research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 10a-hy­dr­oxy-9-(3-nitro­phen­yl)-3,6-di­phenyl-3,4,5,6,7,8a,9,10a-octa­hydro-1H-xanthene-1,8(2H)-dione

aJiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: wangfmzj@just.edu.cn

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 28 October 2015; accepted 9 November 2015; online 21 November 2015)

In the octa­hydroxanthenedione unit of the title compound, C31H27NO6, the central di­hydro­pyran ring shows an envelope conformation, while the bilateral cyclo­hexene and cyclo­hexane rings adopt a half-boat conformation and a chair conformation, respectively. The nitro­benzene ring is twisted with respect to the two benzene rings, making dihedral angles of 63.1 (1) and 63.0 (1)°. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into supra­molecular chains propagating along the a-axis direction.

1. Chemical context

Xanthenes are important biologically active heterocyclic compounds, which possess anti-inflammatory, anti­bacterial and anti­viral activities (Shakibaei et al., 2007[Shakibaei, G. I., Mirzaei, P. & Bazgir, A. (2007). Appl. Catal. Gen. 325, 188-192.]; Lambert et al., 1997[Lambert, R. W., Martin, J. A., Merrett, J. H., Parkers, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9706178.]). Many studies have been carried out on xanthene derivatives (Knight & Little, 2001[Knight, D. W. & Little, P. B. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1771-1777.]; Jha & Beal, 2004[Jha, A. & Beal, J. (2004). Tetrahedron Lett. 45, 8999-9001.]; Lu et al., 2011[Lu, W., Lian, C., Yang, Y. & Zhu, Y. (2011). Acta Cryst. E67, o2108.]; Cui et al., 2012[Cui, B., Chen, L.-Z., Hu, X.-L., Wang, M. & Han, G.-F. (2012). J. Heterocycl. Chem. 49, 900-904.]; Wang et al., 2015[Wang, F.-M., Bao, D., Hu, B.-X., Zhou, Z.-Y., Huang, D.-D., Chen, L.-Z. & Dan, Y.-Y. (2015). J. Chem. Res. 39, 376-379.]). Herein, we report the synthesis and the crystal structure of the title xanthene deriv­ative.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The C1—O1 and C15—O2 bond lengths are 1.234 (4) and 1.202 (4) Å, respectively. The central di­hydro­pyran ring shows an envelope conformation with atom C19 as the flap, while the bilateral cyclo­hexene and cyclo­hexane rings adopt a half boat conformation and a chair conformation, respectively. The nitro­benzene ring is twisted with respect to the C7–C10 and C20–C25 benzene rings, making dihedral angles of 63.1 (1) and 63.0 (1)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling, with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal (Fig. 2[link]), the mol­ecules are linked by O—H⋯O hydrogen bonds (Table 1[link]), generating supra­molecular chains propagating along the a-axis direction.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4C⋯O1i 0.82 1.89 2.714 (3) 180
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].
[Figure 2]
Figure 2
Packing diagram showing the hydrogen bonds as dashed lines.

4. Database survey

A search of the Cambridge Structural Database for 10a-hy­droxy-3,4,5,6,7,8a,9,10a-octa­hydro-1H-xanthene-1,8(2H)-dione gave 16 hits. None of them are substituted at the 3,6-position with two phenyl groups. Several compounds substituted at the 9-position with an aryl group are similar to the title compound, for example, 9-(2,6-di­chloro­phen­yl)-4a-hydroxy-3,3,6,6-tetra­methyl-1,2,3,4,4a,5,6,7,8,9a-deca­hydroxanthene-1,8-dione (Bolte et al., 2001[Bolte, M., Degen, A. & Rühl, S. (2001). Acta Cryst. C57, 444-445.]), 9-(2,3-di­chloro­phen­yl)-4a-hy­droxy-3,3,6,6-tetra­methyl-3,4,4a,6,7,9,9a,10-octa­hydroanthracene-1,8(2H,5H)-dione (Mohammadi Ziarani et al., 2008[Mohammadi Ziarani, G., Abbasi, A., Badiei, A., Haddadpour, M. & Abdi Jahangir, A. (2008). Acta Cryst. E64, o519.]) and 9-(2-chloro­phen­yl)-4a-hy­droxy-3,4,4a,5,6,7,9,9a-octa­hydro-1H-xanthracene-1,8(2H)-dione (Liu et al., 2014[Liu, Q.-L., Wu, X.-Y., Gao, F., Bao, D. & Wang, F.-M. (2014). Acta Cryst. E70, o442-o443.]).

5. Synthesis and crystallization

The title compound was synthesized in accordance to our previous procedure (Wang et al., 2015[Wang, F.-M., Bao, D., Hu, B.-X., Zhou, Z.-Y., Huang, D.-D., Chen, L.-Z. & Dan, Y.-Y. (2015). J. Chem. Res. 39, 376-379.]). 5-Phenyl­cyclo­hexane-1,3-dione (7.52 g, 40 mmol) and 3-nitro­benzaldehyde (20 mmol) were dissolved in the mixture of methanol (10 ml) and ethanol (10 ml) in the presence of trace L-proline (5 mmol) and stirred for 4 h. After completion of the reaction, the white solid products were filtered under reduced pressure and washed with ethanol (78% yield). m.p. 445.15–447.15 K. IR (KBr pellets, cm−1): 3370 (O—H), 1648 (C=O), 1562 (C=C). MS (ESI) m/z: 510.2 [M + H+]. 1H NMR (DMSO-d6, 400 MHz): δ 2.56–2.92 (m, 8H, 2a-H, 7a-H, 2b-H, 7b-H, 4a-H, 5a-H, 4b-H, 5b-H); 3.43 (m, 2H, 6-H, 3-H); 5.46 (m, 1H, 9-H); 7.14 (m, 2H, 11-H, 10-OH); 7.22–8.02 (m, 14H, PhH). Analysis calculated for C31H27NO6: C 73.07, H 5.34, N 2.75%; found: C 72.92, H 5.30, N 2.65%. Single crystals of the title compound were obtained by slow evaporation from an ethanol solution at room temperature in the form of colorless blocks.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms of were fixed geometrically and treated as riding with C—H = 0.97 (methyl­ene), 0.98 (methine), 0.93 (phen­yl) and O—H = 0.82 Å, with Uiso(H) = 1.2Ueq(C,O).

Table 2
Experimental details

Crystal data
Chemical formula C31H27NO6
Mr 509.53
Crystal system, space group Orthorhombic, P212121
Temperature (K) 291
a, b, c (Å) 8.973 (4), 13.520 (6), 21.251 (9)
V3) 2578 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.25 × 0.20 × 0.16
 
Data collection
Diffractometer Bruker SMART APEXII area detector
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.979, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 19805, 5040, 3978
Rint 0.028
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.03
No. of reflections 5040
No. of parameters 344
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXL2014 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

10a-Hydroxy-9-(3-nitrophenyl)-3,6-diphenyl-3,4,5,6,7,8a,9,10a-octahydro-1H-xanthene-1,8(2H)-dione top
Crystal data top
C31H27NO6Dx = 1.313 Mg m3
Mr = 509.53Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 7999 reflections
a = 8.973 (4) Åθ = 2.5–25.5°
b = 13.520 (6) ŵ = 0.09 mm1
c = 21.251 (9) ÅT = 291 K
V = 2578 (2) Å3Block, colorless
Z = 40.25 × 0.20 × 0.16 mm
F(000) = 1072
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5040 independent reflections
Radiation source: sealed tube3978 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1011
Tmin = 0.979, Tmax = 0.986k = 1616
19805 measured reflectionsl = 2626
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.3283P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125(Δ/σ)max = 0.010
S = 1.03Δρmax = 0.43 e Å3
5040 reflectionsΔρmin = 0.21 e Å3
344 parametersAbsolute structure: Flack x determined using 1503 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 1.3 (4)
Special details top

Experimental. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.7298 (0.0116) x + 5.2391 (0.0295) y + 11.3904 (0.0347) z = 4.9647 (0.0106)

* -0.0122 (0.0031) C20 * 0.0030 (0.0039) C21 * 0.0057 (0.0040) C22 * -0.0052 (0.0037) C23 * -0.0042 (0.0035) C24 * 0.0128 (0.0031) C25

Rms deviation of fitted atoms = 0.0081

5.3891 (0.0148) x - 9.6057 (0.0212) y - 7.7932 (0.0389) z = 1.2144 (0.0092)

Angle to previous plane (with approximate esd) = 88.773 ( 14.5 )

* 0.0060 (0.0029) C7 * -0.0023 (0.0029) C8 * -0.0024 (0.0031) C9 * 0.0034 (0.0036) C10 * 0.0004 (0.0038) C11 * -0.0052 (0.0034) C12

Rms deviation of fitted atoms = 0.0038

- 1.0457 (0.0125) x + 0.3544 (0.0170) y + 21.0986 (0.0100) z = 0.3439 (0.0082)

Angle to previous plane (with approximate esd) = 63.082 ( 14.2 )

* 0.0003 (0.0022) C26 * -0.0038 (0.0023) C27 * 0.0040 (0.0025) C28 * -0.0005 (0.0025) C29 * -0.0030 (0.0022) C30 * 0.0030 (0.0020) C31

Rms deviation of fitted atoms = 0.0028

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3896 (4)0.0908 (2)0.07887 (14)0.0532 (7)
C20.3277 (3)0.09893 (19)0.01590 (13)0.0444 (6)
C30.1786 (3)0.1037 (2)0.00994 (13)0.0448 (6)
C40.0696 (3)0.0842 (2)0.06132 (15)0.0537 (7)
H4A0.02060.14570.07250.064*
H4B0.00610.03900.04600.064*
C50.1411 (4)0.0405 (3)0.11952 (16)0.0699 (10)
H5A0.16510.02800.10840.084*
C60.2850 (4)0.0872 (3)0.13382 (17)0.0749 (10)
H6A0.26720.15410.14840.090*
H6B0.33230.05110.16780.090*
C70.0334 (4)0.0332 (3)0.17443 (15)0.0657 (9)
C80.0491 (5)0.0871 (3)0.22896 (16)0.0795 (12)
H8A0.12540.13330.23240.095*
C90.0483 (8)0.0729 (4)0.27876 (19)0.1001 (17)
H9A0.03650.10970.31540.120*
C100.1603 (7)0.0061 (5)0.2747 (2)0.109 (2)
H10A0.22480.00330.30840.131*
C110.1778 (6)0.0470 (5)0.2208 (3)0.1080 (17)
H11A0.25460.09290.21760.130*
C120.0816 (5)0.0329 (4)0.1710 (2)0.0873 (13)
H12A0.09520.06920.13420.105*
C130.4348 (3)0.1112 (2)0.03895 (13)0.0448 (6)
H13A0.48970.17310.03290.054*
C140.3463 (3)0.1195 (2)0.10028 (13)0.0454 (6)
H14A0.31830.05250.11330.054*
C150.4323 (4)0.1669 (2)0.15441 (14)0.0502 (7)
C160.3445 (4)0.1767 (3)0.21452 (15)0.0594 (8)
H16A0.40400.21170.24550.071*
H16B0.32300.11140.23100.071*
C170.1982 (4)0.2325 (2)0.20407 (14)0.0531 (7)
H17A0.22390.29960.19050.064*
C180.1095 (4)0.1841 (2)0.15049 (13)0.0500 (7)
H18A0.07950.11800.16290.060*
H18B0.02020.22230.14220.060*
C190.2036 (3)0.1785 (2)0.09110 (13)0.0477 (7)
C200.1030 (4)0.2418 (3)0.26275 (14)0.0583 (8)
C210.0884 (7)0.1681 (4)0.3066 (2)0.0987 (15)
H21A0.14300.11010.30180.118*
C220.0045 (7)0.1777 (5)0.3573 (2)0.1152 (18)
H22A0.01200.12630.38620.138*
C230.0851 (5)0.2603 (6)0.3660 (2)0.1031 (18)
H23A0.14890.26610.40030.124*
C240.0718 (6)0.3356 (5)0.3235 (2)0.1023 (17)
H24A0.12720.39310.32890.123*
C250.0237 (5)0.3272 (3)0.27247 (18)0.0790 (11)
H25A0.03410.37980.24460.095*
C260.5470 (3)0.0276 (2)0.04296 (13)0.0469 (7)
C270.6988 (3)0.0467 (3)0.04997 (15)0.0556 (8)
H27A0.73240.11170.05020.067*
C280.7995 (4)0.0294 (3)0.05661 (17)0.0660 (9)
H28A0.90020.01500.06170.079*
C290.7535 (4)0.1262 (3)0.05574 (17)0.0654 (9)
H29A0.82140.17770.05990.079*
C300.6046 (4)0.1444 (2)0.04855 (14)0.0538 (7)
C310.4998 (3)0.0703 (2)0.04240 (14)0.0484 (7)
H31A0.39930.08560.03790.058*
N10.5518 (4)0.2479 (2)0.04813 (15)0.0718 (8)
O10.5249 (2)0.09640 (17)0.08882 (11)0.0611 (6)
O20.5583 (3)0.19545 (18)0.14823 (11)0.0635 (6)
O30.1096 (2)0.12872 (16)0.04468 (9)0.0519 (5)
O40.2463 (2)0.27061 (15)0.06846 (10)0.0537 (5)
H4C0.17920.31060.07460.081*
O50.6420 (4)0.3133 (2)0.03810 (18)0.1123 (12)
O60.4215 (4)0.2637 (2)0.0582 (2)0.1056 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0563 (18)0.0513 (17)0.0522 (17)0.0012 (15)0.0112 (15)0.0060 (14)
C20.0519 (17)0.0372 (14)0.0441 (14)0.0000 (12)0.0036 (13)0.0003 (12)
C30.0515 (16)0.0427 (15)0.0402 (14)0.0003 (12)0.0023 (12)0.0001 (12)
C40.0528 (17)0.0608 (18)0.0476 (16)0.0010 (15)0.0005 (13)0.0023 (14)
C50.064 (2)0.098 (3)0.0475 (18)0.0060 (19)0.0007 (16)0.0034 (18)
C60.075 (2)0.098 (3)0.0523 (19)0.001 (2)0.0060 (17)0.0111 (19)
C70.072 (2)0.085 (2)0.0401 (16)0.014 (2)0.0003 (16)0.0048 (17)
C80.116 (3)0.076 (2)0.0467 (19)0.015 (2)0.009 (2)0.0058 (17)
C90.152 (5)0.103 (3)0.046 (2)0.049 (4)0.020 (3)0.011 (2)
C100.122 (4)0.138 (5)0.067 (3)0.039 (4)0.037 (3)0.037 (3)
C110.087 (3)0.148 (5)0.088 (3)0.010 (3)0.019 (3)0.028 (3)
C120.076 (3)0.126 (4)0.060 (2)0.011 (3)0.008 (2)0.000 (2)
C130.0469 (15)0.0406 (14)0.0468 (15)0.0042 (12)0.0022 (12)0.0013 (12)
C140.0508 (16)0.0393 (14)0.0461 (15)0.0014 (13)0.0015 (12)0.0004 (12)
C150.0555 (19)0.0452 (16)0.0499 (16)0.0099 (15)0.0032 (14)0.0003 (13)
C160.068 (2)0.0623 (19)0.0475 (17)0.0058 (17)0.0025 (15)0.0006 (15)
C170.0623 (19)0.0505 (16)0.0464 (16)0.0015 (15)0.0059 (14)0.0012 (13)
C180.0537 (16)0.0511 (16)0.0451 (15)0.0001 (14)0.0066 (14)0.0009 (13)
C190.0478 (15)0.0505 (16)0.0448 (15)0.0019 (13)0.0008 (12)0.0022 (13)
C200.0622 (19)0.068 (2)0.0450 (16)0.0021 (18)0.0014 (15)0.0082 (15)
C210.136 (4)0.082 (3)0.078 (3)0.008 (3)0.043 (3)0.011 (2)
C220.132 (5)0.132 (5)0.082 (3)0.014 (4)0.038 (3)0.015 (3)
C230.068 (3)0.183 (6)0.058 (3)0.013 (3)0.014 (2)0.030 (3)
C240.085 (3)0.144 (5)0.078 (3)0.033 (3)0.006 (3)0.032 (3)
C250.081 (3)0.096 (3)0.060 (2)0.025 (2)0.0047 (19)0.009 (2)
C260.0509 (16)0.0467 (15)0.0430 (14)0.0013 (13)0.0070 (13)0.0006 (12)
C270.0506 (17)0.0625 (19)0.0538 (18)0.0055 (15)0.0042 (14)0.0030 (15)
C280.0467 (17)0.083 (2)0.068 (2)0.0033 (17)0.0045 (16)0.0026 (18)
C290.063 (2)0.069 (2)0.064 (2)0.0190 (18)0.0052 (17)0.0072 (16)
C300.067 (2)0.0470 (16)0.0469 (15)0.0042 (14)0.0035 (15)0.0039 (13)
C310.0508 (16)0.0501 (16)0.0444 (14)0.0012 (13)0.0013 (13)0.0014 (12)
N10.095 (2)0.0502 (17)0.0700 (18)0.0082 (18)0.0015 (18)0.0109 (14)
O10.0579 (13)0.0663 (14)0.0591 (13)0.0065 (11)0.0139 (10)0.0047 (10)
O20.0595 (14)0.0683 (15)0.0627 (14)0.0025 (12)0.0050 (11)0.0077 (11)
O30.0455 (10)0.0657 (13)0.0444 (10)0.0024 (10)0.0029 (9)0.0066 (9)
O40.0587 (12)0.0471 (11)0.0554 (12)0.0045 (10)0.0076 (10)0.0075 (9)
O50.139 (3)0.0557 (16)0.142 (3)0.0285 (18)0.020 (2)0.0107 (18)
O60.097 (2)0.0608 (16)0.159 (3)0.0136 (16)0.007 (2)0.0041 (18)
Geometric parameters (Å, º) top
C1—O11.234 (4)C16—H16A0.9700
C1—C21.453 (4)C16—H16B0.9700
C1—C61.499 (5)C17—C201.517 (4)
C2—C31.345 (4)C17—C181.536 (4)
C2—C131.520 (4)C17—H17A0.9800
C3—O31.358 (3)C18—C191.520 (4)
C3—C41.489 (4)C18—H18A0.9700
C4—C51.513 (5)C18—H18B0.9700
C4—H4A0.9700C19—O41.389 (4)
C4—H4B0.9700C19—O31.462 (4)
C5—C61.468 (5)C20—C211.371 (5)
C5—C71.519 (5)C20—C251.371 (5)
C5—H5A0.9800C21—C221.369 (7)
C6—H6A0.9700C21—H21A0.9300
C6—H6B0.9700C22—C231.343 (8)
C7—C121.367 (6)C22—H22A0.9300
C7—C81.376 (5)C23—C241.365 (9)
C8—C91.385 (6)C23—H23A0.9300
C8—H8A0.9300C24—C251.387 (6)
C9—C101.354 (8)C24—H24A0.9300
C9—H9A0.9300C25—H25A0.9300
C10—C111.360 (8)C26—C311.390 (4)
C10—H10A0.9300C26—C271.394 (4)
C11—C121.380 (6)C27—C281.377 (5)
C11—H11A0.9300C27—H27A0.9300
C12—H12A0.9300C28—C291.373 (6)
C13—C261.515 (4)C28—H28A0.9300
C13—C141.530 (4)C29—C301.366 (5)
C13—H13A0.9800C29—H29A0.9300
C14—C191.521 (4)C30—C311.380 (4)
C14—C151.527 (4)C30—N11.477 (5)
C14—H14A0.9800C31—H31A0.9300
C15—O21.202 (4)N1—O61.207 (4)
C15—C161.507 (5)N1—O51.218 (4)
C16—C171.530 (5)O4—H4C0.8200
O1—C1—C2121.9 (3)C15—C16—H16B109.3
O1—C1—C6119.0 (3)C17—C16—H16B109.3
C2—C1—C6118.7 (3)H16A—C16—H16B108.0
C3—C2—C1118.1 (3)C20—C17—C16113.9 (3)
C3—C2—C13123.5 (3)C20—C17—C18110.7 (3)
C1—C2—C13118.2 (3)C16—C17—C18110.0 (3)
C2—C3—O3123.1 (3)C20—C17—H17A107.3
C2—C3—C4125.1 (3)C16—C17—H17A107.3
O3—C3—C4111.8 (2)C18—C17—H17A107.3
C3—C4—C5112.9 (3)C19—C18—C17110.4 (2)
C3—C4—H4A109.0C19—C18—H18A109.6
C5—C4—H4A109.0C17—C18—H18A109.6
C3—C4—H4B109.0C19—C18—H18B109.6
C5—C4—H4B109.0C17—C18—H18B109.6
H4A—C4—H4B107.8H18A—C18—H18B108.1
C6—C5—C4112.0 (3)O4—C19—O3109.8 (2)
C6—C5—C7115.4 (3)O4—C19—C18113.4 (2)
C4—C5—C7112.5 (3)O3—C19—C18105.2 (2)
C6—C5—H5A105.3O4—C19—C14106.4 (2)
C4—C5—H5A105.3O3—C19—C14109.3 (2)
C7—C5—H5A105.3C18—C19—C14112.8 (2)
C5—C6—C1113.8 (3)C21—C20—C25117.4 (3)
C5—C6—H6A108.8C21—C20—C17123.5 (3)
C1—C6—H6A108.8C25—C20—C17119.1 (3)
C5—C6—H6B108.8C22—C21—C20121.6 (5)
C1—C6—H6B108.8C22—C21—H21A119.2
H6A—C6—H6B107.7C20—C21—H21A119.2
C12—C7—C8118.0 (4)C23—C22—C21121.0 (5)
C12—C7—C5118.8 (3)C23—C22—H22A119.5
C8—C7—C5123.2 (4)C21—C22—H22A119.5
C7—C8—C9120.4 (5)C22—C23—C24118.8 (4)
C7—C8—H8A119.8C22—C23—H23A120.6
C9—C8—H8A119.8C24—C23—H23A120.6
C10—C9—C8120.8 (5)C23—C24—C25120.7 (5)
C10—C9—H9A119.6C23—C24—H24A119.7
C8—C9—H9A119.6C25—C24—H24A119.7
C9—C10—C11119.4 (5)C20—C25—C24120.4 (5)
C9—C10—H10A120.3C20—C25—H25A119.8
C11—C10—H10A120.3C24—C25—H25A119.8
C10—C11—C12120.1 (6)C31—C26—C27118.3 (3)
C10—C11—H11A120.0C31—C26—C13120.5 (3)
C12—C11—H11A120.0C27—C26—C13121.2 (3)
C7—C12—C11121.4 (5)C28—C27—C26121.0 (3)
C7—C12—H12A119.3C28—C27—H27A119.5
C11—C12—H12A119.3C26—C27—H27A119.5
C26—C13—C2112.5 (2)C29—C28—C27120.9 (3)
C26—C13—C14110.6 (2)C29—C28—H28A119.6
C2—C13—C14109.4 (2)C27—C28—H28A119.6
C26—C13—H13A108.1C30—C29—C28117.9 (3)
C2—C13—H13A108.1C30—C29—H29A121.1
C14—C13—H13A108.1C28—C29—H29A121.1
C19—C14—C15107.6 (2)C29—C30—C31123.0 (3)
C19—C14—C13111.5 (2)C29—C30—N1119.0 (3)
C15—C14—C13114.2 (2)C31—C30—N1117.9 (3)
C19—C14—H14A107.8C30—C31—C26118.9 (3)
C15—C14—H14A107.8C30—C31—H31A120.5
C13—C14—H14A107.8C26—C31—H31A120.5
O2—C15—C16123.8 (3)O6—N1—O5123.1 (4)
O2—C15—C14121.9 (3)O6—N1—C30118.5 (3)
C16—C15—C14114.3 (3)O5—N1—C30118.4 (4)
C15—C16—C17111.7 (3)C3—O3—C19115.4 (2)
C15—C16—H16A109.3C19—O4—H4C109.5
C17—C16—H16A109.3
O1—C1—C2—C3172.3 (3)C16—C17—C18—C1955.4 (3)
C6—C1—C2—C30.5 (4)C17—C18—C19—O461.8 (3)
O1—C1—C2—C132.1 (4)C17—C18—C19—O3178.2 (2)
C6—C1—C2—C13175.0 (3)C17—C18—C19—C1459.2 (3)
C1—C2—C3—O3168.0 (2)C15—C14—C19—O468.2 (3)
C13—C2—C3—O36.1 (4)C13—C14—C19—O457.8 (3)
C1—C2—C3—C411.1 (4)C15—C14—C19—O3173.4 (2)
C13—C2—C3—C4174.8 (3)C13—C14—C19—O360.6 (3)
C2—C3—C4—C510.0 (4)C15—C14—C19—C1856.7 (3)
O3—C3—C4—C5170.8 (3)C13—C14—C19—C18177.3 (2)
C3—C4—C5—C640.7 (4)C16—C17—C20—C2138.2 (5)
C3—C4—C5—C7172.6 (3)C18—C17—C20—C2186.3 (5)
C4—C5—C6—C151.0 (5)C16—C17—C20—C25143.3 (3)
C7—C5—C6—C1178.6 (3)C18—C17—C20—C2592.1 (4)
O1—C1—C6—C5155.9 (4)C25—C20—C21—C221.8 (8)
C2—C1—C6—C531.1 (5)C17—C20—C21—C22176.7 (4)
C6—C5—C7—C12161.1 (4)C20—C21—C22—C230.1 (9)
C4—C5—C7—C1268.7 (5)C21—C22—C23—C240.7 (9)
C6—C5—C7—C816.1 (6)C22—C23—C24—C250.2 (8)
C4—C5—C7—C8114.1 (4)C21—C20—C25—C242.7 (6)
C12—C7—C8—C90.9 (6)C17—C20—C25—C24175.9 (4)
C5—C7—C8—C9176.3 (4)C23—C24—C25—C202.0 (7)
C7—C8—C9—C100.1 (6)C2—C13—C26—C3151.4 (3)
C8—C9—C10—C110.4 (7)C14—C13—C26—C3171.3 (3)
C9—C10—C11—C120.2 (8)C2—C13—C26—C27131.3 (3)
C8—C7—C12—C111.2 (7)C14—C13—C26—C27106.0 (3)
C5—C7—C12—C11176.2 (4)C31—C26—C27—C280.4 (5)
C10—C11—C12—C70.7 (8)C13—C26—C27—C28176.9 (3)
C3—C2—C13—C26128.5 (3)C26—C27—C28—C290.8 (5)
C1—C2—C13—C2657.3 (3)C27—C28—C29—C300.5 (5)
C3—C2—C13—C145.2 (4)C28—C29—C30—C310.2 (5)
C1—C2—C13—C14179.3 (2)C28—C29—C30—N1179.3 (3)
C26—C13—C14—C19162.0 (2)C29—C30—C31—C260.6 (5)
C2—C13—C14—C1937.5 (3)N1—C30—C31—C26179.7 (3)
C26—C13—C14—C1575.8 (3)C27—C26—C31—C300.2 (4)
C2—C13—C14—C15159.8 (2)C13—C26—C31—C30177.5 (3)
C19—C14—C15—O2123.8 (3)C29—C30—N1—O6161.0 (4)
C13—C14—C15—O20.6 (4)C31—C30—N1—O618.2 (5)
C19—C14—C15—C1654.7 (3)C29—C30—N1—O518.4 (5)
C13—C14—C15—C16179.0 (2)C31—C30—N1—O5162.4 (3)
O2—C15—C16—C17123.6 (3)C2—C3—O3—C1917.6 (4)
C14—C15—C16—C1754.8 (4)C4—C3—O3—C19161.6 (2)
C15—C16—C17—C20178.2 (3)O4—C19—O3—C366.2 (3)
C15—C16—C17—C1853.3 (4)C18—C19—O3—C3171.5 (2)
C20—C17—C18—C19177.8 (3)C14—C19—O3—C350.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4C···O1i0.821.892.714 (3)180
Symmetry code: (i) x1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Jiangsu Innovation Program for Undergraduate and Graduate Students (No. KYZZ15-0300) and the Innovation Program for Undergraduate and Graduate Students from Jiangsu University of Science and Technology, China.

References

First citationBolte, M., Degen, A. & Rühl, S. (2001). Acta Cryst. C57, 444–445.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, F.-M., Bao, D., Hu, B.-X., Zhou, Z.-Y., Huang, D.-D., Chen, L.-Z. & Dan, Y.-Y. (2015). J. Chem. Res. 39, 376–379.  CAS Google Scholar
First citationCui, B., Chen, L.-Z., Hu, X.-L., Wang, M. & Han, G.-F. (2012). J. Heterocycl. Chem. 49, 900–904.  Web of Science CrossRef CAS Google Scholar
First citationJha, A. & Beal, J. (2004). Tetrahedron Lett. 45, 8999–9001.  Web of Science CrossRef CAS Google Scholar
First citationKnight, D. W. & Little, P. B. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1771–1777.  Web of Science CrossRef Google Scholar
First citationLambert, R. W., Martin, J. A., Merrett, J. H., Parkers, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9706178.  Google Scholar
First citationLiu, Q.-L., Wu, X.-Y., Gao, F., Bao, D. & Wang, F.-M. (2014). Acta Cryst. E70, o442–o443.  CSD CrossRef IUCr Journals Google Scholar
First citationLu, W., Lian, C., Yang, Y. & Zhu, Y. (2011). Acta Cryst. E67, o2108.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohammadi Ziarani, G., Abbasi, A., Badiei, A., Haddadpour, M. & Abdi Jahangir, A. (2008). Acta Cryst. E64, o519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShakibaei, G. I., Mirzaei, P. & Bazgir, A. (2007). Appl. Catal. Gen. 325, 188–192.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds