organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o645-o646

A new polymorph of N-(2-{N′-[(1E)-2-hy­dr­oxy­benzyl­­idene]hydrazinecarbon­yl}phen­yl)benzamide

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eAnalytical Development Division, Manchester Metropolitan University, Manchester M1 5GD, England, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 29 April 2014; accepted 4 May 2014; online 10 May 2014)

The title compound, C21H17N3O3, is a new polymorph of an already published structure [Shashidhar et al. (2006[Shashidhar, , Chopra, D., Shivashankar, S. A. & Guru Row, T. N. (2006). Acta Cryst. E62, o4473-o4475.]). Acta Cryst. E62, o4473–o4475]. The previously reported structure crystallizes in the monoclinic space group C2/c, whereas the structure reported here is in the tetra­gonal space group I41/a. The bond lengths and angles are similar in both structures. The mol­ecule adopts an extended conformation via intra­molecular N—H⋯O and O—H⋯N hydrogen bonds; the terminal phenyl ring and the hy­droxy­lphenyl ring are twisted with respect to the central benzene ring by 44.43 (7) and 21.99 (8)°, respectively. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, weak C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions into a three-dimensional supra­molecular network.

Related literature

For different medicinal functions of hydrazide–hydrazone compounds, see: Bharti et al. (2010[Bharti, S. K., Nath, G., Tilak, R. & Singh, S. K. (2010). Eur. J. Med. Chem. 45, 651-660.]); Loncle et al. (2004[Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067-1071.]); Garoufalias et al. (2002[Garoufalias, S. P., Pouli, N., Marakos, V. & Ladas, A. C. (2002). Il Farmaco, 57, 973-977.]); Vicini et al. (2002[Vicini, P., Zani, F., Cozzini, P. & Doytchinova, I. (2002). Eur. J. Med. Chem. 37, 553-567.]); Sondhi et al. (2006[Sondhi, S. M., Dinodia, M. & Kumar, A. (2006). Bioorg. Med. Chem. 14, 4657-4663.]); Kaymakçıoğlu & Rollas (2002[Kaymakçıoğlu, B. K. & Rollas, S. (2002). Il Farmaco, 57, 595-599.]); Rahman et al. (2005[Rahman, V. M., Mukhtar, S., Ansari, W. H. & Lemiere, G. (2005). Eur. J. Med. Chem. 40, 173-184.]); Ragavendran et al. (2007[Ragavendran, J., Sriram, D., Patel, S., Reddy, I., Bharathwajan, N., Stables, J. & Yogeeswari, P. (2007). Eur. J. Med. Chem. 42, 146-151.]); Çakır et al. (2001[Çakır, B., Dağ, Ö., Yıldırım, E., Erol, K. & Şahin, M. F. (2001). J. Fac. Pharm. Gazi, 18, 99-106.]); Terzioglu & Gursoy (2003[Terzioglu, N. & Gursoy, A. (2003). Eur. J. Med. Chem. 38, 781-786.]); Vicini et al. (2009[Vicini, P., Incerti, M. I., Colla, P. L. & Loddo, R. (2009). Eur. J. Med. Chem. 44, 1801-1807.]). For a monoclinic polymorph of the title compound, see: Shashidhar et al. (2006[Shashidhar, , Chopra, D., Shivashankar, S. A. & Guru Row, T. N. (2006). Acta Cryst. E62, o4473-o4475.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17N3O3

  • Mr = 359.38

  • Tetragonal, I 41 /a

  • a = 26.7145 (14) Å

  • c = 10.1160 (5) Å

  • V = 7219.4 (8) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.22 × 0.19 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SHELXTL, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.80, Tmax = 0.99

  • 37068 measured reflections

  • 4868 independent reflections

  • 3625 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.107

  • S = 1.04

  • 4868 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.91 2.02 2.9181 (15) 171
N3—H3A⋯O2 0.91 1.85 2.6373 (16) 143
O3—H3B⋯N1 0.84 1.85 2.6052 (16) 148
C4—H4⋯O2ii 0.95 2.60 3.3388 (19) 135
C12—H12⋯O1i 0.95 2.47 3.2319 (17) 137
C18—H18⋯O3iii 0.95 2.53 3.417 (2) 155
C17—H17⋯Cg1i 0.95 2.73 3.6561 (18) 166
Symmetry codes: (i) [-y+{\script{5\over 4}}, x-{\script{1\over 4}}, z-{\script{1\over 4}}]; (ii) [-x+1, -y+{\script{1\over 2}}, z]; (iii) [y+{\script{3\over 4}}, -x+{\script{3\over 4}}, z-{\script{1\over 4}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SHELXTL, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SHELXTL, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In many reports, hydrazide-hydrazone compounds are considered to be good candidates for different pharmaceutical applications such as anti-bacterial (Bharti et al., 2010), antifugal (Loncle et al., 2004), antimicrobial (Garoufalias et al., 2002; Vicini et al., 2002), anti-inflammatory (Sondhi et al., 2006), anti-malarial and anti-tuberculotic activities (Kaymakçıoğlu & Rollas, 2002; Rahman et al., 2005) as well as anticonvulsant agents (Ragavendran et al., 2007; Çakır et al., 2001). In addition, hydrazide-hydrazones were reported to elicit anti-cancer (Terzioglu & Gursoy, 2003) and anti-HIV properties (Vicini et al., 2009) and hence they have gained an important place in medicinal chemistry. As part of our study to obtain novel hydrazide-hydrazones with a wide spectrum of pharmaceutical properties we report herein the synthesis of the title compound as an example of a series of hydrazide-hydrazones.

The title compound, (I), is a tetragonal polymorph of the previously reported crystal structure which crystallizes in the monoclinic space group C2/c (Shashidhar et al., 2006). The relative arrangement of the molecules in (I) is different from that previously reported.

The "extended" conformation of the title molecule (I) is largely determined by the intramolecular N—H···O and O—H···N hydrogen bonds (Table 1 and Fig. 1). The dihedral angle between the central 6-membered ring (C8–C13) and the phenyl ring (C1–C6) of the benzamide group is 44.43 (7)° while that with the phenol ring (C16–C21) is 21.99 (8)°. The molecular packing of (I) is stabilized by intermolecular N—H···O hydrogen bonds a weak C—H···π interaction (Table 1 and Fig. 2).

Related literature top

For different medicinal functions of hydrazide–hydrazone compounds, see: Bharti et al. (2010); Loncle et al. (2004); Garoufalias et al. (2002); Vicini et al. (2002); Sondhi et al. (2006); Kaymakçıoğlu & Rollas (2002); Rahman et al., (2005); Ragavendran et al. (2007); Çakır et al. (2001); Terzioglu & Gursoy (2003); Vicini et al. (2009). For a monoclinic polymorph of the title compound, see: Shashidhar et al. (2006).

Experimental top

In 25 ml of ethanol, a mixture of 237 mg (1 mmol) 3-amino-2-phenylquinazolin-4(3H)-one, 122 mg (1 mmol) of salicaldehyde and a catalytic amount of glacial acetic acid was stirred and refluxed for 6hr. The mixture was cooled and the separated solid was recrystallized from ethanol to afford the pure product as pale-yellow crystals suitable for X-ray diffraction. m.p. 497 – 501 K.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91 and O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title molecule with 50% probability ellipsoids. Intramolecular hydrogen bonds are shown by dotted lines.
[Figure 2] Fig. 2. Packing viewed down the c axis with intermolecular N—H···O hydrogen bonds shown with dotted lines.
N-(2-{N'-[(1E)-2-Hydroxybenzylidene]hydrazinecarbonyl}phenyl)benzamide top
Crystal data top
C21H17N3O3Dx = 1.323 Mg m3
Mr = 359.38Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 9997 reflections
Hall symbol: -I 4adθ = 2.2–29.4°
a = 26.7145 (14) ŵ = 0.09 mm1
c = 10.1160 (5) ÅT = 150 K
V = 7219.4 (8) Å3Block, pale-yellow
Z = 160.22 × 0.19 × 0.15 mm
F(000) = 3008
Data collection top
Bruker SMART APEX CCD
diffractometer
4868 independent reflections
Radiation source: fine-focus sealed tube3625 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 8.3660 pixels mm-1θmax = 29.5°, θmin = 2.2°
ϕ and ω scansh = 3636
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 3636
Tmin = 0.80, Tmax = 0.99l = 1313
37068 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0318P)2 + 5.367P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4868 reflectionsΔρmax = 0.23 e Å3
244 parametersΔρmin = 0.21 e Å3
Crystal data top
C21H17N3O3Z = 16
Mr = 359.38Mo Kα radiation
Tetragonal, I41/aµ = 0.09 mm1
a = 26.7145 (14) ÅT = 150 K
c = 10.1160 (5) Å0.22 × 0.19 × 0.15 mm
V = 7219.4 (8) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
4868 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
3625 reflections with I > 2σ(I)
Tmin = 0.80, Tmax = 0.99Rint = 0.049
37068 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.04Δρmax = 0.23 e Å3
4868 reflectionsΔρmin = 0.21 e Å3
244 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56564 (4)0.41265 (4)0.31994 (10)0.0379 (3)
O20.65352 (4)0.27173 (4)0.11479 (12)0.0444 (4)
O30.67750 (4)0.17105 (4)0.15220 (12)0.0461 (4)
N10.72994 (4)0.23746 (4)0.02418 (12)0.0323 (3)
N20.73567 (4)0.27577 (4)0.06534 (12)0.0343 (4)
N30.61447 (4)0.35295 (4)0.22122 (12)0.0327 (3)
C10.52568 (5)0.35160 (5)0.18534 (14)0.0307 (4)
C20.52601 (5)0.33600 (5)0.05509 (16)0.0372 (4)
C30.48315 (6)0.31576 (6)0.00106 (17)0.0416 (5)
C40.44051 (6)0.30914 (5)0.07402 (17)0.0407 (5)
C50.44026 (6)0.32438 (7)0.20375 (18)0.0521 (6)
C60.48221 (6)0.34632 (7)0.25975 (16)0.0457 (5)
C70.57029 (5)0.37577 (5)0.24815 (14)0.0302 (4)
C80.66281 (5)0.36385 (5)0.26991 (14)0.0310 (4)
C90.67193 (6)0.40316 (6)0.35685 (16)0.0401 (5)
C100.71960 (6)0.41150 (6)0.40559 (16)0.0419 (5)
C110.75900 (6)0.38104 (6)0.36873 (15)0.0389 (5)
C120.75057 (5)0.34228 (5)0.28113 (14)0.0342 (4)
C130.70295 (5)0.33311 (5)0.22863 (14)0.0298 (4)
C140.69475 (5)0.29129 (5)0.13280 (15)0.0325 (4)
C150.76871 (5)0.22376 (6)0.08880 (15)0.0378 (5)
C160.76600 (5)0.18314 (5)0.18336 (14)0.0333 (4)
C170.80939 (6)0.16779 (7)0.24892 (18)0.0525 (6)
C180.80889 (7)0.12900 (8)0.33838 (18)0.0565 (6)
C190.76431 (6)0.10478 (7)0.36461 (16)0.0476 (5)
C200.72072 (6)0.11928 (6)0.30239 (16)0.0416 (5)
C210.72114 (5)0.15829 (5)0.21138 (14)0.0320 (4)
H20.555600.339100.003900.0450*
H2A0.765800.291500.068800.0410*
H30.483200.306400.091700.0500*
H3A0.613600.323500.175900.0390*
H3B0.683400.194900.100300.0550*
H40.411600.294200.036300.0490*
H50.411000.319800.255700.0620*
H60.481300.357700.348700.0550*
H90.645200.424500.383000.0480*
H100.725300.438400.465000.0500*
H110.791600.386700.403300.0470*
H120.777700.321400.255900.0410*
H150.799700.240400.074600.0450*
H170.840000.184600.231300.0630*
H180.838800.119000.381600.0680*
H190.763700.077900.426100.0570*
H200.690200.102500.321800.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0422 (6)0.0323 (5)0.0391 (6)0.0078 (4)0.0023 (4)0.0068 (4)
O20.0287 (5)0.0375 (6)0.0669 (8)0.0050 (4)0.0089 (5)0.0155 (5)
O30.0265 (5)0.0485 (6)0.0633 (8)0.0034 (4)0.0024 (5)0.0142 (5)
N10.0298 (6)0.0300 (6)0.0370 (6)0.0003 (4)0.0016 (5)0.0009 (5)
N20.0283 (6)0.0334 (6)0.0412 (7)0.0039 (5)0.0043 (5)0.0057 (5)
N30.0301 (6)0.0276 (5)0.0404 (7)0.0001 (4)0.0010 (5)0.0059 (5)
C10.0298 (6)0.0250 (6)0.0372 (7)0.0026 (5)0.0028 (6)0.0027 (5)
C20.0300 (7)0.0372 (7)0.0444 (9)0.0025 (6)0.0084 (6)0.0096 (6)
C30.0362 (8)0.0401 (8)0.0485 (9)0.0030 (6)0.0035 (7)0.0153 (7)
C40.0318 (7)0.0340 (7)0.0564 (10)0.0049 (6)0.0011 (7)0.0010 (7)
C50.0329 (8)0.0766 (12)0.0467 (10)0.0075 (8)0.0087 (7)0.0117 (9)
C60.0364 (8)0.0676 (11)0.0332 (8)0.0010 (7)0.0047 (6)0.0041 (7)
C70.0334 (7)0.0261 (6)0.0310 (7)0.0022 (5)0.0029 (5)0.0023 (5)
C80.0320 (7)0.0292 (6)0.0318 (7)0.0013 (5)0.0013 (5)0.0026 (5)
C90.0398 (8)0.0375 (8)0.0430 (9)0.0015 (6)0.0007 (7)0.0071 (7)
C100.0448 (8)0.0431 (8)0.0379 (8)0.0041 (7)0.0041 (7)0.0067 (7)
C110.0355 (7)0.0481 (9)0.0330 (8)0.0050 (6)0.0040 (6)0.0011 (6)
C120.0322 (7)0.0374 (7)0.0331 (7)0.0010 (5)0.0033 (6)0.0039 (6)
C130.0317 (7)0.0278 (6)0.0298 (7)0.0026 (5)0.0042 (5)0.0035 (5)
C140.0303 (7)0.0275 (6)0.0398 (8)0.0007 (5)0.0047 (6)0.0022 (6)
C150.0265 (7)0.0440 (8)0.0428 (9)0.0055 (6)0.0024 (6)0.0054 (7)
C160.0270 (6)0.0403 (8)0.0325 (7)0.0001 (5)0.0004 (5)0.0015 (6)
C170.0299 (8)0.0763 (12)0.0514 (10)0.0046 (8)0.0050 (7)0.0231 (9)
C180.0407 (9)0.0768 (13)0.0520 (11)0.0056 (8)0.0063 (8)0.0239 (9)
C190.0531 (10)0.0507 (9)0.0390 (9)0.0032 (7)0.0011 (7)0.0118 (7)
C200.0407 (8)0.0441 (8)0.0399 (9)0.0047 (7)0.0063 (7)0.0033 (7)
C210.0284 (6)0.0339 (7)0.0336 (7)0.0020 (5)0.0023 (5)0.0049 (6)
Geometric parameters (Å, º) top
O1—C71.2303 (17)C12—C131.4002 (19)
O2—C141.2326 (17)C13—C141.495 (2)
O3—C211.3542 (17)C15—C161.448 (2)
O3—H3B0.8400C16—C211.3990 (19)
N1—N21.3751 (16)C16—C171.397 (2)
N1—C151.2783 (18)C17—C181.376 (3)
N2—C141.3537 (18)C18—C191.381 (3)
N3—C71.3560 (17)C19—C201.379 (2)
N3—C81.4125 (17)C20—C211.391 (2)
N2—H2A0.9100C2—H20.9500
N3—H3A0.9100C3—H30.9500
C1—C71.4970 (19)C4—H40.9500
C1—C21.382 (2)C5—H50.9500
C1—C61.391 (2)C6—H60.9500
C2—C31.388 (2)C9—H90.9500
C3—C41.381 (2)C10—H100.9500
C4—C51.374 (2)C11—H110.9500
C5—C61.386 (2)C12—H120.9500
C8—C131.4137 (19)C15—H150.9500
C8—C91.391 (2)C17—H170.9500
C9—C101.384 (2)C18—H180.9500
C10—C111.382 (2)C19—H190.9500
C11—C121.381 (2)C20—H200.9500
C21—O3—H3B108.00C16—C17—C18121.69 (15)
N2—N1—C15117.37 (11)C17—C18—C19119.18 (17)
N1—N2—C14118.04 (11)C18—C19—C20120.59 (17)
C7—N3—C8129.27 (12)C19—C20—C21120.38 (15)
C14—N2—H2A124.00O3—C21—C20118.32 (13)
N1—N2—H2A118.00C16—C21—C20119.78 (13)
C7—N3—H3A118.00O3—C21—C16121.90 (12)
C8—N3—H3A112.00C1—C2—H2120.00
C6—C1—C7118.60 (13)C3—C2—H2120.00
C2—C1—C6119.38 (13)C2—C3—H3120.00
C2—C1—C7121.98 (12)C4—C3—H3120.00
C1—C2—C3120.16 (14)C3—C4—H4120.00
C2—C3—C4120.37 (15)C5—C4—H4120.00
C3—C4—C5119.44 (15)C4—C5—H5120.00
C4—C5—C6120.79 (15)C6—C5—H5120.00
C1—C6—C5119.79 (15)C1—C6—H6120.00
N3—C7—C1114.44 (12)C5—C6—H6120.00
O1—C7—N3124.51 (13)C8—C9—H9120.00
O1—C7—C1121.04 (12)C10—C9—H9120.00
N3—C8—C13118.08 (12)C9—C10—H10120.00
N3—C8—C9122.42 (12)C11—C10—H10120.00
C9—C8—C13119.50 (13)C10—C11—H11120.00
C8—C9—C10120.53 (14)C12—C11—H11120.00
C9—C10—C11120.67 (15)C11—C12—H12119.00
C10—C11—C12119.37 (14)C13—C12—H12119.00
C11—C12—C13121.51 (13)N1—C15—H15120.00
C8—C13—C14120.96 (12)C16—C15—H15120.00
C8—C13—C12118.39 (12)C16—C17—H17119.00
C12—C13—C14120.65 (12)C18—C17—H17119.00
O2—C14—N2121.15 (13)C17—C18—H18120.00
O2—C14—C13122.92 (13)C19—C18—H18120.00
N2—C14—C13115.94 (11)C18—C19—H19120.00
N1—C15—C16120.78 (13)C20—C19—H19120.00
C15—C16—C21122.15 (12)C19—C20—H20120.00
C17—C16—C21118.38 (13)C21—C20—H20120.00
C15—C16—C17119.47 (13)
C15—N1—N2—C14178.84 (13)C9—C8—C13—C122.4 (2)
N2—N1—C15—C16178.99 (12)C9—C8—C13—C14178.53 (13)
N1—N2—C14—O20.0 (2)C8—C9—C10—C110.1 (2)
N1—N2—C14—C13179.85 (11)C9—C10—C11—C120.7 (2)
C8—N3—C7—O12.7 (2)C10—C11—C12—C130.0 (2)
C8—N3—C7—C1175.82 (13)C11—C12—C13—C81.6 (2)
C7—N3—C8—C91.3 (2)C11—C12—C13—C14179.33 (13)
C7—N3—C8—C13178.23 (13)C8—C13—C14—O222.0 (2)
C6—C1—C2—C30.7 (2)C8—C13—C14—N2157.86 (13)
C7—C1—C2—C3177.16 (13)C12—C13—C14—O2157.06 (14)
C2—C1—C6—C51.7 (2)C12—C13—C14—N223.07 (19)
C7—C1—C6—C5179.57 (15)N1—C15—C16—C17177.66 (15)
C2—C1—C7—O1137.04 (15)N1—C15—C16—C212.1 (2)
C2—C1—C7—N344.39 (18)C15—C16—C17—C18179.19 (16)
C6—C1—C7—O140.8 (2)C21—C16—C17—C180.5 (2)
C6—C1—C7—N3137.75 (14)C15—C16—C21—O30.5 (2)
C1—C2—C3—C42.7 (2)C15—C16—C21—C20179.54 (14)
C2—C3—C4—C52.3 (2)C17—C16—C21—O3179.83 (14)
C3—C4—C5—C60.1 (3)C17—C16—C21—C200.2 (2)
C4—C5—C6—C12.1 (3)C16—C17—C18—C190.4 (3)
N3—C8—C9—C10177.83 (14)C17—C18—C19—C200.2 (3)
C13—C8—C9—C101.7 (2)C18—C19—C20—C210.5 (3)
N3—C8—C13—C12177.16 (12)C19—C20—C21—O3179.64 (14)
N3—C8—C13—C141.9 (2)C19—C20—C21—C160.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.912.022.9181 (15)171
N3—H3A···O20.911.852.6373 (16)143
O3—H3B···N10.841.852.6052 (16)148
C4—H4···O2ii0.952.603.3388 (19)135
C9—H9···O10.952.242.8751 (19)123
C12—H12···O1i0.952.473.2319 (17)137
C18—H18···O3iii0.952.533.417 (2)155
C17—H17···Cg1i0.952.733.6561 (18)166
Symmetry codes: (i) y+5/4, x1/4, z1/4; (ii) x+1, y+1/2, z; (iii) y+3/4, x+3/4, z1/4.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.912.022.9181 (15)171
N3—H3A···O20.911.852.6373 (16)143
O3—H3B···N10.841.852.6052 (16)148
C4—H4···O2ii0.952.603.3388 (19)135
C12—H12···O1i0.952.473.2319 (17)137
C18—H18···O3iii0.952.533.417 (2)155
C17—H17···Cg1i0.952.733.6561 (18)166
Symmetry codes: (i) y+5/4, x1/4, z1/4; (ii) x+1, y+1/2, z; (iii) y+3/4, x+3/4, z1/4.
 

Acknowledgements

Manchester Metropolitan University, Tulane University and Erciyes University are acknowledged for supporting this study.

References

First citationBharti, S. K., Nath, G., Tilak, R. & Singh, S. K. (2010). Eur. J. Med. Chem. 45, 651–660.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SHELXTL, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇakır, B., Dağ, Ö., Yıldırım, E., Erol, K. & Şahin, M. F. (2001). J. Fac. Pharm. Gazi, 18, 99–106.  Google Scholar
First citationGaroufalias, S. P., Pouli, N., Marakos, V. & Ladas, A. C. (2002). Il Farmaco, 57, 973–977.  Web of Science PubMed Google Scholar
First citationKaymakçıoğlu, B. K. & Rollas, S. (2002). Il Farmaco, 57, 595–599.  PubMed Google Scholar
First citationLoncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRagavendran, J., Sriram, D., Patel, S., Reddy, I., Bharathwajan, N., Stables, J. & Yogeeswari, P. (2007). Eur. J. Med. Chem. 42, 146–151.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRahman, V. M., Mukhtar, S., Ansari, W. H. & Lemiere, G. (2005). Eur. J. Med. Chem. 40, 173–184.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShashidhar, , Chopra, D., Shivashankar, S. A. & Guru Row, T. N. (2006). Acta Cryst. E62, o4473–o4475.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSondhi, S. M., Dinodia, M. & Kumar, A. (2006). Bioorg. Med. Chem. 14, 4657–4663.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTerzioglu, N. & Gursoy, A. (2003). Eur. J. Med. Chem. 38, 781–786.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVicini, P., Incerti, M. I., Colla, P. L. & Loddo, R. (2009). Eur. J. Med. Chem. 44, 1801–1807.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVicini, P., Zani, F., Cozzini, P. & Doytchinova, I. (2002). Eur. J. Med. Chem. 37, 553–567.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o645-o646
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds