metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [2,6-bis­(adamantan-1-yl)-4-tert-butylphenolato-κO]di­methylaluminium(III)

aCollege of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
*Correspondence e-mail: wanglei030@hotmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 15 August 2014; accepted 12 September 2014; online 24 September 2014)

The title compound, [Al(CH3)2(C30H41O)] is synthesized by the reaction of 2,6-di-adamantyl-4-tert-butyl-phenol with Al(CH3)3 in a nitro­gen atmosphere. In the mol­ecule, the coordination geometry around the AlIII atom is slightly distorted C2O trigonal (the sum of the bond angles subtended at Al atom being 359.9°), which is rarely reported for organometallic aluminium compounds. The coordination plane is approximately perpendicular to the benzene ring [the dihedral angle = 87.73 (16)°]. There is no inter­molecular hydrogen bonding in the crystal structure.

1. Related literature

For metal complexes with an adamantyl-substituted phenol ligand, see: Watanabe et al. (2010[Watanabe, T., Ishida, Y., Matsuo, T. & Kawaguchi, H. (2010). Dalton Trans. 39, 484-491.]); Hatanaka et al. (2011[Hatanaka, T., Miyake, R., Ishida, Y. & Kawaguchi, H. (2011). J. Organomet. Chem. 696, 4046-4050.]). For applications of aluminium alkyl compounds in catalysis for ring-opening polymerization of cyclic esters, see: Liu et al. (2001[Liu, Y.-C., Ko, B.-T. & Lin, C.-C. (2001). Macromolecules, 34, 6196-6201.]). For related structures with three-coordinate aluminium, see: Jerius et al. (1986[Jerius, J. J., Hahn, J. M., Rahman, A. F. M. M., Mols, O., Ilsley, W. H. & Oliver, J. P. (1986). Organometallics, 5, 1812-1814.]); Klis et al. (2011[Klis, T., Powell, D. R., Wojtas, L. & Wehmschulte, R. J. (2011). Organometallics, 30, 2563-2570.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Al(CH3)2(C30H41O)]

  • Mr = 474.68

  • Monoclinic, P 21 /n

  • a = 7.266 (4) Å

  • b = 20.93 (1) Å

  • c = 18.200 (9) Å

  • β = 95.038 (6)°

  • V = 2757 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.35 × 0.29 × 0.21 mm

2.2. Data collection

  • Bruker SMART 1000 diffractometer

  • 14027 measured reflections

  • 4930 independent reflections

  • 2380 reflections with I > 2σ(I)

  • Rint = 0.091

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.219

  • S = 1.00

  • 4930 reflections

  • 312 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

For metal complexes with an adamantyl-substituted phenol ligand, see: Watanabe et al. (2010); Hatanaka et al. (2011). For applications of the aluminium alkyl compounds in catalysis for ring-opening polymerization of cyclic esters, see: Liu et al. (2001). For related structures with three-coordinate aluminium, see: Jerius et al. (1986); Klis et al. (2011).

Experimental top

A hexane solution of Al(CH3)3 (1.0 M, 1.1 mL, 1.1 mmol) was added dropwise to 2,6-di-adamantyl-4-tert-butyl-phenol (0.46g, 1.0 mmol) in THF (20 mL) at 273 K with stirring. The mixture was warmed up to 313 K and stirred for 4 h, and then the solution was filtered through celite. The filtrate was concentrated to ca. 10 mL and left at room temperature overnight, colorless crystals were obtained. The single crystals were gathered and isolated for studies. Yield: 0.29g (61%). 1H NMR (298 K, CDCl3, 300 MHz, ppm): δ 7.11 (s, 2H, ArH), 2.16 (s, 12H, adamantyl), 2.03 (s, 6H, adamantyl), 1.78 (s, 12H, adamantyl), 1.28 (s, 9H, C(CH3)3), -0.65 (s, 6H, (CH3)2).

Refinement top

H atoms were fixed geometrically and treated as riding with C–H = 0.93–0.97 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the molecular structure of the title molecule with the atom-numbering. Displacement ellipsoids are drawn at 30%. The H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Molecular packing of the title compound viewed along a axis.
[2,6-Bis(adamantan-1-yl)-4-tert-butylphenolato-κO]dimethylaluminium(III) top
Crystal data top
[Al(CH3)2(C30H41O)]F(000) = 1040
Mr = 474.68Dx = 1.144 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4930 reflections
a = 7.266 (4) Åθ = 2.2–25.2°
b = 20.93 (1) ŵ = 0.10 mm1
c = 18.200 (9) ÅT = 293 K
β = 95.038 (6)°Block, colorless
V = 2757 (2) Å30.35 × 0.29 × 0.21 mm
Z = 4
Data collection top
Bruker SMART 1000
diffractometer
2380 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.091
Graphite monochromatorθmax = 25.2°, θmin = 2.3°
phi and ω scansh = 88
14027 measured reflectionsk = 2225
4930 independent reflectionsl = 2118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.219H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.104P)2]
where P = (Fo2 + 2Fc2)/3
4930 reflections(Δ/σ)max = 0.001
312 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Al(CH3)2(C30H41O)]V = 2757 (2) Å3
Mr = 474.68Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.266 (4) ŵ = 0.10 mm1
b = 20.93 (1) ÅT = 293 K
c = 18.200 (9) Å0.35 × 0.29 × 0.21 mm
β = 95.038 (6)°
Data collection top
Bruker SMART 1000
diffractometer
2380 reflections with I > 2σ(I)
14027 measured reflectionsRint = 0.091
4930 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.219H-atom parameters constrained
S = 1.00Δρmax = 0.29 e Å3
4930 reflectionsΔρmin = 0.28 e Å3
312 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.97063 (19)0.19082 (6)0.67409 (7)0.0430 (4)
O10.9966 (4)0.13995 (12)0.74514 (14)0.0392 (8)
C10.9359 (5)0.08875 (19)0.7833 (2)0.0320 (10)
C20.8177 (5)0.09989 (18)0.8396 (2)0.0298 (9)
C30.7622 (6)0.04657 (19)0.8780 (2)0.0370 (11)
H30.68220.05290.91450.044*
C40.8187 (6)0.01472 (19)0.8651 (2)0.0357 (10)
C50.9352 (6)0.02303 (18)0.8104 (2)0.0349 (10)
H50.97330.06430.80040.042*
C61.0004 (5)0.02757 (18)0.7687 (2)0.0310 (10)
C70.7586 (5)0.16811 (19)0.8619 (2)0.0341 (10)
C80.6387 (7)0.1659 (2)0.9279 (2)0.0482 (12)
H8A0.52860.14080.91470.058*
H8B0.70740.14520.96940.058*
C90.5826 (7)0.2328 (2)0.9507 (3)0.0600 (15)
H90.50620.22960.99230.072*
C100.4721 (7)0.2658 (2)0.8862 (3)0.0622 (15)
H10A0.36030.24180.87220.075*
H10B0.43720.30840.90060.075*
C110.5904 (6)0.2695 (2)0.8215 (3)0.0456 (12)
H110.52040.29030.77970.055*
C120.7641 (7)0.3084 (2)0.8445 (3)0.0569 (13)
H12A0.83950.31190.80330.068*
H12B0.72950.35120.85860.068*
C130.8742 (6)0.2759 (2)0.9094 (3)0.0498 (13)
H130.98590.30080.92350.060*
C140.9288 (6)0.20866 (19)0.8875 (2)0.0395 (11)
H14A0.99630.18810.92930.047*
H14B1.00980.21130.84800.047*
C150.6429 (6)0.20245 (19)0.7997 (2)0.0397 (11)
H15A0.71230.20460.75670.048*
H15B0.53140.17800.78660.048*
C160.7573 (8)0.2720 (2)0.9743 (3)0.0655 (15)
H16A0.72310.31460.98920.079*
H16B0.82670.25161.01580.079*
C171.1379 (5)0.01391 (19)0.7105 (2)0.0329 (10)
C181.1905 (6)0.0569 (2)0.7070 (3)0.0462 (12)
H18A1.24370.07060.75510.055*
H18B1.08000.08200.69450.055*
C191.3288 (6)0.0693 (2)0.6500 (3)0.0518 (13)
H191.35900.11490.64940.062*
C201.5037 (6)0.0310 (2)0.6697 (3)0.0574 (14)
H20A1.59110.03840.63330.069*
H20B1.56040.04460.71740.069*
C211.4561 (6)0.0396 (2)0.6721 (3)0.0514 (13)
H211.56850.06460.68490.062*
C221.3677 (7)0.0605 (2)0.5973 (3)0.0540 (13)
H22A1.45570.05550.56060.065*
H22B1.33450.10530.59920.065*
C231.1952 (6)0.0208 (2)0.5751 (2)0.0489 (12)
H231.14120.03400.52620.059*
C241.0574 (6)0.0319 (2)0.6321 (2)0.0421 (11)
H24A0.94740.00660.61910.050*
H24B1.02150.07660.63130.050*
C251.3198 (6)0.0507 (2)0.7292 (2)0.0407 (11)
H25A1.29330.09600.73200.049*
H25B1.37480.03710.77720.049*
C261.2439 (7)0.0492 (2)0.5743 (3)0.0574 (14)
H26A1.33080.05700.53780.069*
H26B1.13360.07430.56100.069*
C270.7524 (7)0.0707 (2)0.9104 (3)0.0462 (12)
C280.8381 (12)0.1335 (3)0.8917 (4)0.144 (4)
H28A0.97030.13000.89830.216*
H28B0.80080.14430.84130.216*
H28C0.79790.16630.92350.216*
C290.7941 (9)0.0586 (3)0.9918 (3)0.085 (2)
H29A0.73730.09121.01930.128*
H29B0.74630.01761.00410.128*
H29C0.92540.05931.00390.128*
C300.5433 (8)0.0774 (3)0.8967 (3)0.095 (2)
H30A0.50120.11010.92820.143*
H30B0.51140.08890.84610.143*
H30C0.48570.03760.90710.143*
C311.1617 (7)0.2553 (2)0.6788 (3)0.0731 (17)
H31A1.16110.27850.72440.110*
H31B1.13900.28430.63820.110*
H31C1.27970.23530.67630.110*
C320.7745 (7)0.1835 (2)0.5967 (3)0.0630 (15)
H32A0.71000.14390.60190.095*
H32B0.82530.18430.54970.095*
H32C0.69020.21850.59960.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0514 (9)0.0344 (8)0.0441 (8)0.0058 (7)0.0088 (7)0.0118 (6)
O10.0512 (19)0.0300 (16)0.0392 (17)0.0003 (14)0.0191 (14)0.0105 (13)
C10.033 (2)0.031 (2)0.032 (2)0.0034 (19)0.0030 (19)0.0045 (18)
C20.032 (2)0.029 (2)0.029 (2)0.0009 (18)0.0062 (19)0.0022 (18)
C30.043 (3)0.031 (2)0.039 (3)0.002 (2)0.010 (2)0.0022 (19)
C40.040 (3)0.027 (2)0.040 (3)0.006 (2)0.007 (2)0.006 (2)
C50.041 (3)0.020 (2)0.043 (3)0.0025 (19)0.006 (2)0.0010 (19)
C60.028 (2)0.032 (2)0.033 (2)0.0003 (18)0.0012 (19)0.0025 (19)
C70.037 (2)0.031 (2)0.035 (2)0.0041 (19)0.009 (2)0.0008 (18)
C80.058 (3)0.034 (3)0.056 (3)0.002 (2)0.022 (3)0.000 (2)
C90.077 (4)0.043 (3)0.066 (4)0.001 (3)0.043 (3)0.005 (3)
C100.051 (3)0.035 (3)0.103 (4)0.009 (2)0.019 (3)0.012 (3)
C110.039 (3)0.034 (3)0.064 (3)0.004 (2)0.004 (2)0.002 (2)
C120.067 (3)0.032 (3)0.072 (3)0.000 (3)0.009 (3)0.002 (2)
C130.053 (3)0.041 (3)0.054 (3)0.014 (2)0.002 (3)0.007 (2)
C140.040 (3)0.042 (3)0.036 (3)0.002 (2)0.002 (2)0.004 (2)
C150.034 (2)0.037 (3)0.049 (3)0.000 (2)0.004 (2)0.002 (2)
C160.102 (4)0.040 (3)0.055 (3)0.000 (3)0.013 (3)0.013 (2)
C170.034 (2)0.032 (2)0.033 (2)0.0006 (19)0.0028 (19)0.0046 (19)
C180.049 (3)0.035 (3)0.056 (3)0.003 (2)0.011 (2)0.002 (2)
C190.048 (3)0.040 (3)0.070 (4)0.011 (2)0.018 (3)0.004 (3)
C200.040 (3)0.062 (3)0.072 (4)0.007 (3)0.012 (3)0.000 (3)
C210.036 (3)0.055 (3)0.063 (3)0.009 (2)0.007 (2)0.002 (3)
C220.053 (3)0.056 (3)0.057 (3)0.006 (3)0.024 (3)0.005 (3)
C230.049 (3)0.060 (3)0.038 (3)0.004 (3)0.006 (2)0.001 (2)
C240.038 (3)0.044 (3)0.044 (3)0.005 (2)0.004 (2)0.007 (2)
C250.041 (3)0.041 (3)0.040 (3)0.004 (2)0.007 (2)0.001 (2)
C260.055 (3)0.060 (4)0.060 (3)0.006 (3)0.022 (3)0.015 (3)
C270.061 (3)0.029 (3)0.049 (3)0.008 (2)0.007 (2)0.009 (2)
C280.252 (10)0.036 (4)0.166 (7)0.029 (5)0.143 (8)0.035 (4)
C290.124 (5)0.062 (4)0.068 (4)0.030 (4)0.002 (4)0.028 (3)
C300.086 (5)0.102 (5)0.095 (5)0.048 (4)0.007 (4)0.049 (4)
C310.084 (4)0.065 (4)0.070 (4)0.027 (3)0.005 (3)0.020 (3)
C320.067 (4)0.058 (3)0.063 (3)0.009 (3)0.002 (3)0.016 (3)
Geometric parameters (Å, º) top
Al1—O11.673 (3)C17—C251.541 (5)
Al1—C321.920 (5)C18—C191.528 (6)
Al1—C311.933 (5)C18—H18A0.9700
O1—C11.371 (4)C18—H18B0.9700
C1—C61.397 (5)C19—C261.518 (6)
C1—C21.412 (5)C19—C201.518 (6)
C2—C31.395 (5)C19—H190.9800
C2—C71.555 (5)C20—C211.520 (6)
C3—C41.373 (5)C20—H20A0.9700
C3—H30.9300C20—H20B0.9700
C4—C51.372 (5)C21—C251.515 (6)
C4—C271.535 (5)C21—C221.518 (6)
C5—C61.409 (5)C21—H210.9800
C5—H50.9300C22—C231.528 (6)
C6—C171.546 (5)C22—H22A0.9700
C7—C151.528 (5)C22—H22B0.9700
C7—C141.538 (5)C23—C261.509 (6)
C7—C81.547 (5)C23—C241.521 (6)
C8—C91.526 (6)C23—H230.9800
C8—H8A0.9700C24—H24A0.9700
C8—H8B0.9700C24—H24B0.9700
C9—C101.527 (7)C25—H25A0.9700
C9—C161.540 (7)C25—H25B0.9700
C9—H90.9800C26—H26A0.9700
C10—C111.519 (6)C26—H26B0.9700
C10—H10A0.9700C27—C281.507 (7)
C10—H10B0.9700C27—C291.508 (7)
C11—C151.516 (6)C27—C301.524 (7)
C11—C121.530 (6)C28—H28A0.9600
C11—H110.9800C28—H28B0.9600
C12—C131.527 (6)C28—H28C0.9600
C12—H12A0.9700C29—H29A0.9600
C12—H12B0.9700C29—H29B0.9600
C13—C161.517 (6)C29—H29C0.9600
C13—C141.525 (6)C30—H30A0.9600
C13—H130.9800C30—H30B0.9600
C14—H14A0.9700C30—H30C0.9600
C14—H14B0.9700C31—H31A0.9600
C15—H15A0.9700C31—H31B0.9600
C15—H15B0.9700C31—H31C0.9600
C16—H16A0.9700C32—H32A0.9600
C16—H16B0.9700C32—H32B0.9600
C17—C181.533 (5)C32—H32C0.9600
C17—C241.541 (6)
O1—Al1—C32122.83 (19)C19—C18—H18A109.2
O1—Al1—C31112.2 (2)C17—C18—H18A109.2
C32—Al1—C31124.9 (2)C19—C18—H18B109.2
C1—O1—Al1150.4 (3)C17—C18—H18B109.2
O1—C1—C6119.5 (4)H18A—C18—H18B107.9
O1—C1—C2118.8 (3)C26—C19—C20109.5 (4)
C6—C1—C2121.6 (4)C26—C19—C18109.2 (4)
C3—C2—C1116.9 (4)C20—C19—C18109.6 (4)
C3—C2—C7120.3 (3)C26—C19—H19109.5
C1—C2—C7122.7 (3)C20—C19—H19109.5
C4—C3—C2123.9 (4)C18—C19—H19109.5
C4—C3—H3118.0C19—C20—C21109.4 (4)
C2—C3—H3118.0C19—C20—H20A109.8
C5—C4—C3117.0 (4)C21—C20—H20A109.8
C5—C4—C27122.4 (4)C19—C20—H20B109.8
C3—C4—C27120.6 (4)C21—C20—H20B109.8
C4—C5—C6123.6 (4)H20A—C20—H20B108.2
C4—C5—H5118.2C25—C21—C22108.7 (4)
C6—C5—H5118.2C25—C21—C20109.4 (4)
C1—C6—C5116.9 (4)C22—C21—C20109.5 (4)
C1—C6—C17123.2 (3)C25—C21—H21109.7
C5—C6—C17119.9 (3)C22—C21—H21109.7
C15—C7—C14109.9 (3)C20—C21—H21109.7
C15—C7—C8106.1 (3)C21—C22—C23110.7 (4)
C14—C7—C8105.9 (3)C21—C22—H22A109.5
C15—C7—C2112.7 (3)C23—C22—H22A109.5
C14—C7—C2110.7 (3)C21—C22—H22B109.5
C8—C7—C2111.3 (3)C23—C22—H22B109.5
C9—C8—C7111.5 (4)H22A—C22—H22B108.1
C9—C8—H8A109.3C26—C23—C24108.9 (4)
C7—C8—H8A109.3C26—C23—C22110.1 (4)
C9—C8—H8B109.3C24—C23—C22108.1 (4)
C7—C8—H8B109.3C26—C23—H23109.9
H8A—C8—H8B108.0C24—C23—H23109.9
C8—C9—C10109.9 (4)C22—C23—H23109.9
C8—C9—C16109.3 (4)C23—C24—C17112.0 (4)
C10—C9—C16109.8 (4)C23—C24—H24A109.2
C8—C9—H9109.3C17—C24—H24A109.2
C10—C9—H9109.3C23—C24—H24B109.2
C16—C9—H9109.3C17—C24—H24B109.2
C11—C10—C9108.9 (4)H24A—C24—H24B107.9
C11—C10—H10A109.9C21—C25—C17111.8 (3)
C9—C10—H10A109.9C21—C25—H25A109.3
C11—C10—H10B109.9C17—C25—H25A109.3
C9—C10—H10B109.9C21—C25—H25B109.3
H10A—C10—H10B108.3C17—C25—H25B109.3
C15—C11—C10109.1 (4)H25A—C25—H25B107.9
C15—C11—C12110.2 (4)C23—C26—C19109.7 (4)
C10—C11—C12108.9 (4)C23—C26—H26A109.7
C15—C11—H11109.5C19—C26—H26A109.7
C10—C11—H11109.5C23—C26—H26B109.7
C12—C11—H11109.5C19—C26—H26B109.7
C13—C12—C11109.7 (4)H26A—C26—H26B108.2
C13—C12—H12A109.7C28—C27—C29108.5 (5)
C11—C12—H12A109.7C28—C27—C30108.0 (5)
C13—C12—H12B109.7C29—C27—C30106.7 (5)
C11—C12—H12B109.7C28—C27—C4112.9 (4)
H12A—C12—H12B108.2C29—C27—C4110.8 (4)
C16—C13—C14109.3 (4)C30—C27—C4109.7 (4)
C16—C13—C12109.6 (4)C27—C28—H28A109.5
C14—C13—C12109.9 (4)C27—C28—H28B109.5
C16—C13—H13109.4H28A—C28—H28B109.5
C14—C13—H13109.4C27—C28—H28C109.5
C12—C13—H13109.4H28A—C28—H28C109.5
C13—C14—C7111.6 (4)H28B—C28—H28C109.5
C13—C14—H14A109.3C27—C29—H29A109.5
C7—C14—H14A109.3C27—C29—H29B109.5
C13—C14—H14B109.3H29A—C29—H29B109.5
C7—C14—H14B109.3C27—C29—H29C109.5
H14A—C14—H14B108.0H29A—C29—H29C109.5
C11—C15—C7112.1 (3)H29B—C29—H29C109.5
C11—C15—H15A109.2C27—C30—H30A109.5
C7—C15—H15A109.2C27—C30—H30B109.5
C11—C15—H15B109.2H30A—C30—H30B109.5
C7—C15—H15B109.2C27—C30—H30C109.5
H15A—C15—H15B107.9H30A—C30—H30C109.5
C13—C16—C9108.4 (4)H30B—C30—H30C109.5
C13—C16—H16A110.0Al1—C31—H31A109.5
C9—C16—H16A110.0Al1—C31—H31B109.5
C13—C16—H16B110.0H31A—C31—H31B109.5
C9—C16—H16B110.0Al1—C31—H31C109.5
H16A—C16—H16B108.4H31A—C31—H31C109.5
C18—C17—C24105.9 (3)H31B—C31—H31C109.5
C18—C17—C25106.3 (3)Al1—C32—H32A109.5
C24—C17—C25109.3 (3)Al1—C32—H32B109.5
C18—C17—C6112.7 (3)H32A—C32—H32B109.5
C24—C17—C6112.0 (3)Al1—C32—H32C109.5
C25—C17—C6110.4 (3)H32A—C32—H32C109.5
C19—C18—C17112.0 (4)H32B—C32—H32C109.5

Experimental details

Crystal data
Chemical formula[Al(CH3)2(C30H41O)]
Mr474.68
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.266 (4), 20.93 (1), 18.200 (9)
β (°) 95.038 (6)
V3)2757 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.29 × 0.21
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14027, 4930, 2380
Rint0.091
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.219, 1.00
No. of reflections4930
No. of parameters312
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.28

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank Northwest Normal University, People's Republic of China, for funding catalysis research at the Key Laboratory of Eco-Environment-Related Polymer Materials.

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationHatanaka, T., Miyake, R., Ishida, Y. & Kawaguchi, H. (2011). J. Organomet. Chem. 696, 4046–4050.  Web of Science CSD CrossRef CAS Google Scholar
First citationJerius, J. J., Hahn, J. M., Rahman, A. F. M. M., Mols, O., Ilsley, W. H. & Oliver, J. P. (1986). Organometallics, 5, 1812–1814.  CSD CrossRef CAS Web of Science Google Scholar
First citationKlis, T., Powell, D. R., Wojtas, L. & Wehmschulte, R. J. (2011). Organometallics, 30, 2563–2570.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y.-C., Ko, B.-T. & Lin, C.-C. (2001). Macromolecules, 34, 6196–6201.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, T., Ishida, Y., Matsuo, T. & Kawaguchi, H. (2010). Dalton Trans. 39, 484–491.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds