metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages m296-m297

Di­aqua­[5,10,15,20-tetra­kis­(4-chloro­phen­yl)porphyrinato-κ4N]iron(III) tri­fluoro­methane­sulfonate–4-hy­dr­oxy-3-meth­­oxy­benzaldehyde–water (1/1/2)

aLaboratoire de Physico-chimie des Matériaux, Faculté des Sciences de Monastir, Avenue de l'environnement, 5019 Monastir, University of Monastir, Tunisia, and bUniversity of Burgundy, ICMUB - UMR 6302, 9 avenue Alain Savary, 21000 Dijon, France
*Correspondence e-mail: hnasri1@gmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 18 June 2014; accepted 30 June 2014; online 11 July 2014)

In the title compound, [Fe(C44H24Cl4N4)(H2O)2](SO3CF3)·C8H8O3·2H2O, the FeIII cation is chelated by the four N atoms of the deprotonated tetra­kis­(4-chloro­tetra­phen­yl)porphyrin (TClPP) and further coordinated by two water mol­ecules in a distorted octa­hedral geometry. In the crystal, the cations, anions, 4-hy­droxy-3-meth­oxy­benzaldehyde and water mol­ecules of crystallization are linked by classical O—H⋯O hydrogen bonds and weak C—H⋯O and C—H⋯Cl hydrogen bonds into a three-dimensional supra­molecular architecture. The crystal packing is further stabilized by weak C—H⋯π inter­actions involving pyrrole and benzene rings. ππ stacking between parallel benzene rings of adjacent 4-hy­droxy-3-meth­oxy­benzaldehyde mol­ecules is also observed, the centroid–centroid distance being 3.8003 (13) Å. The three F atoms of the anion are disordered over two sets of sites, with a refined occupancy ratio 0.527 (12):0.473 (12). The O atom of one water mol­ecule of crystallization is also disordered over two positions in an occupancy ratio of 0.68 (5):0.32 (5).

Keywords: crystal structure.

Related literature

For the synthesis, see: Gismelseed et al. (1990[Gismelseed, A., Bominaar, E. L., Bill, E., Trautwein, A. X., Winkler, H., Nasri, H., Doppelt, P., Mandon, D., Fischer, J. & Weiss, R. (1990). Inorg. Chem. 29, 2741-2749.]). For related structures, see: Gismelseed et al. (1990[Gismelseed, A., Bominaar, E. L., Bill, E., Trautwein, A. X., Winkler, H., Nasri, H., Doppelt, P., Mandon, D., Fischer, J. & Weiss, R. (1990). Inorg. Chem. 29, 2741-2749.]); Scheidt et al. (1979[Scheidt, W. R., Cohen, I. A. & Kastner, M. E. (1979). J. Am. Chem. Soc. 18, 3546-3552.]); Scheidt & Reed (1981[Scheidt, W. R. & Reed, C. A. (1981). J. Am. Chem. Soc. 81, 543-555.]); Scheidt & Finnegan (1989[Scheidt, W. R. & Finnegan, M. G. (1989). Acta Cryst. C45, 1214-1216.]); Dhifet et al. (2009[Dhifet, M., Belkhiria, M. S., Daran, J.-C. & Nasri, H. (2009). Acta Cryst. E65, m967-m968.]); Xu et al. (2011[Xu, N., Powell, D. R. & Richter-Addo, G. B. (2011). Angew. Chem. Int. Ed. 50, 9694-9696.]); Nasri et al. (1990[Nasri, H., Goodwin, J. A. & Scheidt, W. R. (1990). Inorg. Chem. 29, 185-191.]); Cheng et al. (1994[Cheng, B., Safo, M. K., Orosz, R. D., Reed, C. A., Debrunner, P. G. & Scheidt, W. R. (1994). Inorg. Chem. 33, 1319-1324.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C44H24Cl4N4)(H2O)2](CF3O3S)·C8H8O3·2H2O

  • Mr = 1179.60

  • Monoclinic, P 21 /c

  • a = 10.9998 (4) Å

  • b = 17.8613 (6) Å

  • c = 26.6592 (9) Å

  • β = 97.9013 (11)°

  • V = 5188.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 115 K

  • 0.2 × 0.2 × 0.1 mm

Data collection
  • Nonius KappaAPEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.885, Tmax = 0.941

  • 95018 measured reflections

  • 11916 independent reflections

  • 8821 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.101

  • S = 1.02

  • 11916 reflections

  • 709 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3, Cg4, Cg10 and Cg13 are the centroids of the N2/C40–C43, N3/C30–C33, N4/C19–C22, C2–C7 and C45–C50 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O10Bi 0.89 1.74 2.626 (8) 171
O1—H1B⋯O9 0.89 1.96 2.747 (2) 146
O2—H2A⋯O3ii 0.88 1.83 2.705 (2) 171
O6—H6A⋯O7iii 0.87 2.45 3.064 (3) 128
O6—H6A⋯O8iii 0.87 2.11 2.946 (3) 162
O6—H6B⋯O4iv 0.87 1.93 2.790 (3) 168
O7—H7A⋯O6v 0.84 1.77 2.596 (3) 167
O10—H10A⋯O7vi 0.87 2.07 2.92 (3) 165
O10B—H10C⋯O5vii 0.87 1.92 2.786 (7) 177
O10B—H10D⋯O7vi 0.87 2.02 2.876 (5) 166
C10—H10⋯Cl3viii 0.95 2.76 3.659 (2) 159
C14—H14⋯O5ix 0.95 2.38 3.297 (3) 162
C31—H31⋯Cl2i 0.95 2.82 3.739 (2) 163
C4EA—H4EACg4x 0.95 2.66 3.5054 149
C17—H17⋯Cg2ii 0.95 2.76 3.5715 144
C20—H20⋯Cg13ii 0.95 2.82 3.5054 130
C28—H28⋯Cg3xi 0.95 2.79 3.6574 152
C37—H37⋯Cg10xii 0.95 2.76 3.6107 149
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) -x, -y+1, -z+1; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x, y+1, z; (vi) x, y-1, z; (vii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (viii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ix) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (x) x-1, y, z; (xi) -x+2, -y+1, -z+1; (xii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: OLEX2.solve (Puschmann et al., 2013[Puschmann, H., Bourhis, L. J., Dolomanov, O. V., Gildea, R. J. & Howard, J. A. K. (2013). Acta Cryst. A69, s679.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Refinement top

The positions of H atoms of the two aqua ligands were found in difference maps and then refine with Uiso(H) = 1.5Ueq(O). The H atoms of the two water molecules were placed in calculated positions with a distances restraint of O–H = 0.87 Å, with Uiso(H)= 1.5Ueq(O). All other H atoms were placed in geometrically idealized positions with C—H = 0.95-0.98 Å and constrained to ride on their parent atoms, Uiso(H) = 1.2Ueq(C).

The three fluorine atoms of the triflate counterion are disordered over two orientations [F1—F2—F3 / F1A—F2A—F3A] with refined occupancy coefficients converged to 0.473 (12) and 0.527 (12). EADP of SHELXL97 (Sheldrick, 2008) commands were used to model the disorder for fluorine atoms in triflate counterion. The oxygen atom of one water molecule is disordered over two positions [O10/O10B] in a 0.32 (5):0.68 (5) ratio.

Synthesis and crystallization top

To a solution of [FeIII(TClPP)(SO3CF3)] (Gismelseed et al., 1990) (15 mg, 0.0156 mmol) in chloro­form (15 mL) was added an excess of 4-hy­droxy-3-méthoxybenzaldéhyde (vanilline) (100 mg, 0.657 mmol). The reaction mixture was stirred at room temperature and at the end of the reaction, the color of the solution changes from brown red to blood red. The resulting material was crystallized by diffusion of hexanes through the chloro­form solution which yielded [FeIII(C44H28Cl4N4)(H2O)2](SO3CF3).(C8H8O3).2(H2O). The X-ray analysis was recorded in the "Pôle de Chimie Moléculaire", the technological platform for chemical analysis and molecular synthesis (http://www.wpcm.fr) which relies on the Institute of the Molecular Chemistry of University of Burgundy and Welience "TM", a Burgundy University private subsidiary.

Comment top

An extensive number of molecular structures of iron(III) porphyrin complexes is reported in the literature. Nevertheless in the Cambridge Structural Database (CSD, Version 5.35; Allen, 2002) there are only thirteen reported structures of aqua-iron(III) meso-porphyrins or β-pyrrolic-porphrin complexes. One other di­aqua structure of the coordination compound [FeIII(TPP)(H2O)2](ClO4).2THF was published in 1979 (Scheidt et al., 1979). Among these iron(III)-aqua porphyrins structures, there are four mono-aqua, four di­aqua and six mixed-ligands "aqua-L" molecular structures (L is a monodentate ligand).

We reports herein the crystal structure of the di­aqua­(5, 10, 15, 20-tetra­(para-chloro­phenyl)­porphyrinato-κ4N)iron(III) tri­fluoro­methane­sulfonate 4-hy­droxy-3-meth­oxy­benzaldehyde dihydrate with formula [FeIII(TClPP)(H2O)2](SO3CF3).(C8H8O3).2(H2O) (where TClPP is the dianion of the 5, 10, 15, 20-tetra­(para-chloro­phenyl)­porphyrin).

In this complex, the iron is coordinated to the four N atoms of the porphyrin ring and the oxygen atoms of the two trans aqua axial ligands (Fig. 1).

It has been noticed for iron(III) porphyrins that there is a relationship between the spin-state for the iron(III) and the value of the average equatorial iron-pyrrole N atoms distance (Fe—Np) (Scheidt & Reed, 1981; Cheng et al., 1994). Generally, the spin-state of the Fe(III) porphyrins depends on the value of the Fe—Np bond length. Thus, for the high-spin state (S = 5/2) species, the Fe—Np distance values are large i.e, for the [FeIII(TPP)Cl] complex, Fe—Np = 2.070 (9) Å (Scheidt & Finnegan, 1989) and 2.125 (2) Å for the [FeIII(TpivPP)(η2-O2CO)]- species (Dhifet et al., 2009). For low-spin state (S = 1/2), the Fe—Np bond length is smaller than those of high-spin Fe(III) porphyrins, i.e, for the [FeIII(TpivPP)(NO2)2]- species, the Fe—Np distance is 1.992 (1) Å (Nasri et al., 1990). The inter­medied-spin (S = 3/2) Fe(III) porphyrin complexes present the smallest Fe—Np distances, i.e, the [FeIII(TPP)(3-Clpy)]ClO4 exhibits an Fe—Np bond length of 1.979 (6) Å. Admixed inter­mediate-spin [S = (5/2,3/2)] Fe(III) porphyrins display Fe—Np value around 2.000 Å as in the case of the [FeIII(TPP)(ClO4)] complex [Fe—Np = 2.022 (8) Å] (Gismelseed et al., 1990, Refcode SICFAL).

The Fe—Np distance value of our derivative [FeIII(TClPP)(H2O)2]+ which is 2.042 (2) Å is an indication that this species is high-spin (S = 5/2).

It is noteworthy that Fe(III)-mono­aqua porphyrins are inter­mediate-spin (S = 3/2) with an Fe—Np distances around 1.978 Å while Fe(III)-di­aqua metalloporphyrins are high-spin (S = 5/2) with an Fe—Np distance around 2.045 Å (Cheng et al., 1994) . Thus, for [FeIII(TPP)(H2O)]+ (Xu et al., 2011), the Fe—Np distance is 1.982 (3) Å and the [FeIII(TPP)(H2O)2]+ complex exhibits a Fe—Np distance of 2.045 (8) Å (Scheidt et al., 1979). For Fe(III) mixed-ligands porphyrins type [FeIII(Porph)(H2O)(L)]+ (Porph = porphyrinato) the spin state depends on the nature of the axial L ligand. For example, the Fe—Np distance is 2.022 (8) Å for [FeIII(TpivPP)(SO3CF3)(H2O)] leading to an admixed inter­mediate-spin derivative [S = (5/2,3/2)] (Gismelseed et al., 1990).

For our iron(III) derivative, the axial Fe—O(H2O) bond lengths are 2.051 (2) Å and 2.157 (2) Å while for the [FeIII(TPP)(H2O)2]+ related species (Scheidt et al., 1979), this distance is 2.095 (2) Å. These bond lengths values are comparable to those of several iron(III)-aqua porphyrin complexes [1.961 (3) Å - 2.134 (6) Å] (CSD refcodes ECADET; Xu et al., 2011 and SICFAL; Gismelseed et al., 1990) (CDS, version 5.35, Allen, 2002).

The porphyrin ring is far from being planar, with deviations of atoms from the leasts squares plane ranging from -0.162 (2) Å to 0.110 (2) Å.

In the crystal structure (Fig. 2), The oxygen O3 of the triflate counterion (SO3CF3)- is linked by strong hydrogen bonds to the oxygen atom O2 of one water molecule coordinated to the iron(III) and the two non-coordinated water molecules (O10 and O6 oxygens). The later molecules are also hydrogen bonded to the vanilline molecule through oxygens O7 and O8. On the other hand, this vanilline molecule is also bonded by H bond to the oxygen O1 of one water molecule coordinated to the iron(III).

The crystal is further consolidated by C—H···.π inter­molecular inter­actions involving Cg pyrrole and phenyl centroids rings (Table 2).

Related literature top

For the synthesis, see: Gismelseed et al. (1990). For related structures, see: Gismelseed et al. (1990); Scheidt et al. (1979); Scheidt & Reed (1981); Scheidt & Finnegan (1989); Dhifet et al. (2009); Xu et al. (2011); Nasri et al. (1990); Cheng et al. (1994). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: olex2.solve (Puschmann et al., 2013); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the molecular structure of the title molecule with the atom-numbering. Displacement ellipsoids are drawn at 60%. The H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A general view of the crystal packing for the title compound with hydrogen bonds drawn as dashed lines. Only the major position O10 of the oxygen atom of one disordered water molecule is shown.
(I) top
Crystal data top
[Fe(C44H24Cl4N4)(H2O)2](CF3O3S)·C8H8O3·2H2OF(000) = 2412
Mr = 1179.60Dx = 1.510 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.9998 (4) ÅCell parameters from 9872 reflections
b = 17.8613 (6) Åθ = 2.5–27.4°
c = 26.6592 (9) ŵ = 0.61 mm1
β = 97.9013 (11)°T = 115 K
V = 5188.0 (3) Å3Prism, dark violet
Z = 40.2 × 0.2 × 0.1 mm
Data collection top
Nonius KappaAPEXII
diffractometer
11916 independent reflections
Radiation source: X-ray tube, Siemens KFF Mo 2K-1808821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1414
Tmin = 0.885, Tmax = 0.941k = 2323
95018 measured reflectionsl = 3434
Refinement top
Refinement on F26 constraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0399P)2 + 6.1729P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
11916 reflectionsΔρmax = 0.76 e Å3
709 parametersΔρmin = 0.74 e Å3
0 restraints
Crystal data top
[Fe(C44H24Cl4N4)(H2O)2](CF3O3S)·C8H8O3·2H2OV = 5188.0 (3) Å3
Mr = 1179.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9998 (4) ŵ = 0.61 mm1
b = 17.8613 (6) ÅT = 115 K
c = 26.6592 (9) Å0.2 × 0.2 × 0.1 mm
β = 97.9013 (11)°
Data collection top
Nonius KappaAPEXII
diffractometer
11916 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
8821 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.941Rint = 0.061
95018 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.02Δρmax = 0.76 e Å3
11916 reflectionsΔρmin = 0.74 e Å3
709 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7091 (2)0.75273 (13)0.22709 (8)0.0148 (4)
C20.6504 (2)0.76670 (13)0.17385 (8)0.0159 (5)
C30.5374 (2)0.80365 (13)0.16516 (9)0.0167 (5)
H30.49950.82030.19310.020*
C40.4800 (2)0.81620 (13)0.11625 (9)0.0189 (5)
H40.40270.84080.11060.023*
C4EA0.2576 (2)0.59674 (13)0.39721 (9)0.0193 (5)
H4EA0.19280.62700.40610.023*
C50.5364 (2)0.79256 (14)0.07589 (9)0.0193 (5)
C60.6483 (2)0.75627 (14)0.08291 (9)0.0211 (5)
H60.68600.74050.05470.025*
C70.7051 (2)0.74313 (14)0.13225 (9)0.0197 (5)
H70.78180.71790.13760.024*
C80.8235 (2)0.78571 (12)0.24315 (8)0.0135 (4)
C90.8903 (2)0.83203 (14)0.21212 (9)0.0192 (5)
H90.86300.84770.17840.023*
C100.9989 (2)0.84900 (14)0.23989 (8)0.0194 (5)
H101.06260.87810.22900.023*
C111.0008 (2)0.81518 (12)0.28879 (8)0.0140 (4)
C121.0996 (2)0.81831 (12)0.32806 (8)0.0133 (4)
C131.2167 (2)0.85384 (13)0.31672 (8)0.0143 (4)
C141.2242 (2)0.92948 (13)0.30468 (8)0.0165 (5)
H141.15390.96050.30420.020*
C151.3339 (2)0.96011 (14)0.29332 (9)0.0193 (5)
H151.33811.01150.28460.023*
C161.4362 (2)0.91480 (14)0.29486 (9)0.0205 (5)
C171.4318 (2)0.83969 (14)0.30698 (9)0.0201 (5)
H171.50300.80930.30820.024*
C181.3217 (2)0.80948 (13)0.31731 (8)0.0161 (5)
H181.31750.75770.32490.019*
C191.0996 (2)0.78766 (12)0.37654 (8)0.0131 (4)
C201.1960 (2)0.79639 (13)0.41813 (8)0.0161 (5)
H201.27000.82370.41780.019*
C211.1622 (2)0.75870 (13)0.45793 (8)0.0159 (5)
H211.20830.75450.49070.019*
C221.0437 (2)0.72617 (12)0.44171 (8)0.0131 (4)
C230.9787 (2)0.68094 (12)0.47167 (8)0.0135 (4)
C241.0435 (2)0.65774 (13)0.52273 (8)0.0140 (4)
C251.0415 (2)0.70133 (13)0.56561 (9)0.0196 (5)
H250.99670.74700.56320.024*
C261.1043 (2)0.67914 (14)0.61238 (8)0.0197 (5)
H261.10350.70950.64160.024*
C271.1674 (2)0.61222 (14)0.61515 (8)0.0173 (5)
C281.1707 (2)0.56756 (14)0.57324 (9)0.0216 (5)
H281.21490.52170.57600.026*
C291.1086 (2)0.59058 (14)0.52690 (9)0.0187 (5)
H291.11050.56020.49780.022*
C300.8601 (2)0.65259 (12)0.45727 (8)0.0133 (4)
C310.7898 (2)0.61143 (13)0.48957 (8)0.0158 (5)
H310.81600.59740.52370.019*
C320.6794 (2)0.59620 (13)0.46239 (8)0.0154 (5)
H320.61350.57010.47400.019*
C330.6804 (2)0.62697 (12)0.41259 (8)0.0130 (4)
C340.5852 (2)0.62091 (12)0.37230 (8)0.0134 (4)
C350.4675 (2)0.58381 (13)0.38095 (8)0.0147 (5)
C360.4471 (2)0.50808 (14)0.37200 (11)0.0281 (6)
H360.51200.47730.36370.034*
C370.3326 (2)0.47665 (14)0.37508 (11)0.0280 (6)
H370.31900.42470.36900.034*
C380.2394 (2)0.52161 (13)0.38702 (8)0.0156 (5)
C390.3724 (2)0.62737 (13)0.39432 (9)0.0174 (5)
H390.38620.67900.40160.021*
C400.5879 (2)0.64867 (12)0.32326 (8)0.0143 (4)
C410.4945 (2)0.63557 (13)0.28105 (9)0.0177 (5)
H410.42150.60730.28160.021*
C420.5291 (2)0.67066 (13)0.24049 (9)0.0178 (5)
H420.48580.67100.20710.021*
C430.6443 (2)0.70764 (12)0.25718 (8)0.0140 (4)
N10.89170 (16)0.77736 (10)0.29038 (7)0.0125 (4)
N20.67932 (17)0.69230 (10)0.30781 (7)0.0133 (4)
N30.79152 (16)0.66139 (10)0.41031 (7)0.0122 (4)
N41.00622 (16)0.74539 (10)0.39191 (7)0.0128 (4)
O10.76299 (15)0.81594 (9)0.37720 (6)0.0187 (3)
H1A0.81870.85220.38390.028*
H1B0.73190.80590.40570.028*
O20.91879 (16)0.62112 (9)0.32428 (6)0.0216 (4)
H2A0.91000.62030.29090.032*
H2B0.86630.59050.33560.032*
Cl10.46219 (6)0.80909 (4)0.01479 (2)0.02837 (15)
Cl20.09344 (5)0.48365 (3)0.38831 (2)0.02059 (13)
Cl31.24603 (6)0.58219 (4)0.67323 (2)0.02717 (15)
Cl41.57458 (6)0.95266 (4)0.28187 (3)0.03687 (18)
Fe10.84010 (3)0.72182 (2)0.35080 (2)0.01104 (8)
C440.5613 (2)0.89392 (16)0.43434 (10)0.0278 (6)
H440.58680.91630.40520.033*
C450.4549 (2)0.92685 (14)0.45329 (9)0.0223 (5)
C460.4162 (2)0.90025 (14)0.49835 (9)0.0213 (5)
H460.46130.86230.51780.026*
C470.3121 (2)0.93010 (14)0.51372 (9)0.0204 (5)
C480.2449 (2)0.98641 (14)0.48501 (9)0.0211 (5)
C490.2843 (2)1.01260 (15)0.44081 (9)0.0249 (5)
H490.23971.05070.42140.030*
C500.3895 (2)0.98248 (15)0.42550 (9)0.0247 (6)
H500.41691.00040.39540.030*
C510.3268 (3)0.85316 (16)0.58774 (10)0.0322 (6)
H51A0.33130.80730.56790.048*
H51B0.28260.84290.61650.048*
H51C0.40990.87050.60020.048*
O70.14350 (17)1.01146 (11)0.50295 (6)0.0269 (4)
H7A0.10671.04220.48240.040*
O80.26317 (17)0.90970 (11)0.55642 (7)0.0281 (4)
O90.62056 (18)0.84012 (11)0.45260 (8)0.0351 (5)
C520.1484 (3)0.61624 (19)0.22889 (11)0.0362 (7)
O30.08765 (17)0.60737 (11)0.22290 (7)0.0312 (4)
O40.00031 (18)0.65653 (11)0.15053 (7)0.0342 (5)
O50.0170 (2)0.52536 (11)0.17085 (8)0.0390 (5)
S0AA0.00338 (6)0.60012 (3)0.18920 (2)0.01966 (13)
O60.00468 (17)0.10763 (11)0.44911 (7)0.0289 (4)
H6A0.07020.09690.45370.043*
H6B0.00710.11620.41710.043*
O100.149 (5)0.0536 (15)0.6090 (10)0.044 (8)0.32 (5)
H10A0.16070.04490.57790.066*0.32 (5)
H10B0.10760.01660.61980.066*0.32 (5)
O10B0.0901 (17)0.0701 (5)0.5980 (4)0.034 (2)0.68 (5)
H10C0.06530.03970.61990.050*0.68 (5)
H10D0.10340.04520.57130.050*0.68 (5)
F1_10.2374 (6)0.6047 (3)0.19998 (16)0.0441 (12)0.473 (12)
F2_10.1574 (4)0.6952 (3)0.2380 (2)0.0441 (12)0.473 (12)
F3_10.1719 (4)0.5850 (4)0.27147 (15)0.0441 (12)0.473 (12)
F1A_20.2464 (6)0.6124 (3)0.20575 (19)0.0448 (11)0.527 (12)
F2A_20.1492 (4)0.6758 (3)0.2566 (2)0.0448 (11)0.527 (12)
F3A_20.1597 (4)0.5563 (4)0.26316 (17)0.0448 (11)0.527 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0134 (11)0.0175 (11)0.0136 (10)0.0021 (9)0.0019 (8)0.0003 (9)
C20.0138 (11)0.0182 (12)0.0155 (11)0.0042 (9)0.0007 (9)0.0045 (9)
C30.0131 (11)0.0188 (12)0.0183 (11)0.0022 (9)0.0022 (9)0.0005 (9)
C40.0121 (11)0.0208 (12)0.0222 (12)0.0009 (9)0.0030 (9)0.0043 (10)
C4EA0.0146 (12)0.0217 (12)0.0228 (12)0.0003 (10)0.0073 (9)0.0018 (10)
C50.0177 (12)0.0238 (13)0.0141 (11)0.0067 (10)0.0054 (9)0.0065 (9)
C60.0203 (12)0.0287 (13)0.0146 (11)0.0031 (10)0.0030 (9)0.0013 (10)
C70.0137 (11)0.0267 (13)0.0180 (11)0.0014 (10)0.0005 (9)0.0015 (10)
C80.0119 (11)0.0168 (11)0.0115 (10)0.0007 (9)0.0015 (8)0.0004 (8)
C90.0169 (12)0.0267 (13)0.0135 (11)0.0029 (10)0.0007 (9)0.0056 (9)
C100.0168 (12)0.0259 (13)0.0157 (11)0.0046 (10)0.0030 (9)0.0044 (10)
C110.0133 (11)0.0155 (11)0.0137 (10)0.0010 (9)0.0037 (8)0.0004 (9)
C120.0099 (10)0.0150 (11)0.0154 (11)0.0014 (9)0.0032 (8)0.0013 (9)
C130.0131 (11)0.0195 (12)0.0100 (10)0.0039 (9)0.0006 (8)0.0024 (9)
C140.0148 (11)0.0194 (12)0.0147 (11)0.0002 (9)0.0001 (9)0.0003 (9)
C150.0213 (13)0.0178 (12)0.0182 (11)0.0055 (10)0.0005 (9)0.0023 (9)
C160.0142 (12)0.0285 (13)0.0190 (12)0.0079 (10)0.0034 (9)0.0021 (10)
C170.0145 (12)0.0253 (13)0.0212 (12)0.0004 (10)0.0050 (9)0.0001 (10)
C180.0160 (11)0.0158 (11)0.0169 (11)0.0018 (9)0.0042 (9)0.0003 (9)
C190.0105 (10)0.0152 (11)0.0135 (10)0.0005 (9)0.0020 (8)0.0008 (8)
C200.0123 (11)0.0196 (12)0.0159 (11)0.0036 (9)0.0004 (9)0.0022 (9)
C210.0137 (11)0.0210 (12)0.0123 (10)0.0015 (9)0.0008 (8)0.0018 (9)
C220.0120 (10)0.0171 (11)0.0101 (10)0.0019 (9)0.0009 (8)0.0019 (8)
C230.0125 (11)0.0159 (11)0.0119 (10)0.0018 (9)0.0013 (8)0.0019 (8)
C240.0112 (11)0.0185 (11)0.0126 (10)0.0033 (9)0.0031 (8)0.0020 (9)
C250.0231 (13)0.0184 (12)0.0168 (11)0.0023 (10)0.0012 (10)0.0002 (9)
C260.0217 (12)0.0258 (13)0.0110 (10)0.0002 (10)0.0008 (9)0.0025 (9)
C270.0100 (11)0.0297 (13)0.0118 (10)0.0001 (10)0.0003 (8)0.0058 (9)
C280.0197 (13)0.0261 (13)0.0191 (12)0.0072 (10)0.0036 (10)0.0037 (10)
C290.0185 (12)0.0247 (13)0.0132 (11)0.0031 (10)0.0027 (9)0.0023 (9)
C300.0140 (11)0.0143 (11)0.0118 (10)0.0021 (9)0.0022 (8)0.0002 (8)
C310.0154 (11)0.0182 (12)0.0140 (11)0.0010 (9)0.0027 (9)0.0015 (9)
C320.0145 (11)0.0165 (11)0.0160 (11)0.0021 (9)0.0048 (9)0.0017 (9)
C330.0122 (11)0.0124 (10)0.0148 (11)0.0006 (8)0.0037 (8)0.0006 (8)
C340.0093 (10)0.0127 (11)0.0186 (11)0.0009 (8)0.0029 (8)0.0003 (9)
C350.0126 (11)0.0176 (11)0.0141 (10)0.0025 (9)0.0020 (8)0.0030 (9)
C360.0150 (12)0.0176 (12)0.0531 (17)0.0019 (10)0.0101 (12)0.0008 (12)
C370.0181 (13)0.0131 (12)0.0540 (18)0.0043 (10)0.0091 (12)0.0024 (11)
C380.0106 (11)0.0208 (12)0.0153 (11)0.0047 (9)0.0009 (8)0.0044 (9)
C390.0177 (12)0.0160 (11)0.0191 (11)0.0040 (9)0.0052 (9)0.0021 (9)
C400.0110 (11)0.0149 (11)0.0172 (11)0.0004 (9)0.0022 (9)0.0002 (9)
C410.0121 (11)0.0206 (12)0.0193 (11)0.0041 (9)0.0012 (9)0.0005 (9)
C420.0133 (11)0.0223 (12)0.0166 (11)0.0037 (9)0.0022 (9)0.0012 (9)
C430.0114 (11)0.0162 (11)0.0138 (10)0.0003 (9)0.0011 (8)0.0000 (8)
N10.0091 (9)0.0166 (9)0.0117 (9)0.0006 (7)0.0010 (7)0.0006 (7)
N20.0109 (9)0.0154 (9)0.0135 (9)0.0006 (7)0.0008 (7)0.0018 (7)
N30.0099 (9)0.0153 (9)0.0112 (9)0.0013 (7)0.0012 (7)0.0003 (7)
N40.0106 (9)0.0170 (9)0.0110 (9)0.0008 (7)0.0021 (7)0.0004 (7)
O10.0178 (9)0.0177 (8)0.0225 (9)0.0001 (7)0.0089 (7)0.0012 (7)
O20.0272 (10)0.0221 (9)0.0164 (8)0.0054 (7)0.0065 (7)0.0012 (7)
Cl10.0245 (3)0.0417 (4)0.0164 (3)0.0080 (3)0.0063 (2)0.0101 (3)
Cl20.0119 (3)0.0247 (3)0.0254 (3)0.0047 (2)0.0032 (2)0.0052 (2)
Cl30.0195 (3)0.0486 (4)0.0133 (3)0.0091 (3)0.0017 (2)0.0083 (3)
Cl40.0188 (3)0.0420 (4)0.0512 (4)0.0106 (3)0.0098 (3)0.0146 (3)
Fe10.00874 (15)0.01416 (16)0.01025 (14)0.00075 (12)0.00145 (11)0.00049 (12)
C440.0209 (13)0.0363 (16)0.0282 (14)0.0101 (12)0.0108 (11)0.0109 (12)
C450.0167 (12)0.0276 (13)0.0228 (12)0.0064 (10)0.0038 (10)0.0108 (10)
C460.0180 (12)0.0230 (13)0.0227 (12)0.0004 (10)0.0024 (10)0.0071 (10)
C470.0202 (12)0.0257 (13)0.0156 (11)0.0019 (10)0.0037 (9)0.0060 (10)
C480.0180 (12)0.0269 (13)0.0189 (12)0.0003 (10)0.0040 (9)0.0058 (10)
C490.0241 (13)0.0304 (14)0.0201 (12)0.0008 (11)0.0026 (10)0.0015 (11)
C500.0228 (13)0.0347 (15)0.0176 (12)0.0087 (11)0.0062 (10)0.0058 (11)
C510.0333 (16)0.0409 (17)0.0228 (13)0.0130 (13)0.0055 (12)0.0078 (12)
O70.0252 (10)0.0352 (11)0.0219 (9)0.0115 (8)0.0086 (8)0.0060 (8)
O80.0278 (10)0.0369 (11)0.0217 (9)0.0136 (8)0.0109 (8)0.0063 (8)
O90.0289 (11)0.0360 (11)0.0441 (12)0.0035 (9)0.0185 (9)0.0037 (9)
C520.0267 (15)0.057 (2)0.0242 (14)0.0059 (14)0.0021 (12)0.0089 (14)
O30.0255 (10)0.0480 (12)0.0209 (9)0.0048 (9)0.0065 (8)0.0075 (8)
O40.0347 (11)0.0356 (11)0.0319 (10)0.0032 (9)0.0028 (9)0.0093 (9)
O50.0449 (13)0.0284 (11)0.0494 (13)0.0089 (9)0.0271 (10)0.0135 (9)
S0AA0.0197 (3)0.0235 (3)0.0162 (3)0.0002 (2)0.0040 (2)0.0025 (2)
O60.0299 (11)0.0314 (10)0.0266 (10)0.0053 (9)0.0079 (8)0.0060 (8)
O100.074 (18)0.027 (7)0.038 (6)0.026 (9)0.032 (9)0.011 (5)
O10B0.052 (6)0.024 (2)0.030 (3)0.013 (3)0.021 (3)0.0083 (18)
F1_10.0317 (16)0.072 (2)0.0259 (16)0.0074 (13)0.0058 (10)0.0084 (12)
F2_10.0317 (16)0.072 (2)0.0259 (16)0.0074 (13)0.0058 (10)0.0084 (12)
F3_10.0317 (16)0.072 (2)0.0259 (16)0.0074 (13)0.0058 (10)0.0084 (12)
F1A_20.0330 (14)0.071 (2)0.0279 (15)0.0038 (12)0.0032 (10)0.0091 (11)
F2A_20.0330 (14)0.071 (2)0.0279 (15)0.0038 (12)0.0032 (10)0.0091 (11)
F3A_20.0330 (14)0.071 (2)0.0279 (15)0.0038 (12)0.0032 (10)0.0091 (11)
Geometric parameters (Å, º) top
C1—C21.497 (3)C33—C341.398 (3)
C1—C81.402 (3)C33—N31.377 (3)
C1—C431.399 (3)C34—C351.500 (3)
C2—C31.399 (3)C34—C401.402 (3)
C2—C71.397 (3)C35—C361.386 (3)
C3—H30.9500C35—C391.389 (3)
C3—C41.386 (3)C36—H360.9500
C4—H40.9500C36—C371.392 (3)
C4—C51.380 (3)C37—H370.9500
C4EA—H4EA0.9500C37—C381.373 (3)
C4EA—C381.378 (3)C38—Cl21.747 (2)
C4EA—C391.388 (3)C39—H390.9500
C5—C61.381 (3)C40—C411.435 (3)
C5—Cl11.744 (2)C40—N21.379 (3)
C6—H60.9500C41—H410.9500
C6—C71.396 (3)C41—C421.349 (3)
C7—H70.9500C42—H420.9500
C8—C91.441 (3)C42—C431.443 (3)
C8—N11.382 (3)C43—N21.379 (3)
C9—H90.9500N1—Fe12.0377 (18)
C9—C101.351 (3)N2—Fe12.0402 (18)
C10—H100.9500N3—Fe12.0497 (18)
C10—C111.434 (3)N4—Fe12.0412 (18)
C11—C121.403 (3)O1—H1A0.8932
C11—N11.383 (3)O1—H1B0.8931
C12—C131.504 (3)O1—Fe12.0506 (16)
C12—C191.404 (3)O2—H2A0.8809
C13—C141.394 (3)O2—H2B0.8779
C13—C181.398 (3)O2—Fe12.1570 (16)
C14—H140.9500C44—H440.9500
C14—C151.395 (3)C44—C451.460 (3)
C15—H150.9500C44—O91.224 (3)
C15—C161.383 (3)C45—C461.411 (3)
C16—C171.382 (3)C45—C501.381 (4)
C16—Cl41.743 (2)C46—H460.9500
C17—H170.9500C46—C471.376 (3)
C17—C181.388 (3)C47—C481.410 (4)
C18—H180.9500C47—O81.373 (3)
C19—C201.433 (3)C48—C491.391 (3)
C19—N41.382 (3)C48—O71.349 (3)
C20—H200.9500C49—H490.9500
C20—C211.351 (3)C49—C501.387 (4)
C21—H210.9500C50—H500.9500
C21—C221.438 (3)C51—H51A0.9800
C22—C231.399 (3)C51—H51B0.9800
C22—N41.378 (3)C51—H51C0.9800
C23—C241.506 (3)C51—O81.430 (3)
C23—C301.403 (3)O7—H7A0.8400
C24—C251.386 (3)C52—S0AA1.812 (3)
C24—C291.394 (3)C52—F1_11.342 (5)
C25—H250.9500C52—F2_11.431 (5)
C25—C261.397 (3)C52—F3_11.259 (4)
C26—H260.9500C52—F1A_21.315 (6)
C26—C271.379 (3)C52—F2A_21.293 (5)
C27—C281.377 (3)C52—F3A_21.403 (6)
C27—Cl31.751 (2)O3—S0AA1.4402 (18)
C28—H280.9500O4—S0AA1.4380 (19)
C28—C291.389 (3)O5—S0AA1.437 (2)
C29—H290.9500O6—H6A0.8699
C30—C311.436 (3)O6—H6B0.8702
C30—N31.379 (3)O10—H10A0.8696
C31—H310.9500O10—H10B0.8701
C31—C321.354 (3)O10B—H10C0.8703
C32—H320.9500O10B—H10D0.8697
C32—C331.438 (3)
C8—C1—C2118.1 (2)C35—C36—H36119.7
C43—C1—C2116.9 (2)C35—C36—C37120.6 (2)
C43—C1—C8125.0 (2)C37—C36—H36119.7
C3—C2—C1119.6 (2)C36—C37—H37120.4
C7—C2—C1121.7 (2)C38—C37—C36119.2 (2)
C7—C2—C3118.7 (2)C38—C37—H37120.4
C2—C3—H3119.6C4EA—C38—Cl2118.87 (18)
C4—C3—C2120.8 (2)C37—C38—C4EA121.5 (2)
C4—C3—H3119.6C37—C38—Cl2119.65 (18)
C3—C4—H4120.4C4EA—C39—C35121.1 (2)
C5—C4—C3119.2 (2)C4EA—C39—H39119.5
C5—C4—H4120.4C35—C39—H39119.5
C38—C4EA—H4EA120.6C34—C40—C41124.7 (2)
C38—C4EA—C39118.8 (2)N2—C40—C34126.0 (2)
C39—C4EA—H4EA120.6N2—C40—C41109.33 (19)
C4—C5—C6121.7 (2)C40—C41—H41126.2
C4—C5—Cl1118.26 (19)C42—C41—C40107.6 (2)
C6—C5—Cl1120.00 (19)C42—C41—H41126.2
C5—C6—H6120.6C41—C42—H42126.3
C5—C6—C7118.8 (2)C41—C42—C43107.3 (2)
C7—C6—H6120.6C43—C42—H42126.3
C2—C7—H7119.6C1—C43—C42125.5 (2)
C6—C7—C2120.8 (2)N2—C43—C1125.4 (2)
C6—C7—H7119.6N2—C43—C42109.03 (19)
C1—C8—C9125.0 (2)C8—N1—C11106.51 (17)
N1—C8—C1125.8 (2)C8—N1—Fe1126.67 (15)
N1—C8—C9109.22 (19)C11—N1—Fe1126.81 (14)
C8—C9—H9126.4C40—N2—C43106.70 (18)
C10—C9—C8107.2 (2)C40—N2—Fe1126.14 (15)
C10—C9—H9126.4C43—N2—Fe1127.04 (15)
C9—C10—H10126.1C30—N3—Fe1126.49 (15)
C9—C10—C11107.8 (2)C33—N3—C30106.68 (18)
C11—C10—H10126.1C33—N3—Fe1126.64 (14)
C12—C11—C10125.1 (2)C19—N4—Fe1126.93 (14)
N1—C11—C10109.22 (19)C22—N4—C19106.61 (18)
N1—C11—C12125.69 (19)C22—N4—Fe1126.34 (15)
C11—C12—C13117.66 (19)H1A—O1—H1B107.9
C11—C12—C19125.0 (2)Fe1—O1—H1A111.0
C19—C12—C13117.27 (19)Fe1—O1—H1B110.7
C14—C13—C12122.3 (2)H2A—O2—H2B110.5
C14—C13—C18118.5 (2)Fe1—O2—H2A110.5
C18—C13—C12119.2 (2)Fe1—O2—H2B95.4
C13—C14—H14119.7N1—Fe1—N289.77 (7)
C13—C14—C15120.7 (2)N1—Fe1—N3177.28 (7)
C15—C14—H14119.7N1—Fe1—N489.88 (7)
C14—C15—H15120.4N1—Fe1—O192.61 (7)
C16—C15—C14119.3 (2)N1—Fe1—O288.79 (7)
C16—C15—H15120.4N2—Fe1—N390.03 (7)
C15—C16—Cl4119.78 (19)N2—Fe1—N4176.22 (8)
C17—C16—C15121.4 (2)N2—Fe1—O192.13 (7)
C17—C16—Cl4118.86 (19)N2—Fe1—O287.49 (7)
C16—C17—H17120.5N3—Fe1—O190.11 (7)
C16—C17—C18118.9 (2)N3—Fe1—O288.49 (7)
C18—C17—H17120.5N4—Fe1—N390.14 (7)
C13—C18—H18119.4N4—Fe1—O191.64 (7)
C17—C18—C13121.3 (2)N4—Fe1—O288.74 (7)
C17—C18—H18119.4O1—Fe1—O2178.54 (7)
C12—C19—C20125.2 (2)C45—C44—H44117.0
N4—C19—C12125.5 (2)O9—C44—H44117.0
N4—C19—C20109.34 (19)O9—C44—C45125.9 (3)
C19—C20—H20126.3C46—C45—C44120.6 (2)
C21—C20—C19107.4 (2)C50—C45—C44119.2 (2)
C21—C20—H20126.3C50—C45—C46120.2 (2)
C20—C21—H21126.2C45—C46—H46120.5
C20—C21—C22107.5 (2)C47—C46—C45119.0 (2)
C22—C21—H21126.2C47—C46—H46120.5
C23—C22—C21125.1 (2)C46—C47—C48120.7 (2)
N4—C22—C21109.11 (19)O8—C47—C46125.5 (2)
N4—C22—C23125.8 (2)O8—C47—C48113.8 (2)
C22—C23—C24117.35 (19)C49—C48—C47119.9 (2)
C22—C23—C30125.5 (2)O7—C48—C47116.2 (2)
C30—C23—C24117.06 (19)O7—C48—C49123.9 (2)
C25—C24—C23122.1 (2)C48—C49—H49120.4
C25—C24—C29119.0 (2)C50—C49—C48119.3 (2)
C29—C24—C23118.90 (19)C50—C49—H49120.4
C24—C25—H25119.5C45—C50—C49121.0 (2)
C24—C25—C26121.0 (2)C45—C50—H50119.5
C26—C25—H25119.5C49—C50—H50119.5
C25—C26—H26120.8H51A—C51—H51B109.5
C27—C26—C25118.5 (2)H51A—C51—H51C109.5
C27—C26—H26120.8H51B—C51—H51C109.5
C26—C27—Cl3119.78 (18)O8—C51—H51A109.5
C28—C27—C26121.9 (2)O8—C51—H51B109.5
C28—C27—Cl3118.34 (18)O8—C51—H51C109.5
C27—C28—H28120.5C48—O7—H7A109.5
C27—C28—C29119.0 (2)C47—O8—C51117.1 (2)
C29—C28—H28120.5F1_1—C52—S0AA107.0 (3)
C24—C29—H29119.7F1_1—C52—F2_1102.0 (3)
C28—C29—C24120.7 (2)F2_1—C52—S0AA106.9 (2)
C28—C29—H29119.7F3_1—C52—S0AA120.7 (3)
C23—C30—C31125.3 (2)F3_1—C52—F1_1112.0 (3)
N3—C30—C23125.4 (2)F3_1—C52—F2_1106.5 (3)
N3—C30—C31109.31 (19)F1A_2—C52—S0AA115.5 (3)
C30—C31—H31126.3F1A_2—C52—F3A_2105.1 (4)
C32—C31—C30107.4 (2)F2A_2—C52—S0AA113.6 (3)
C32—C31—H31126.3F2A_2—C52—F1A_2111.6 (4)
C31—C32—H32126.4F2A_2—C52—F3A_2105.3 (3)
C31—C32—C33107.3 (2)F3A_2—C52—S0AA104.6 (3)
C33—C32—H32126.4O3—S0AA—C52104.66 (12)
C34—C33—C32125.4 (2)O4—S0AA—C52104.07 (14)
N3—C33—C32109.33 (19)O4—S0AA—O3115.50 (12)
N3—C33—C34125.22 (19)O5—S0AA—C52102.84 (14)
C33—C34—C35119.17 (19)O5—S0AA—O3114.19 (12)
C33—C34—C40125.4 (2)O5—S0AA—O4113.65 (12)
C40—C34—C35115.39 (19)H6A—O6—H6B109.5
C36—C35—C34121.8 (2)H10A—O10—H10B109.4
C36—C35—C39118.8 (2)H10C—O10B—H10D109.5
C39—C35—C34119.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3, Cg4, Cg10 and Cg13 are the centroids of the N2/C40–C43, N3/C30–C33, N4/C19–C22, C2–C7 and C45–C50 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1A···O10Bi0.891.742.626 (8)171
O1—H1B···O90.891.962.747 (2)146
O2—H2A···O3ii0.881.832.705 (2)171
O6—H6A···O7iii0.872.453.064 (3)128
O6—H6A···O8iii0.872.112.946 (3)162
O6—H6B···O4iv0.871.932.790 (3)168
O7—H7A···O6v0.841.772.596 (3)167
O10—H10A···O7vi0.872.072.92 (3)165
O10B—H10C···O5vii0.871.922.786 (7)177
O10B—H10D···O7vi0.872.022.876 (5)166
C10—H10···Cl3viii0.952.763.659 (2)159
C14—H14···O5ix0.952.383.297 (3)162
C31—H31···Cl2i0.952.823.739 (2)163
C4EA—H4EA···Cg4x0.952.663.5054149
C17—H17···Cg2ii0.952.763.5715144
C20—H20···Cg13ii0.952.823.5054130
C28—H28···Cg3xi0.952.793.6574152
C37—H37···Cg10xii0.952.763.6107149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x, y1/2, z+1/2; (v) x, y+1, z; (vi) x, y1, z; (vii) x, y+1/2, z+1/2; (viii) x, y+3/2, z1/2; (ix) x+1, y+1/2, z+1/2; (x) x1, y, z; (xi) x+2, y+1, z+1; (xii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3, Cg4, Cg10 and Cg13 are the centroids of the N2/C40–C43, N3/C30–C33, N4/C19–C22, C2–C7 and C45–C50 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1A···O10Bi0.891.742.626 (8)171
O1—H1B···O90.891.962.747 (2)146
O2—H2A···O3ii0.881.832.705 (2)171
O6—H6A···O7iii0.872.453.064 (3)128
O6—H6A···O8iii0.872.112.946 (3)162
O6—H6B···O4iv0.871.932.790 (3)168
O7—H7A···O6v0.841.772.596 (3)167
O10—H10A···O7vi0.872.072.92 (3)165
O10B—H10C···O5vii0.871.922.786 (7)177
O10B—H10D···O7vi0.872.022.876 (5)166
C10—H10···Cl3viii0.952.763.659 (2)159
C14—H14···O5ix0.952.383.297 (3)162
C31—H31···Cl2i0.952.823.739 (2)163
C4EA—H4EA···Cg4x0.952.663.5054149
C17—H17···Cg2ii0.952.763.5715144
C20—H20···Cg13ii0.952.823.5054130
C28—H28···Cg3xi0.952.793.6574152
C37—H37···Cg10xii0.952.763.6107149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x, y1/2, z+1/2; (v) x, y+1, z; (vi) x, y1, z; (vii) x, y+1/2, z+1/2; (viii) x, y+3/2, z1/2; (ix) x+1, y+1/2, z+1/2; (x) x1, y, z; (xi) x+2, y+1, z+1; (xii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCheng, B., Safo, M. K., Orosz, R. D., Reed, C. A., Debrunner, P. G. & Scheidt, W. R. (1994). Inorg. Chem. 33, 1319–1324.  CSD CrossRef CAS Web of Science Google Scholar
First citationDhifet, M., Belkhiria, M. S., Daran, J.-C. & Nasri, H. (2009). Acta Cryst. E65, m967–m968.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGismelseed, A., Bominaar, E. L., Bill, E., Trautwein, A. X., Winkler, H., Nasri, H., Doppelt, P., Mandon, D., Fischer, J. & Weiss, R. (1990). Inorg. Chem. 29, 2741–2749.  CSD CrossRef CAS Web of Science Google Scholar
First citationNasri, H., Goodwin, J. A. & Scheidt, W. R. (1990). Inorg. Chem. 29, 185–191.  CSD CrossRef CAS Web of Science Google Scholar
First citationPuschmann, H., Bourhis, L. J., Dolomanov, O. V., Gildea, R. J. & Howard, J. A. K. (2013). Acta Cryst. A69, s679.  CrossRef IUCr Journals Google Scholar
First citationScheidt, W. R., Cohen, I. A. & Kastner, M. E. (1979). J. Am. Chem. Soc. 18, 3546–3552.  CAS Google Scholar
First citationScheidt, W. R. & Finnegan, M. G. (1989). Acta Cryst. C45, 1214–1216.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationScheidt, W. R. & Reed, C. A. (1981). J. Am. Chem. Soc. 81, 543–555.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, N., Powell, D. R. & Richter-Addo, G. B. (2011). Angew. Chem. Int. Ed. 50, 9694–9696.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages m296-m297
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds