research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1-[(1-butyl-1H-1,2,3-triazol-4-yl)meth­yl]-3-methyl­quinoxalin-2(1H)-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dLaboratoire de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, and eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: nadeemabad2018@gmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 25 October 2018; accepted 9 November 2018; online 20 November 2018)

The title compound, C16H19N5O, is built up from a planar quinoxalinone ring system linked through a methyl­ene bridge to a 1,2,3-triazole ring, which in turn carries an n-butyl substituent. The triazole ring is inclined by 67.09 (4)° to the quinoxalinone ring plane. In the crystal, the mol­ecules form oblique stacks along the a-axis direction through inter­molecular C—HTrz⋯NTrz (Trz = triazole) hydrogen bonds, and offset π-stacking inter­actions between quinoxalinone rings [centroid–centroid distance = 3.9107 (9) Å] and ππ inter­actions, which are associated pairwise by inversion-related C—HDhydqnπ(ring) (Dhydqn = di­hydro­quinoxaline) inter­actions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (52.7%), H⋯N/N⋯H (18.9%) and H⋯C/C⋯H (17.0%) inter­actions.

1. Chemical context

Quinoxaline groups are well known, important nitrogen-containing heterocyclic compounds comprising a benzene and a pyrazine ring fused together. Diversely substituted quinoxalines and their derivatives embedded with variety of functional groups are important biological agents and a significant amount of research activity has been directed towards this class of compounds. These mol­ecules exhibit a wide range of biological applications and are potentially useful in medicinal chemistry research and have therapeutic applications such as anti­microbial (Attia et al., 2013[Attia, A. S., Abdel Aziz, A. A., Alfallous, K. A. & El-Shahat, M. F. (2013). Polyhedron, 51, 243-254.]; Vieira et al., 2014[Vieira, M., Pinheiro, C., Fernandes, R., Noronha, J. P. & Prudêncio, C. (2014). Microbiol. Res. 169, 287-293.]; Teja et al., 2016[Teja, R., Kapu, S., Kadiyala, S., Dhanapal, V. & Raman, A. N. (2016). J. Saudi Chem. Soc. 20, S387-S392.]), anti-inflammatory (Guirado et al., 2012[Guirado, A., López Sánchez, J. I., Ruiz-Alcaraz, A. J., Bautista, D. & Gálvez, J. (2012). Eur. J. Med. Chem. 54, 87-94.]), anti­cancer (Abbas et al., 2015[Abbas, H. S., Al-Marhabi, A. R., Eissa, S. I. & Ammar, Y. A. (2015). Bioorg. Med. Chem. 23, 6560-6572.]), anti­diabetic (Kulkarni et al., 2012[Kulkarni, N. V., Revankar, V. K., Kirasur, B. N. & Hugar, M. H. (2012). Med. Chem. Res. 21, 663-671.]) and anti­histaminic activities (Sridevi et al., 2010[Sridevi, K. B. C. H., Naidu, A. & Sudhakaran, R. (2010). Eur. J. Chem. 7, 234-238.]). As a continuation of our research works on the synthesis, spectroscopic and biological properties of quinoxaline derivatives (Ramli et al., 2013[Ramli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320-o1321.], 2017[Ramli, Y., Missioui, M., El Fal, M., Ouhcine, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171424.]; Ramli & Essassi, 2015[Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109-160.]; Abad et al., 2018a[Abad, N., Ramli, Y., Sebbar, N. K., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2018a). IUCrData, 3, x180482.],b[Abad, N., El Bakri, Y., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018b). IUCrData, 3, x180680.],c[Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018c). IUCrData, 3, x180519.]; Ellouz et al., 2015[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022-o1023.]; Sebbar et al., 2014[Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o116.]), we report herein the mol­ecular and crystal structures along with the Hirshfeld surface analysis of the title compound, 1-[(1-butyl-1H-1,2,3-triazol-5-yl)meth­yl]-3-methyl-1,2-di­hydro­quinoxalin-2-one.

2. Structural commentary

The title compound, (I)[link], is built up from the two fused six-membered rings of a quinoxalinone moiety linked through a methyl­ene bridge to a 1,2,3-triazole ring, which in turn carries an n-butyl substituent on N3 (Fig. 1[link]). The di­hydro­quinoxaline unit is planar within 0.029 (1) Å (r.m.s. deviation of the fitted atoms = 0.0123 Å) and the triazole ring is inclined by 67.09 (4)° to the above-mentioned plane. The mol­ecule adopts a Z-shaped conformation with the (1H-1,2,3-triazol-5-yl)methyl substituent projecting well out of the mean plane of the di­hydro­quinxalone unit, as indicated by the C1—N2—C10—C11 torsion angle of 90.85 (16)°. The n-butyl group is oriented in the opposite direction as seen from the N4—N3—C13—C14 torsion angle of −95.26 (16)° (Fig. 2[link]).

[Scheme 1]
[Figure 1]
Figure 1
The title mol­ecule with labelling scheme and 50% probability ellipsoids.
[Figure 2]
Figure 2
Packing viewed along the a-axis direction. C—H⋯N hydrogen bonds are shown by black dashed lines while π-stacking and C—H⋯π(ring) inter­actions are shown, respectively, by orange and green dashed lines.

3. Supra­molecular features

Hydrogen bonding and van der Waals contacts are the dominant inter­actions in the crystal packing. In the crystal, the mol­ecules form oblique stacks along the a-axis direction through inter­molecular C—HTrz⋯NTrz (Trz = triazole) hydrogen bonds (Table 1[link]), and offset, very weak π-stacking inter­actions between the A (C1–C6) and B (N1/N2/C1/C6–C8) rings [centroid–centroid distance = 3.9107 (9) Å, dihedral angle = 0.94 (7)°] and π-inter­actions between the C8=O1 carbonyl group and the B rings [O1—centroid = 3.5505 (14) Å, C8–centroid = 3.4546 (17) Å, C8=O1⋯centroid = 75.51 (9)°]. Pairs of stacks are associated through C—HDhydqnπ (Dhydqn = di­hydro­quinoxaline) inter­actions, generating small, diamond-shaped channels along the a-axis direction (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N3–N5/C11/C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N4iii 0.954 (19) 2.419 (19) 3.2282 (19) 142.4 (15)
C2—H2⋯Cg1vii 0.966 (18) 2.986 (19) 3.642 (1) 126.3 (14)
Symmetry codes: (iii) x-1, y, z; (vii) -x+1, -y+1, -z+1.

4. Database Survey

A search of the CSD (Version 5.39, updated May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using the fragment shown in Scheme 2 (R = C, R1 = nothing) generated 37 hits. Of these, the ones most comparable to the title mol­ecule have R1 = CH3 and R = CH2C≡CH (Benzeid et al., 2009[Benzeid, H., Ramli, Y., Vendier, L., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2196.]), CH2Ph (Ramli et al., 2010a[Ramli, Y., Moussaif, A., Zouihri, H., Lazar, S. & Essassi, E. M. (2010a). Acta Cryst. E66, o1922.], 2018[Ramli, Y., El Bakri, Y., 'El Ghayati, L., Essassi, E. M. & Mague, J. T. (2018). IUCRData 3, x180390.]), C2H5 (Benzeid et al., 2008[Benzeid, H., Vendier, L., Ramli, Y., Garrigues, B. & Essassi, E. M. (2008). Acta Cryst. E64, o2234.]), (1,3-oxazolidin-3-yl)ethyl (Caleb et al., 2009[Caleb, A. A., Bouhfid, R., Essassi, E. M. & El Ammari, L. (2009). Acta Cryst. E65, o2024-o2025.]), CH2CH=CH2 (Ramli et al., 2010b[Ramli, Y., Slimani, R., Zouihri, H., Lazar, S. & Essassi, E. M. (2010b). Acta Cryst. E66, o1767.]) and the isomer with R = (1-butyl-1H-1,2,3- triazol-5-yl)methyl (Abad et al., 2018a[Abad, N., Ramli, Y., Sebbar, N. K., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2018a). IUCrData, 3, x180482.]). Those with R = CH2C≡CH and C2H5 have Z′ = 1. A common feature of the above subset as well as the majority of the other compounds with different R1 substituents is the geometry of the bicyclic unit, which is either planar or has a slight end-to-end twist. Another feature is the orientation of the R group, which generally has a C—N—C—C torsion angle >65° and in quite a few cases, this is close to 90°. A comparison of the conformation of the title mol­ecule with that of its (1-butyl-1H-1,2,3-triazol-5-yl)methyl isomer shows that the latter has a U shape with the R group extending back over the bicyclic unit as the result of an intra­molecular C—H⋯O hydrogen bond from the α hydrogen of the butyl group while in the former, the more remote position of the butyl group on the triazole ring disfavours such an inter­action and the mol­ecule adopts a Z shape. This conformation is favoured by the opportunity for π-stacking and C—H⋯π(ring) inter­actions in the crystal.

[Scheme 2]

5. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 3[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the sum of the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near the hydrogen atom H12 indicates their role as the respective donors and/or acceptors in the dominant C—H⋯N hydrogen bonds; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]) as shown in Fig. 4[link]. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 5[link] clearly suggest that there are ππ inter­actions in (I)[link]. The overall two-dimensional fingerprint plot, Fig. 6[link](a), and those delineated into H⋯H, H⋯N/N⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯C, O⋯C/C⋯O, N⋯C/C⋯N and N⋯N contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illus­trated in Fig. 6[link](b)–(i), respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H contributing 52.7% to the overall crystal packing, which is reflected in Fig. 6[link](b) as widely scattered points of high density due to the large hydrogen content of the mol­ecule. The split spike with the tip at de = di = 1.13 Å in Fig. 6[link](b) is due to the short inter­atomic H⋯H contacts (Table 2[link]). The pair of characteristic wings resulting in the fingerprint plot delineated into H⋯N/N⋯H contacts Fig. 6[link](c), contribute 18.9% to the HS (Table 2[link]) and are viewed as pair of spikes with the tips at de + di = 2.23 Å. In the presence of weak C—H⋯π inter­actions (Table 1[link]) in the crystal, the pair of characteristic wings resulting in the fingerprint plot delineated into H⋯C/C⋯H contacts with a 17.0% contribution to the HS have a symmetrical distribution of points, Fig. 7[link](d), with the tips at de + di = 2.65 Å (Table 2[link]). Finally, the H⋯O/O⋯H [Fig. 6[link](e)] contacts (Table 2[link]) in the structure with 6.8% contribution to the HS also have symmetrical distribution of points, namely two pairs of thin and thick edges at de + di ∼2.53 and 2.58 Å, respectively.

Table 2
Selected interatomic distances (Å)

O1⋯C11 3.3134 (19) C2⋯C10iv 3.586 (2)
O1⋯C13i 3.306 (2) C2⋯C11 3.559 (2)
O1⋯C14i 3.193 (2) C2⋯C11vii 3.589 (2)
O1⋯H10B 2.341 (17) C3⋯C10iv 3.431 (2)
O1⋯H9B 2.75 (2) C4⋯C8iv 3.502 (2)
O1⋯H9C 2.79 (2) C5⋯C8iv 3.491 (2)
O1⋯H13Aii 2.696 (17) C5⋯C7iv 3.429 (2)
O1⋯H13Bi 2.62 (2) C11⋯C13ii 3.589 (2)
O1⋯H14Ai 2.752 (18) C12⋯C13ii 3.470 (2)
N1⋯N2 2.8013 (17) C16⋯C16viii 3.577 (3)
N2⋯C3iii 3.421 (2) C2⋯H15Bvii 2.991 (19)
N2⋯N5 3.1514 (17) C2⋯H10A 2.600 (17)
N4⋯C15 3.364 (2) C2⋯H10Biv 2.928 (17)
N4⋯C12iv 3.228 (2) C8⋯H13Aii 2.918 (18)
N5⋯C2 3.343 (2) C10⋯H2 2.608 (18)
N1⋯H5v 2.680 (18) C11⋯H2vii 2.755 (19)
N3⋯H15B 2.860 (19) C12⋯H13Aii 2.973 (17)
N4⋯H12iv 2.42 (2) H2⋯H10A 2.07 (2)
N4⋯H13Bii 2.944 (19) H4⋯H16Bvi 2.52 (3)
N4⋯H15B 2.936 (18) H9B⋯H15Aii 2.40 (3)
N4⋯H3vi 2.821 (18) H13A⋯H15A 2.54 (3)
N5⋯H2 2.819 (19) H14A⋯H16A 2.46 (3)
N5⋯H10Biv 2.733 (17) H14B⋯H16C 2.57 (3)
N5⋯H2vii 2.932 (18) H15A⋯H13A 2.54 (3)
N5⋯H10Avii 2.676 (18) H15A⋯H9Bii 2.40 (3)
N5⋯H13Bii 2.93 (2)    
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z+1; (iii) x-1, y, z; (iv) x+1, y, z; (v) -x+2, -y+1, -z+2; (vi) -x+2, -y+1, -z+1; (vii) -x+1, -y+1, -z+1; (viii) -x, -y, -z.
[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.2380 to 1.1723 a.u.
[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 5]
Figure 5
Hirshfeld surface of the title compound plotted over shape-index.
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯N/N⋯H, (d) H⋯C/C⋯H, (e) H⋯O/O⋯H, (f) C⋯C, (g) O⋯C/C⋯O, (h) N⋯C/C⋯N and (i) N⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.
[Figure 7]
Figure 7
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯N/N⋯H, (c) H⋯C/C⋯H and (d) H⋯O/O⋯H inter­actions.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯N/N⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions in Fig. 7[link](a)–(d), respectively.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯N/N⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions suggests that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

6. Synthesis and crystallization

To a solution of 3-methyl-1-(prop-2-yn­yl)-3,4-di­hydro­quinoxalin-2(1H)-one (0.68 mmol) in ethanol (15 mL) was added 1-azido­butane (1.03 mmol). The reaction mixture was stirred under reflux for 72 h. After completion of the reaction (monitored by TLC), the solution was concentrated and the residue was purified by column chromatography on silica gel by using as eluent the mixture (hexa­ne/ethyl acetate 8:2). The solid product obtained was crystallized from ethanol to afford colourless crystals in 78% yield.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were located in a difference Fourier map and were freely refined.

Table 3
Experimental details

Crystal data
Chemical formula C16H19N5O
Mr 297.36
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 5.3265 (2), 9.9946 (4), 14.5414 (5)
α, β, γ (°) 103.054 (2), 100.039 (2), 93.108 (2)
V3) 739.03 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.71
Crystal size (mm) 0.25 × 0.21 × 0.02
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.84, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 5735, 2764, 2281
Rint 0.030
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.100, 1.07
No. of reflections 2764
No. of parameters 276
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.25, −0.21
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

\ 1-[(1-Butyl-1H-1,2,3-triazol-4-yl)methyl]-\ 3-methylquinoxalin-2(1H)-one top
Crystal data top
C16H19N5OZ = 2
Mr = 297.36F(000) = 316
Triclinic, P1Dx = 1.336 Mg m3
a = 5.3265 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 9.9946 (4) ÅCell parameters from 3995 reflections
c = 14.5414 (5) Åθ = 3.2–72.1°
α = 103.054 (2)°µ = 0.71 mm1
β = 100.039 (2)°T = 150 K
γ = 93.108 (2)°Plate, colourless
V = 739.03 (5) Å30.25 × 0.21 × 0.02 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2764 independent reflections
Radiation source: INCOATEC IµS micro-focus source2281 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.4167 pixels mm-1θmax = 72.1°, θmin = 3.2°
ω scansh = 66
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1211
Tmin = 0.84, Tmax = 0.97l = 1617
5735 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.2108P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2764 reflectionsΔρmax = 0.25 e Å3
276 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0091 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1373 (2)0.25655 (12)0.71106 (8)0.0317 (3)
N10.6669 (2)0.43499 (13)0.88772 (9)0.0246 (3)
N20.4435 (2)0.41368 (12)0.69511 (8)0.0214 (3)
N30.4218 (2)0.10144 (13)0.42094 (8)0.0214 (3)
N40.6468 (2)0.17916 (13)0.43816 (9)0.0257 (3)
N50.6307 (2)0.29436 (13)0.50153 (9)0.0253 (3)
C10.6701 (3)0.49930 (15)0.73511 (10)0.0214 (3)
C20.7938 (3)0.57499 (16)0.68289 (11)0.0245 (3)
H20.722 (3)0.5669 (19)0.6158 (13)0.034 (5)*
C31.0190 (3)0.65725 (16)0.72646 (12)0.0282 (4)
H31.102 (3)0.7133 (19)0.6888 (13)0.032 (5)*
C41.1277 (3)0.66500 (17)0.82210 (12)0.0291 (4)
H41.280 (4)0.720 (2)0.8511 (14)0.039 (5)*
C51.0094 (3)0.59047 (16)0.87417 (11)0.0267 (3)
H51.084 (3)0.5905 (18)0.9413 (13)0.031 (5)*
C60.7797 (3)0.50745 (15)0.83176 (10)0.0227 (3)
C70.4566 (3)0.35724 (15)0.84935 (10)0.0234 (3)
C80.3301 (3)0.33717 (15)0.74734 (10)0.0231 (3)
C90.3266 (3)0.28202 (18)0.90846 (12)0.0302 (4)
H9A0.422 (4)0.301 (2)0.9742 (15)0.046 (6)*
H9B0.310 (4)0.182 (2)0.8803 (15)0.051 (6)*
H9C0.153 (4)0.304 (2)0.9088 (14)0.048 (6)*
C100.3087 (3)0.40222 (16)0.59533 (10)0.0232 (3)
H10A0.338 (3)0.4926 (18)0.5805 (12)0.025 (4)*
H10B0.125 (3)0.3822 (17)0.5929 (12)0.028 (4)*
C110.3937 (3)0.28917 (15)0.52445 (10)0.0207 (3)
C120.2596 (3)0.16668 (16)0.47318 (10)0.0222 (3)
H120.088 (4)0.1281 (19)0.4678 (13)0.033 (5)*
C130.3800 (3)0.03351 (16)0.35173 (11)0.0265 (3)
H13A0.551 (3)0.0671 (18)0.3519 (12)0.030 (4)*
H13B0.280 (4)0.096 (2)0.3780 (13)0.036 (5)*
C140.2469 (3)0.02638 (17)0.25207 (11)0.0262 (3)
H14A0.210 (3)0.123 (2)0.2122 (13)0.034 (5)*
H14B0.078 (3)0.0099 (18)0.2559 (12)0.031 (5)*
C150.3969 (3)0.05954 (18)0.20269 (11)0.0293 (4)
H15A0.570 (4)0.0313 (19)0.2062 (13)0.037 (5)*
H15B0.412 (3)0.160 (2)0.2368 (13)0.035 (5)*
C160.2667 (4)0.0438 (2)0.09843 (13)0.0420 (5)
H16A0.248 (4)0.057 (2)0.0616 (15)0.047 (6)*
H16B0.360 (5)0.095 (3)0.0645 (17)0.067 (7)*
H16C0.092 (5)0.071 (3)0.0943 (17)0.068 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0292 (6)0.0338 (7)0.0292 (6)0.0076 (5)0.0029 (5)0.0062 (5)
N10.0267 (7)0.0249 (7)0.0226 (6)0.0033 (5)0.0053 (5)0.0059 (5)
N20.0216 (6)0.0233 (7)0.0191 (6)0.0024 (5)0.0035 (5)0.0048 (5)
N30.0177 (6)0.0237 (7)0.0215 (6)0.0004 (5)0.0013 (4)0.0051 (5)
N40.0193 (6)0.0290 (7)0.0255 (6)0.0012 (5)0.0031 (5)0.0017 (5)
N50.0212 (6)0.0286 (7)0.0246 (6)0.0006 (5)0.0054 (5)0.0030 (5)
C10.0205 (7)0.0208 (7)0.0227 (7)0.0034 (5)0.0055 (5)0.0032 (6)
C20.0273 (8)0.0238 (8)0.0240 (8)0.0050 (6)0.0063 (6)0.0071 (6)
C30.0287 (8)0.0261 (8)0.0326 (8)0.0015 (6)0.0113 (6)0.0090 (7)
C40.0234 (8)0.0284 (8)0.0330 (8)0.0026 (6)0.0049 (6)0.0038 (7)
C50.0252 (8)0.0291 (8)0.0234 (8)0.0019 (6)0.0026 (6)0.0029 (6)
C60.0232 (7)0.0224 (8)0.0229 (7)0.0030 (6)0.0062 (6)0.0046 (6)
C70.0265 (8)0.0209 (8)0.0236 (7)0.0042 (6)0.0067 (6)0.0054 (6)
C80.0235 (7)0.0227 (8)0.0239 (7)0.0033 (6)0.0068 (6)0.0052 (6)
C90.0348 (9)0.0297 (9)0.0268 (8)0.0017 (7)0.0071 (7)0.0084 (7)
C100.0219 (7)0.0264 (8)0.0208 (7)0.0037 (6)0.0021 (6)0.0057 (6)
C110.0182 (7)0.0260 (8)0.0194 (7)0.0025 (5)0.0027 (5)0.0091 (6)
C120.0164 (7)0.0282 (8)0.0226 (7)0.0004 (6)0.0037 (5)0.0077 (6)
C130.0294 (8)0.0205 (8)0.0269 (8)0.0011 (6)0.0024 (6)0.0029 (6)
C140.0235 (8)0.0261 (8)0.0251 (8)0.0013 (6)0.0007 (6)0.0021 (6)
C150.0307 (9)0.0296 (9)0.0263 (8)0.0005 (7)0.0050 (6)0.0049 (7)
C160.0528 (12)0.0436 (12)0.0286 (9)0.0001 (9)0.0044 (8)0.0101 (8)
Geometric parameters (Å, º) top
O1—C81.2292 (18)C7—C91.492 (2)
N1—C71.2891 (19)C9—H9A0.97 (2)
N1—C61.3917 (19)C9—H9B0.98 (2)
N2—C81.3780 (19)C9—H9C0.96 (2)
N2—C11.3951 (18)C10—C111.495 (2)
N2—C101.4787 (17)C10—H10A0.986 (18)
N3—N41.3451 (17)C10—H10B0.982 (18)
N3—C121.3471 (18)C11—C121.368 (2)
N3—C131.4690 (19)C12—H120.954 (19)
N4—N51.3196 (18)C13—C141.517 (2)
N5—C111.3617 (18)C13—H13A0.986 (18)
C1—C21.401 (2)C13—H13B0.98 (2)
C1—C61.407 (2)C14—C151.515 (2)
C2—C31.382 (2)C14—H14A0.996 (19)
C2—H20.966 (18)C14—H14B0.992 (18)
C3—C41.393 (2)C15—C161.522 (2)
C3—H31.003 (19)C15—H15A0.977 (19)
C4—C51.377 (2)C15—H15B1.005 (19)
C4—H40.93 (2)C16—H16A1.02 (2)
C5—C61.401 (2)C16—H16B0.96 (3)
C5—H50.988 (18)C16—H16C0.98 (3)
C7—C81.482 (2)
O1···C113.3134 (19)C4···C8iv3.502 (2)
O1···C13i3.306 (2)C5···C8iv3.491 (2)
O1···C14i3.193 (2)C5···C7iv3.429 (2)
O1···H10B2.341 (17)C11···C13ii3.589 (2)
O1···H9B2.75 (2)C12···C13ii3.470 (2)
O1···H9C2.79 (2)C16···C16viii3.577 (3)
O1···H13Aii2.696 (17)C2···H15Bvii2.991 (19)
O1···H13Bi2.62 (2)C2···H10A2.600 (17)
O1···H14Ai2.752 (18)C2···H10Biv2.928 (17)
N1···N22.8013 (17)C3···H15Bvii3.055 (18)
N2···C3iii3.421 (2)C4···H16Cvii3.03 (3)
N2···N53.1514 (17)C7···H14Aii3.081 (19)
N4···C153.364 (2)C8···H13Aii2.918 (18)
N4···C12iv3.228 (2)C10···H22.608 (18)
N5···C23.343 (2)C11···H2vii2.755 (19)
N1···H5v2.680 (18)C11···H13Bii3.08 (2)
N3···H15B2.860 (19)C11···H23.086 (19)
N4···H12iv2.42 (2)C12···H13Aii2.973 (17)
N4···H13Bii2.944 (19)C15···H4vi3.04 (2)
N4···H15B2.936 (18)C15···H9Bii3.08 (2)
N4···H3vi2.821 (18)C16···H16Cviii3.04 (2)
N5···H22.819 (19)H2···H10A2.07 (2)
N5···H10Biv2.733 (17)H4···H16Bvi2.52 (3)
N5···H2vii2.932 (18)H9B···H15Aii2.40 (3)
N5···H10Avii2.676 (18)H13A···H15A2.54 (3)
N5···H13Bii2.93 (2)H14A···H16A2.46 (3)
C2···C10iv3.586 (2)H14B···H16C2.57 (3)
C2···C113.559 (2)H15A···H13A2.54 (3)
C2···C11vii3.589 (2)H15A···H9Bii2.40 (3)
C3···C10iv3.431 (2)
C7—N1—C6118.81 (13)H9B—C9—H9C104.4 (17)
C8—N2—C1121.65 (12)N2—C10—C11112.53 (12)
C8—N2—C10116.29 (12)N2—C10—H10A107.5 (10)
C1—N2—C10122.04 (12)C11—C10—H10A111.5 (10)
N4—N3—C12110.55 (12)N2—C10—H10B107.9 (10)
N4—N3—C13120.31 (12)C11—C10—H10B108.4 (10)
C12—N3—C13129.14 (13)H10A—C10—H10B108.9 (14)
N5—N4—N3107.55 (11)N5—C11—C12108.52 (13)
N4—N5—C11108.38 (12)N5—C11—C10123.12 (13)
N2—C1—C2122.89 (13)C12—C11—C10128.37 (13)
N2—C1—C6118.01 (13)N3—C12—C11105.01 (13)
C2—C1—C6119.10 (14)N3—C12—H12121.9 (11)
C3—C2—C1120.11 (14)C11—C12—H12133.1 (11)
C3—C2—H2120.6 (11)N3—C13—C14112.79 (13)
C1—C2—H2119.3 (11)N3—C13—H13A105.8 (10)
C2—C3—C4120.75 (15)C14—C13—H13A112.3 (10)
C2—C3—H3119.2 (10)N3—C13—H13B107.0 (11)
C4—C3—H3120.0 (10)C14—C13—H13B111.2 (11)
C5—C4—C3119.81 (15)H13A—C13—H13B107.3 (15)
C5—C4—H4119.6 (12)C15—C14—C13114.99 (13)
C3—C4—H4120.6 (12)C15—C14—H14A109.5 (10)
C4—C5—C6120.42 (14)C13—C14—H14A107.1 (10)
C4—C5—H5122.2 (11)C15—C14—H14B109.1 (10)
C6—C5—H5117.3 (11)C13—C14—H14B109.3 (10)
N1—C6—C5118.15 (13)H14A—C14—H14B106.5 (14)
N1—C6—C1122.05 (13)C14—C15—C16111.11 (14)
C5—C6—C1119.80 (14)C14—C15—H15A109.0 (11)
N1—C7—C8123.58 (14)C16—C15—H15A110.5 (11)
N1—C7—C9120.01 (13)C14—C15—H15B110.4 (10)
C8—C7—C9116.41 (13)C16—C15—H15B108.5 (10)
O1—C8—N2121.86 (13)H15A—C15—H15B107.3 (15)
O1—C8—C7122.32 (14)C15—C16—H16A110.7 (12)
N2—C8—C7115.82 (13)C15—C16—H16B113.1 (14)
C7—C9—H9A111.1 (12)H16A—C16—H16B106.6 (17)
C7—C9—H9B110.3 (12)C15—C16—H16C111.0 (14)
H9A—C9—H9B109.1 (17)H16A—C16—H16C105.7 (18)
C7—C9—H9C112.1 (12)H16B—C16—H16C109 (2)
H9A—C9—H9C109.6 (16)
C12—N3—N4—N50.11 (16)C1—N2—C8—O1176.40 (13)
C13—N3—N4—N5179.17 (12)C10—N2—C8—O14.9 (2)
N3—N4—N5—C110.03 (15)C1—N2—C8—C72.99 (19)
C8—N2—C1—C2178.01 (13)C10—N2—C8—C7175.71 (12)
C10—N2—C1—C23.4 (2)N1—C7—C8—O1175.85 (14)
C8—N2—C1—C61.0 (2)C9—C7—C8—O14.4 (2)
C10—N2—C1—C6177.67 (13)N1—C7—C8—N23.5 (2)
N2—C1—C2—C3179.52 (13)C9—C7—C8—N2176.18 (13)
C6—C1—C2—C30.6 (2)C8—N2—C10—C1190.45 (15)
C1—C2—C3—C40.7 (2)C1—N2—C10—C1190.85 (16)
C2—C3—C4—C50.3 (2)N4—N5—C11—C120.15 (16)
C3—C4—C5—C60.3 (2)N4—N5—C11—C10179.35 (13)
C7—N1—C6—C5179.41 (14)N2—C10—C11—N569.14 (18)
C7—N1—C6—C10.5 (2)N2—C10—C11—C12110.25 (16)
C4—C5—C6—N1179.55 (14)N4—N3—C12—C110.20 (15)
C4—C5—C6—C10.5 (2)C13—N3—C12—C11179.15 (13)
N2—C1—C6—N11.0 (2)N5—C11—C12—N30.22 (16)
C2—C1—C6—N1180.00 (13)C10—C11—C12—N3179.25 (13)
N2—C1—C6—C5178.96 (13)N4—N3—C13—C1495.26 (16)
C2—C1—C6—C50.0 (2)C12—N3—C13—C1483.59 (19)
C6—N1—C7—C81.8 (2)N3—C13—C14—C1563.83 (18)
C6—N1—C7—C9177.94 (14)C13—C14—C15—C16171.75 (15)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x+1, y, z; (v) x+2, y+1, z+2; (vi) x+2, y+1, z+1; (vii) x+1, y+1, z+1; (viii) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N3–N5/C11/C12 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···N4iii0.954 (19)2.419 (19)3.2282 (19)142.4 (15)
C2—H2···Cg1vii0.966 (18)2.986 (19)3.642 (1)126.3 (14)
Symmetry codes: (iii) x1, y, z; (vii) x+1, y+1, z+1.
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAbad, N., El Bakri, Y., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018b). IUCrData, 3, x180680.  Google Scholar
First citationAbad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018c). IUCrData, 3, x180519.  Google Scholar
First citationAbad, N., Ramli, Y., Sebbar, N. K., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2018a). IUCrData, 3, x180482.  Google Scholar
First citationAbbas, H. S., Al-Marhabi, A. R., Eissa, S. I. & Ammar, Y. A. (2015). Bioorg. Med. Chem. 23, 6560–6572.  CrossRef Google Scholar
First citationAttia, A. S., Abdel Aziz, A. A., Alfallous, K. A. & El-Shahat, M. F. (2013). Polyhedron, 51, 243–254.  Web of Science CrossRef CAS Google Scholar
First citationBenzeid, H., Ramli, Y., Vendier, L., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2196.  CrossRef IUCr Journals Google Scholar
First citationBenzeid, H., Vendier, L., Ramli, Y., Garrigues, B. & Essassi, E. M. (2008). Acta Cryst. E64, o2234.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaleb, A. A., Bouhfid, R., Essassi, E. M. & El Ammari, L. (2009). Acta Cryst. E65, o2024–o2025.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuirado, A., López Sánchez, J. I., Ruiz-Alcaraz, A. J., Bautista, D. & Gálvez, J. (2012). Eur. J. Med. Chem. 54, 87–94.  Web of Science CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKulkarni, N. V., Revankar, V. K., Kirasur, B. N. & Hugar, M. H. (2012). Med. Chem. Res. 21, 663–671.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRamli, Y., El Bakri, Y., 'El Ghayati, L., Essassi, E. M. & Mague, J. T. (2018). IUCRData 3, x180390.  Google Scholar
First citationRamli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109–160.  Google Scholar
First citationRamli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320–o1321.  CrossRef IUCr Journals Google Scholar
First citationRamli, Y., Missioui, M., El Fal, M., Ouhcine, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171424.  Google Scholar
First citationRamli, Y., Moussaif, A., Zouihri, H., Lazar, S. & Essassi, E. M. (2010a). Acta Cryst. E66, o1922.  CrossRef IUCr Journals Google Scholar
First citationRamli, Y., Slimani, R., Zouihri, H., Lazar, S. & Essassi, E. M. (2010b). Acta Cryst. E66, o1767.  CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o116.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSridevi, K. B. C. H., Naidu, A. & Sudhakaran, R. (2010). Eur. J. Chem. 7, 234–238.  Google Scholar
First citationTeja, R., Kapu, S., Kadiyala, S., Dhanapal, V. & Raman, A. N. (2016). J. Saudi Chem. Soc. 20, S387–S392.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CrossRef CAS Google Scholar
First citationVieira, M., Pinheiro, C., Fernandes, R., Noronha, J. P. & Prudêncio, C. (2014). Microbiol. Res. 169, 287–293.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds