.3411 (7)0.50000.027 (2)
C51.0586 (5)0.3462 (5)0.6087 (5)0.034 (2)
C61.1814 (5)0.3531 (5)0.6043 (6)0.034 (2)
C70.50000.50000.7071 (8)0.028 (2)
C80.50000.50000.8461 (9)0.066 (3)
C90.3849 (7)0.1241 (7)0.50000.030 (2)
C100.3420 (8)0.0006 (8)0.50000.060 (3)
H10.63450.31250.67940.040*
H20.83690.31850.68460.038*
H51.02020.34510.68490.040*
H61.22250.35680.67890.040*
H8a0.43280.54300.87570.099*0.50
H8b0.57160.53540.87570.099*0.50
H8c0.49550.42160.87570.099*0.50
H10a0.39630.04770.54640.090*0.50
H10b0.33770.02840.41640.090*0.50
H10c0.26480.00440.53730.090*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0112 (5)0.0337 (7)0.0236 (6)0.0011 (5)0.0000.000
O10.023 (2)0.046 (3)0.037 (3)0.009 (2)0.001 (2)0.015 (2)
O20.032 (3)0.047 (3)0.035 (3)0.004 (2)0.0041 (19)0.006 (2)
N10.014 (3)0.034 (4)0.021 (4)0.002 (3)0.0000.000
N20.017 (4)0.029 (4)0.026 (4)0.003 (3)0.0000.000
C10.020 (3)0.051 (4)0.028 (4)0.002 (3)0.007 (3)0.005 (3)
C20.018 (3)0.053 (4)0.024 (3)0.002 (3)0.005 (3)0.008 (3)
C30.014 (4)0.020 (4)0.037 (5)0.004 (4)0.0000.000
C40.018 (4)0.032 (5)0.030 (5)0.001 (4)0.0000.000
C50.018 (3)0.057 (4)0.026 (3)0.001 (3)0.001 (3)0.003 (3)
C60.014 (3)0.055 (4)0.032 (4)0.001 (3)0.002 (3)0.000 (3)
C70.013 (5)0.048 (6)0.022 (5)0.012 (4)0.0000.000
C80.10 (1)0.076 (8)0.025 (6)0.030 (7)0.0000.000
C90.014 (4)0.028 (5)0.047 (7)0.007 (4)0.0000.000
C100.027 (6)0.040 (7)0.11 (1)0.004 (5)0.0000.000
Geometric parameters (Å, º) top
Ni1—O12.017 (4)C4—C5i1.392 (7)
Ni1—O1i2.017 (4)C5—C61.388 (7)
Ni1—O22.139 (4)C7—O1iii1.243 (5)
Ni1—O2i2.139 (4)C7—C81.50 (1)
Ni1—N12.101 (6)C9—O2i1.246 (6)
Ni1—N2ii2.099 (6)C9—C101.52 (1)
O1—C71.243 (5)C1—H10.93
O2—C91.246 (6)C2—H20.93
N1—C11.332 (7)C5—H50.93
N1—C1i1.332 (7)C6—H60.93
N2—C6i1.328 (6)C8—H8a0.96
N2—C61.328 (6)C8—H8b0.96
C1—C21.376 (8)C8—H8c0.96
C2—C31.379 (7)C10—H10a0.96
C3—C2i1.379 (7)C10—H10b0.96
C3—C41.49 (1)C10—H10c0.96
C4—C51.392 (7)
O1—Ni1—O1i113.9 (2)C5i—C4—C3122.5 (4)
O1—Ni1—O292.5 (2)C6—C5—C4120.5 (6)
O1—Ni1—O2i152.9 (2)N2—C6—C5123.9 (6)
O1—Ni1—N192.1 (2)O1—C7—O1iii127.8 (8)
O1—Ni1—N2ii87.8 (2)O1—C7—C8116.1 (4)
O1i—Ni1—O2152.9 (2)O1iii—C7—C8116.1 (4)
O1i—Ni1—O2i92.5 (2)O2—C9—O2i120.2 (8)
O1i—Ni1—N192.1 (2)O2—C9—C10119.9 (4)
O1i—Ni1—N2ii87.8 (2)O2i—C9—C10119.9 (4)
O2—Ni1—O2i60.7 (2)N1—C1—H1118.3
O2—Ni1—N192.9 (2)C2—C1—H1118.3
O2—Ni1—N2ii87.4 (2)C1—C2—H2120.2
O2i—Ni1—N192.9 (2)C3—C2—H2120.2
O2i—Ni1—N2ii87.4 (2)C6—C5—H5119.7
N1—Ni1—N2ii179.7 (3)C4—C5—H5119.7
C7—O1—Ni1138.1 (4)N2—C6—H6118.0
C9—O2—Ni189.4 (4)C5—C6—H6118.0
C1—N1—C1i116.6 (7)C7—C8—H8a109.5
C1—N1—Ni1121.3 (3)C7—C8—H8b109.5
C1i—N1—Ni1121.3 (3)H8a—C8—H8b109.5
C6i—N2—C6116.0 (7)C7—C8—H8c109.5
C6i—N2—Ni1iv121.6 (3)H8a—C8—H8c109.5
C6—N2—Ni1iv121.6 (3)H8b—C8—H8c109.5
N1—C1—C2123.5 (6)C9—C10—H10a109.5
C1—C2—C3119.5 (6)C9—C10—H10b109.5
C2i—C3—C2117.1 (7)H10a—C10—H10b109.5
C2i—C3—C4121.5 (4)C9—C10—H10c109.5
C2—C3—C4121.5 (4)H10a—C10—H10c109.5
C5—C4—C5i115.0 (7)H10b—C10—H10c109.5
C5—C4—C3122.5 (4)
O1i—Ni1—O1—C759.7 (6)C1i—N1—C1—C21 (1)
N2ii—Ni1—O1—C7146.2 (5)Ni1—N1—C1—C2169.5 (4)
N1—Ni1—O1—C733.5 (5)N1—C1—C2—C32 (1)
O2i—Ni1—O1—C7133.9 (5)C1—C2—C3—C2i5 (1)
O2—Ni1—O1—C7126.5 (5)C1—C2—C3—C4176.1 (6)
O1—Ni1—O2—C9172.6 (4)C2i—C3—C4—C5178.4 (7)
O1i—Ni1—O2—C95.0 (6)C2—C3—C4—C50 (1)
N2ii—Ni1—O2—C985.0 (4)C2i—C3—C4—C5i0 (1)
N1—Ni1—O2—C995.2 (4)C2—C3—C4—C5i178.4 (7)
O2i—Ni1—O2—C93.5 (5)C5i—C4—C5—C62 (1)
O1—Ni1—N1—C127.9 (6)C3—C4—C5—C6176.9 (6)
O1i—Ni1—N1—C1141.9 (6)C6i—N2—C6—C52 (1)
O2i—Ni1—N1—C1125.4 (6)Ni1iv—N2—C6—C5168.2 (5)
O2—Ni1—N1—C164.7 (6)C4—C5—C6—N20 (1)
O1—Ni1—N1—C1i141.9 (6)Ni1—O1—C7—O1iii31.6 (4)
O1i—Ni1—N1—C1i27.9 (6)Ni1—O1—C7—C8148.4 (4)
O2i—Ni1—N1—C1i64.7 (6)Ni1—O2—C9—O2i6.1 (8)
O2—Ni1—N1—C1i125.4 (6)Ni1—O2—C9—C10171.8 (7)
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni2(C2H3O2)4(C10H8N2)2]
Mr332.96
Crystal system, space groupOrthorhombic, Pnnm
Temperature (K)295
a, b, c (Å)11.278 (2), 11.532 (2), 10.802 (2)
V3)1404.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.11 × 0.08 × 0.06
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.440, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
5686, 1307, 975
Rint0.094
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.148, 1.18
No. of reflections1307
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.69

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Ni1—O12.017 (4)Ni1—N12.101 (6)
Ni1—O22.139 (4)
O1—Ni1—O1i113.9 (2)O2—Ni1—O2i60.7 (2)
O1—Ni1—O292.5 (2)O2—Ni1—N192.9 (2)
O1—Ni1—O2i152.9 (2)O2—Ni1—N2ii87.4 (2)
O1—Ni1—N192.1 (2)N1—Ni1—N2ii179.7 (3)
O1—Ni1—N2ii87.8 (2)
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds