research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-hy­dr­oxy­quinoline-2-carboxamide monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, National Taras Shevchenko University of Kyiv, Volodymyrska Street 64, 01601 Kiev, Ukraine, bSSI `Institute for Single Crystals', National Academy of Sciences of Ukraine, 60 Nauki Ave., Kharkiv 61001, Ukraine, and cV.N. Karazin Kharkiv National University, Department of Inorganic Chemistry, 4, Svobody Sq., Kharkiv 61001, Ukraine
*Correspondence e-mail: sssafyanova@ukr.net

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 9 April 2017; accepted 13 April 2017; online 28 April 2017)

The title compound, C10H8N2O2·H2O, consists of an N-hy­droxy­quinoline-2-carboxamide mol­ecule in the keto tautomeric form and a water mol­ecule connected through an O—H⋯O hydrogen bond. The N-hy­droxy­quinoline-2-carboxamide mol­ecule has a nearly planar structure [maximum deviation = 0.062 (1) Å] and only the hy­droxy H atom deviates significantly from the mol­ecule plane. In the crystal, ππ stacking between the aromatic rings [inter­centroid distance = 3.887 (1) Å] and inter­molecular O—H⋯O hydrogen bonds organize the crystal components into columns extending along the b-axis direction.

1. Chemical context

Hydroxamic acids are important bioligands that exhibit enzyme-inhibitory properties (Marmion et al., 2013[Marmion, C. J., Parker, J. P. & Nolan, K. B. (2013). Comprehensive Inorganic Chemistry II, in Elements to Applications, Vol. 3, edited by J. Reedijk, & K. Poeppelmeier, pp. 684-708. Amsterdam: Elsevier.]) and they have been studied extensively in coordination and bioinorganic chemistry (Ostrowska et al., 2016[Ostrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327-328, 304-332.]; Golenya et al., 2012b[Golenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012b). Dalton Trans. 41, 9427-9430.]; Świątek-Kozłowska et al., 2000[Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064-4068.]; Dobosz et al., 1999[Dobosz, A., Dudarenko, N. M., Fritsky, I. O., Głowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743-750.]). They are widely used in the preparation of metallacrowns (Golenya et al., 2012a[Golenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012a). Inorg. Chem. 51, 6221-6227.]; Gumienna-Kontecka et al., 2013[Gumienna-Kontecka, E., Golenya, I. A., Szebesczyk, A., Haukka, M., Krämer, R. & Fritsky, I. O. (2013). Inorg. Chem. 52, 7633-7644.]; Safyanova et al., 2015[Safyanova, I. S., Golenya, I. A., Pavlenko, V. A., Gumienna-Kontecka, E., Pekhnyo, V. I., Bon, V. V. & Fritsky, I. O. (2015). Z. Anorg. Allg. Chem. 641, 2326-2332.]) and as building blocks for synthesis of metal–organic frameworks and coordination polymers (Gumienna-Kontecka et al., 2007[Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798-1805.]; Golenya et al., 2014[Golenya, I. A., Gumienna-Kontecka, E., Haukka, M., Korsun, O. M., Kalugin, O. N. & Fritsky, I. O. (2014). CrystEngComm, 16, 1904-1918.]; Pavlishchuk et al., 2010[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851-4858.], 2011[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826-4836.]).

N-Hy­droxy­quinoline-2-carboxamide, also known as quinoline-2-hydroxamic acid (QuinHA), has been used for the preparation of various metallacrown complexes (Stemmler et al., 1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.]; Trivedi et al., 2014[Trivedi, E. R., Eliseeva, S. V., Jankolovits, J., Olmstead, M. M., Petoud, S. & Pecoraro, V. L. (2014). J. Am. Chem. Soc. 136, 1526-1534.]; Jankolovits et al., 2013[Jankolovits, J., Kampf, J. W. & Pecoraro, V. L. (2013). Inorg. Chem. 52, 5063-5076.]). Presently, the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains ten entries on coordination compounds based on N-hy­droxy­quinoline-2-carboxamide, nine of which have been reported within the past four years.

[Scheme 1]

Structural information about the title compound is absent in the literature, however, and this will be useful in controlling the purity of the synthesized ligand and metal complexes by powder diffraction. It is well known that the products of such syntheses can be contaminated with impurities that result from hydrolysis or oxidation of the hydroxamic groups to the carb­oxy­lic group. In addition, syntheses of polynuclear complexes are often carried out with various metal-to-ligand ratios, so that in some cases an excessive qu­antity of the hydroxamic ligand can be present in the isolated samples.

2. Structural commentary

The mol­ecular structure of the title compound is presented in Fig. 1[link]. It consists of an N-hy­droxy­quinoline-2-carboxamide mol­ecule in the keto tautomeric form {which is supported by the C=O [1.227 (2) Å] and C—N [1.317 (2) Å] bond lengths} and a water mol­ecule. The carbonyl group possesses a Z conformation against the N1 atom of the quinoline moiety and E conformation against the hy­droxy oxygen atom [torsion angles O2—N2—C10—O1 = 0.8 (2)° and N1—C9—C10—O1 −177.33 (14)°]. The N-hy­droxy­quinoline-2-carboxamide mol­ecule has an almost planar structure (non-hydrogen atoms are planar to within 0.03 Å). Only the H atom of the OH group deviates significantly from the mol­ecular plane: the C—N—O—H torsion angle of −75.1 (13)° is defined by the O—H⋯O hydrogen bond between hy­droxy group and the water mol­ecule. The C—N and C—C bond lengths in the quinoline moiety are typical for 2-substituted pyridine derivatives (Moroz et al., 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]; Strotmeyer et al., 2003[Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529-547.]; Krämer & Fritsky, 2000[Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505-3510.]).

[Figure 1]
Figure 1
The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. The dashed line indicates a hydrogen bond.

3. Supra­molecular features

In the crystal, mol­ecules form columns along the b axis as a result of the ππ stacking inter­action between parallel quinoline moieties [symmetry operation x, y + 1, z; inter­planar separation 3.420 (1) Å, inter­centroid distance 3.887 (1) Å, displacement 1.846 (1) Å]. These columns are linked pairwise by the O—H⋯O hydrogen bonds (Table 1[link]) via the bridging water mol­ecules (see Fig. 2[link]). Each water mol­ecule forms two donor hydrogen bonds [H⋯O1 = 1.85 (2) and 2.15 (2) Å] with the carbonyl oxygen atom O1 and one acceptor hydrogen bond with the O—H group of the hydroxamic function that is the strongest hydrogen bond in the crystal [H⋯O2 = 1.67 (2) Å]. This latter hydrogen bond results in a shortened H⋯H contact between the water and hy­droxy hydrogen atoms [2.05 (3) Å]. The doubled columns are linked by weak N—H⋯π (2.71 Å, 159°) as well as van der Waals inter­actions. Weak inter­molecular C—H⋯O contacts (Table 1[link]) are also observed in the crystal.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1SA⋯O1i 0.85 (2) 2.15 (3) 2.9404 (19) 155 (2)
O1S—H1SA⋯O2i 0.85 (2) 2.54 (2) 3.0850 (18) 124 (2)
O1S—H1SB⋯O1ii 0.93 (2) 1.85 (2) 2.7783 (18) 176 (2)
O2—H2⋯O1S 0.97 (2) 1.67 (2) 2.6407 (18) 175 (2)
C3—H3⋯O2iii 0.999 (16) 2.518 (16) 3.493 (2) 165.0 (15)
C4—H4⋯O2iv 0.975 (19) 2.589 (18) 3.273 (2) 127.3 (12)
C5—H5⋯O1Sv 0.967 (17) 2.593 (17) 3.547 (2) 169.0 (13)
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+1, -z+{\script{3\over 2}}]; (iv) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 2]
Figure 2
A packing diagram of the title compound. Hydrogen bonds (see Table 1[link]) are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals no crystal structures of isomeric N-hy­droxy­quinoline-carboxamides or their homologues. Two independent studies on the crystal structure of N-hy­droxy­picolinamide have been published recently (Chaiyaveij et al., 2015[Chaiyaveij, D., Batsanov, A. S., Fox, M. A., Marder, T. B. & Whiting, A. (2015). J. Org. Chem. 80, 9518-9534.]; Safyanova et al., 2016[Safyanova, I. S., Ohui, K. A. & Omelchenko, I. V. (2016). Acta Cryst. E72, 117-119.]).

5. Synthesis and crystallization

The title compound was obtained by the reaction of a methanol solution of hy­droxy­amine with a mixture of quinaldic acid and ethyl chloro­formate in dry methyl­ene chloride in the presence of N-methyl­morpholine according to the reported procedure (Trivedi et al., 2014[Trivedi, E. R., Eliseeva, S. V., Jankolovits, J., Olmstead, M. M., Petoud, S. & Pecoraro, V. L. (2014). J. Am. Chem. Soc. 136, 1526-1534.]). Light-yellow crystals suitable for X-ray diffraction were obtained from aqueous solution by slow evaporation at room temperature (yield 76%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were found from the difference-Fourier maps and refined isotropically.

Table 2
Experimental details

Crystal data
Chemical formula C10H8N2O2·H2O
Mr 206.20
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 21.613 (4), 3.8867 (4), 25.081 (5)
β (°) 115.37 (2)
V3) 1903.7 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.4 × 0.1 × 0.1
 
Data collection
Diffractometer Agilent Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.730, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7711, 2167, 1387
Rint 0.040
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.098, 0.97
No. of reflections 2167
No. of parameters 173
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.17
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N-hydroxyquinoline-2-carboxamide monohydrate top
Crystal data top
C10H8N2O2·H2OF(000) = 864
Mr = 206.20Dx = 1.439 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.613 (4) ÅCell parameters from 1341 reflections
b = 3.8867 (4) Åθ = 3.8–27.4°
c = 25.081 (5) ŵ = 0.11 mm1
β = 115.37 (2)°T = 298 K
V = 1903.7 (6) Å3Needle, clear light yellow
Z = 80.4 × 0.1 × 0.1 mm
Data collection top
Agilent Xcalibur, Sapphire3
diffractometer
2167 independent reflections
Radiation source: Enhance (Mo) X-ray Source1387 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 16.1827 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = 2828
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 54
Tmin = 0.730, Tmax = 1.000l = 3232
7711 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0454P)2]
where P = (Fo2 + 2Fc2)/3
2167 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32060 (5)0.1130 (3)0.55333 (5)0.0582 (3)
O20.27884 (5)0.3220 (3)0.63530 (5)0.0604 (4)
N10.46916 (5)0.5267 (3)0.65622 (5)0.0381 (3)
N20.34314 (6)0.3877 (4)0.63808 (6)0.0523 (4)
H2A0.3705 (8)0.508 (4)0.6691 (8)0.060 (5)*
H20.2492 (10)0.479 (5)0.6052 (10)0.090*
H1SA0.2274 (11)0.899 (6)0.5506 (10)0.090*
H1SB0.1922 (10)0.628 (5)0.5141 (10)0.090*
C10.53537 (6)0.6016 (3)0.66788 (6)0.0359 (3)
C20.57630 (7)0.7759 (4)0.72050 (7)0.0424 (4)
H2B0.5567 (7)0.834 (4)0.7473 (7)0.050 (4)*
C30.64285 (8)0.8497 (4)0.73422 (8)0.0469 (4)
H30.6734 (8)0.966 (4)0.7719 (7)0.060 (5)*
C40.67118 (8)0.7562 (4)0.69502 (8)0.0491 (4)
H40.7190 (8)0.810 (4)0.7053 (7)0.055 (4)*
C50.63321 (8)0.5923 (4)0.64395 (8)0.0476 (4)
H50.6504 (8)0.527 (4)0.6156 (7)0.059 (5)*
C60.56373 (7)0.5090 (3)0.62831 (7)0.0391 (3)
C70.52127 (8)0.3386 (4)0.57617 (7)0.0461 (4)
H70.5385 (8)0.275 (4)0.5474 (7)0.058 (5)*
C80.45526 (8)0.2675 (4)0.56466 (7)0.0453 (4)
H80.4245 (8)0.161 (4)0.5306 (7)0.054 (5)*
C90.43182 (7)0.3633 (3)0.60679 (6)0.0380 (3)
C100.35991 (7)0.2754 (4)0.59651 (7)0.0409 (4)
O1S0.20068 (6)0.7378 (3)0.54961 (6)0.0609 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0489 (6)0.0750 (8)0.0461 (7)0.0163 (5)0.0158 (6)0.0158 (6)
O20.0396 (6)0.0884 (9)0.0583 (8)0.0119 (5)0.0259 (6)0.0006 (6)
N10.0342 (6)0.0446 (7)0.0360 (7)0.0008 (5)0.0153 (5)0.0006 (6)
N20.0363 (7)0.0751 (10)0.0480 (9)0.0148 (7)0.0206 (7)0.0130 (8)
C10.0326 (7)0.0384 (7)0.0380 (8)0.0029 (6)0.0163 (6)0.0065 (6)
C20.0378 (8)0.0501 (9)0.0412 (9)0.0006 (7)0.0187 (7)0.0014 (7)
C30.0376 (8)0.0518 (9)0.0488 (11)0.0046 (7)0.0162 (8)0.0013 (8)
C40.0363 (8)0.0525 (10)0.0616 (12)0.0015 (7)0.0240 (8)0.0078 (8)
C50.0442 (9)0.0510 (9)0.0588 (11)0.0057 (7)0.0328 (9)0.0065 (8)
C60.0395 (7)0.0395 (8)0.0430 (9)0.0062 (6)0.0221 (7)0.0062 (7)
C70.0522 (9)0.0505 (9)0.0438 (10)0.0055 (7)0.0282 (8)0.0008 (7)
C80.0481 (9)0.0490 (9)0.0385 (9)0.0015 (7)0.0182 (8)0.0058 (7)
C90.0374 (7)0.0387 (7)0.0371 (9)0.0003 (6)0.0154 (7)0.0025 (6)
C100.0391 (8)0.0453 (8)0.0357 (9)0.0023 (6)0.0135 (7)0.0020 (7)
O1S0.0549 (7)0.0724 (8)0.0607 (8)0.0107 (6)0.0298 (7)0.0151 (7)
Geometric parameters (Å, º) top
O1—C101.2266 (17)C4—H40.974 (16)
O2—N21.3851 (15)C4—C51.349 (2)
O2—H20.97 (2)C5—H50.966 (16)
N1—C11.3635 (17)C5—C61.417 (2)
N1—C91.3169 (17)C6—C71.401 (2)
N2—H2A0.884 (18)C7—H70.976 (17)
N2—C101.316 (2)C7—C81.357 (2)
C1—C21.408 (2)C8—H80.927 (16)
C1—C61.4183 (19)C8—C91.404 (2)
C2—H2B0.962 (16)C9—C101.5017 (19)
C2—C31.358 (2)O1S—H1SA0.84 (2)
C3—H30.999 (17)O1S—H1SB0.93 (2)
C3—C41.410 (2)
N2—O2—H2103.8 (12)C4—C5—C6120.80 (15)
C9—N1—C1117.93 (12)C6—C5—H5115.6 (10)
O2—N2—H2A114.9 (11)C5—C6—C1118.21 (14)
C10—N2—O2120.66 (14)C7—C6—C1117.81 (13)
C10—N2—H2A124.5 (11)C7—C6—C5123.98 (14)
N1—C1—C2118.95 (13)C6—C7—H7120.4 (9)
N1—C1—C6121.61 (13)C8—C7—C6120.22 (14)
C2—C1—C6119.44 (13)C8—C7—H7119.4 (9)
C1—C2—H2B118.7 (9)C7—C8—H8124.1 (10)
C3—C2—C1120.73 (15)C7—C8—C9118.11 (15)
C3—C2—H2B120.6 (9)C9—C8—H8117.8 (10)
C2—C3—H3122.3 (9)N1—C9—C8124.30 (13)
C2—C3—C4119.85 (16)N1—C9—C10116.29 (12)
C4—C3—H3117.8 (9)C8—C9—C10119.41 (14)
C3—C4—H4119.2 (9)O1—C10—N2123.24 (14)
C5—C4—C3120.96 (15)O1—C10—C9122.90 (13)
C5—C4—H4119.8 (9)N2—C10—C9113.86 (13)
C4—C5—H5123.6 (10)H1SA—O1S—H1SB102.7 (19)
O2—N2—C10—O10.8 (2)C2—C3—C4—C50.3 (2)
O2—N2—C10—C9178.96 (12)C3—C4—C5—C60.1 (2)
N1—C1—C2—C3178.81 (13)C4—C5—C6—C10.2 (2)
N1—C1—C6—C5179.24 (12)C4—C5—C6—C7179.86 (15)
N1—C1—C6—C70.4 (2)C5—C6—C7—C8179.76 (14)
N1—C9—C10—O1177.33 (14)C6—C1—C2—C31.3 (2)
N1—C9—C10—N22.48 (19)C6—C7—C8—C91.2 (2)
C1—N1—C9—C81.4 (2)C7—C8—C9—N11.9 (2)
C1—N1—C9—C10178.08 (11)C7—C8—C9—C10177.53 (13)
C1—C2—C3—C41.0 (2)C8—C9—C10—O12.2 (2)
C1—C6—C7—C80.1 (2)C8—C9—C10—N2178.00 (14)
C2—C1—C6—C50.91 (19)C9—N1—C1—C2179.94 (12)
C2—C1—C6—C7179.44 (13)C9—N1—C1—C60.20 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1SA···O1i0.85 (2)2.15 (3)2.9404 (19)155 (2)
O1S—H1SA···O2i0.85 (2)2.54 (2)3.0850 (18)124 (2)
O1S—H1SB···O1ii0.93 (2)1.85 (2)2.7783 (18)176 (2)
O2—H2···O1S0.97 (2)1.67 (2)2.6407 (18)175 (2)
C3—H3···O2iii0.999 (16)2.518 (16)3.493 (2)165.0 (15)
C4—H4···O2iv0.975 (19)2.589 (18)3.273 (2)127.3 (12)
C5—H5···O1Sv0.967 (17)2.593 (17)3.547 (2)169.0 (13)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y+1, z+3/2; (iv) x+1/2, y+1/2, z; (v) x+1/2, y1/2, z.
 

Acknowledgements

The financial support from the European Community's Seventh Framework Program (FP7/2007–2013) under grant agreement PIRSES-GA-2013–611488 is gratefully acknowledged. KAO acknowledges a DAAD fellowship (Leonhard-Euler-Program).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationChaiyaveij, D., Batsanov, A. S., Fox, M. A., Marder, T. B. & Whiting, A. (2015). J. Org. Chem. 80, 9518–9534.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDobosz, A., Dudarenko, N. M., Fritsky, I. O., Głowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743–750.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGolenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012a). Inorg. Chem. 51, 6221–6227.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGolenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012b). Dalton Trans. 41, 9427–9430.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGolenya, I. A., Gumienna-Kontecka, E., Haukka, M., Korsun, O. M., Kalugin, O. N. & Fritsky, I. O. (2014). CrystEngComm, 16, 1904–1918.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805.  Web of Science CSD CrossRef CAS Google Scholar
First citationGumienna-Kontecka, E., Golenya, I. A., Szebesczyk, A., Haukka, M., Krämer, R. & Fritsky, I. O. (2013). Inorg. Chem. 52, 7633–7644.  Web of Science CAS PubMed Google Scholar
First citationJankolovits, J., Kampf, J. W. & Pecoraro, V. L. (2013). Inorg. Chem. 52, 5063–5076.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.  Google Scholar
First citationMarmion, C. J., Parker, J. P. & Nolan, K. B. (2013). Comprehensive Inorganic Chemistry II, in Elements to Applications, Vol. 3, edited by J. Reedijk, & K. Poeppelmeier, pp. 684–708. Amsterdam: Elsevier.  Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOstrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327–328, 304–332.  CrossRef CAS Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836.  Web of Science CSD CrossRef Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858.  Web of Science CSD CrossRef Google Scholar
First citationSafyanova, I. S., Golenya, I. A., Pavlenko, V. A., Gumienna-Kontecka, E., Pekhnyo, V. I., Bon, V. V. & Fritsky, I. O. (2015). Z. Anorg. Allg. Chem. 641, 2326–2332.  Web of Science CSD CrossRef CAS Google Scholar
First citationSafyanova, I. S., Ohui, K. A. & Omelchenko, I. V. (2016). Acta Cryst. E72, 117–119.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807–2817.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationStrotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.  Web of Science CSD CrossRef CAS Google Scholar
First citationŚwiątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.  Google Scholar
First citationTrivedi, E. R., Eliseeva, S. V., Jankolovits, J., Olmstead, M. M., Petoud, S. & Pecoraro, V. L. (2014). J. Am. Chem. Soc. 136, 1526–1534.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds