metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridine-κ2N,N′)bis­­(nitrato-κ2O,O′)copper(II)

aCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
*Correspondence e-mail: kjf416@163.com

(Received 6 October 2013; accepted 14 October 2013; online 19 October 2013)

In the title complex, [Cu(NO3)2(C10H8N2)], the CuII cation is chelated by two nitrate anions and by one 2,2′-bi­pyridine ligand in a distorted N2O4 octa­hedral geometry. The dihedral angle between the pyridine rings is 1.92 (11)°. In the crystal, ππ stacking between parallel pyridine rings of adjacent complex mol­ecules is observed, the centroid–centroid distance being 3.6788 (19) Å. Weak C—H⋯O hydrogen bonds further link the mol­ecules into a three-dimensional supra­molecular architecture.

Related literature

For applications of copper(II) complexes in magnetochemistry, see: Garribba et al. (2000[Garribba, E., Micera, G., Sanna, D. & Strinna-Erre, L. (2000). Inorg. Chim. Acta, 6, 753-756.]); Mukherjee (2000[Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)2(C10H8N2)]

  • Mr = 343.74

  • Monoclinic, P 21 /c

  • a = 8.4282 (17) Å

  • b = 11.132 (2) Å

  • c = 16.140 (5) Å

  • β = 121.39 (2)°

  • V = 1292.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.73 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.25 mm

Data collection
  • Rigaku MM007-HF CCD (Saturn 724+) diffractometer

  • 12333 measured reflections

  • 2955 independent reflections

  • 2237 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.04

  • 2955 reflections

  • 190 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 1.966 (2)
Cu1—N2 1.970 (2)
Cu1—O1 2.411 (2)
Cu1—O2 1.994 (2)
Cu1—O4 2.437 (2)
Cu1—O5 1.9987 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.93 2.56 3.390 (3) 149
C4—H4⋯O5ii 0.93 2.50 3.422 (3) 169
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) x-1, y, z.

Data collection: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC. (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalStructure; data reduction: CrystalStructure; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Copper(II) is one of the most important transition metals in magnetochemistry (Garribba et al. 2000; Mukherjee, 2000). Herein we report the synthesis and structure of the title copper(II) complex with 2,2'-bipyridine.

As shown in Fig.1, the Cu(II) atom is chelated by two N atoms of 2,2'-bipyridine and four O atoms of from two nitrate anions, forming an irregular octahedral coordination geometry. The Cu—N bond distances are 1.9661 (19) Å and 1.9691 (18) Å with basal angle of 82.48 (8). The apical positions are occupied by O atoms of the two different bis-chelating nitrate anions [Cu—O distances of 2.4100 (19) Å, 1.9948 (18) Å, 2.28 (3) Å and 1.9983 (16) Å) with an angle of 57.76 (7), 91.89 (8) and 55.9 (7). The dihedral angle between the planes of the two pyridine rings is 1.92 (11)°. Further, ππ stacking interactions with a centroids separation of 3.6788 (19) Å between pyridine rings and weak C1—H1···O1 and C4—H4···O5 hydrogen bonds link the molecules into the three dimensional supramolecular structure in Fig. 2 and Fig. 3.

Related literature top

For applications of copper(II) complexes in magnetochemistry, see: Garribba et al. (2000); Mukherjee (2000).

Experimental top

A solution of copper(II) nitrate hydrate (0.2 mmol, 48 mg) in methanol (2 ml) was mixed with 2 ml of an aqueous solution of p-aminobenzoic acid (0.1 mmol, 17 mg) in presence of 2,2-bipyridine (0.1 mmol, 16 mg). The resulting mixture was allowed to evaporate for one week to yield a blue crystal, suitable to X-ray work.

Refinement top

H atoms were geometrically fixed and allowed to ride on the non-H atom with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalStructure (Rigaku/MSC, 2006); cell refinement: CrystalStructure (Rigaku/MSC, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The pi···pi stacking between two asymmetric cations.
[Figure 3] Fig. 3. A view of the crystal packing. Hydrogen bonds are shown as brown dashed lines.
(2,2'-Bipyridine-κ2N,N')bis(nitrato-κ2O,O')copper(II) top
Crystal data top
[Cu(NO3)2(C10H8N2)]F(000) = 692
Mr = 343.74Dx = 1.766 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2955 reflections
a = 8.4282 (17) Åθ = 3.0–27.5°
b = 11.132 (2) ŵ = 1.73 mm1
c = 16.140 (5) ÅT = 293 K
β = 121.39 (2)°Block, blue
V = 1292.7 (5) Å30.30 × 0.28 × 0.25 mm
Z = 4
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
2237 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.038
Confocal monochromatorθmax = 27.5°, θmin = 3.0°
ω scans at fixed χ = 45°h = 1010
12333 measured reflectionsk = 1414
2955 independent reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.050P)2 + 0.3548P]
where P = (Fo2 + 2Fc2)/3
2955 reflections(Δ/σ)max = 0.002
190 parametersΔρmax = 0.44 e Å3
7 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu(NO3)2(C10H8N2)]V = 1292.7 (5) Å3
Mr = 343.74Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4282 (17) ŵ = 1.73 mm1
b = 11.132 (2) ÅT = 293 K
c = 16.140 (5) Å0.30 × 0.28 × 0.25 mm
β = 121.39 (2)°
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
2237 reflections with I > 2σ(I)
12333 measured reflectionsRint = 0.038
2955 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0357 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.04Δρmax = 0.44 e Å3
2955 reflectionsΔρmin = 0.45 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.85476 (4)0.75682 (3)1.00645 (2)0.04079 (13)
N10.6302 (3)0.85640 (18)0.93496 (14)0.0382 (5)
N20.7092 (3)0.68048 (19)1.05583 (16)0.0432 (5)
N31.1760 (3)0.7822 (2)1.16329 (17)0.0455 (5)
N40.9216 (4)0.7086 (3)0.8692 (2)0.0665 (6)
O11.0825 (3)0.87642 (17)1.14048 (15)0.0557 (5)
O21.0982 (3)0.68978 (17)1.10938 (14)0.0517 (5)
O31.3353 (3)0.7747 (2)1.23263 (17)0.0651 (6)
O40.8432 (3)0.6241 (2)0.88330 (17)0.0742 (6)
O50.9581 (3)0.80226 (19)0.92397 (15)0.0522 (5)
O60.9683 (4)0.7076 (3)0.8099 (2)0.0924 (9)
C10.6062 (4)0.9480 (2)0.87584 (19)0.0459 (6)
H10.70070.96620.86430.055*
C20.4471 (4)1.0162 (3)0.83155 (19)0.0496 (7)
H20.43451.07980.79120.059*
C30.3067 (4)0.9886 (3)0.8480 (2)0.0500 (7)
H30.19701.03280.81820.060*
C40.3301 (4)0.8943 (2)0.90937 (19)0.0438 (6)
H40.23690.87490.92160.053*
C50.4940 (3)0.8294 (2)0.95232 (17)0.0365 (5)
C60.5380 (4)0.7277 (2)1.02006 (18)0.0377 (5)
C70.4185 (4)0.6821 (3)1.0464 (2)0.0491 (7)
H70.30150.71591.02220.059*
C80.4744 (5)0.5857 (3)1.1093 (2)0.0584 (8)
H80.39500.55381.12750.070*
C90.6479 (5)0.5371 (3)1.1448 (2)0.0634 (8)
H90.68700.47161.18670.076*
C100.7635 (4)0.5873 (3)1.1170 (2)0.0557 (7)
H100.88180.55551.14140.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03299 (19)0.0431 (2)0.0462 (2)0.00251 (13)0.02050 (16)0.00080 (13)
N10.0358 (11)0.0423 (10)0.0365 (11)0.0015 (9)0.0188 (10)0.0014 (9)
N20.0410 (13)0.0437 (12)0.0431 (12)0.0026 (9)0.0206 (11)0.0018 (10)
N30.0402 (13)0.0523 (13)0.0418 (13)0.0059 (10)0.0199 (11)0.0011 (10)
N40.0721 (14)0.0727 (13)0.0619 (12)0.0265 (11)0.0400 (11)0.0237 (11)
O10.0553 (13)0.0447 (11)0.0573 (12)0.0011 (9)0.0224 (11)0.0035 (9)
O20.0386 (11)0.0447 (10)0.0592 (12)0.0014 (8)0.0167 (10)0.0086 (9)
O30.0428 (13)0.0776 (15)0.0510 (13)0.0054 (10)0.0077 (11)0.0021 (11)
O40.0794 (14)0.0738 (12)0.0672 (12)0.0313 (10)0.0366 (11)0.0219 (10)
O50.0488 (12)0.0558 (11)0.0627 (13)0.0111 (9)0.0364 (11)0.0134 (10)
O60.107 (2)0.119 (2)0.0800 (19)0.0350 (19)0.0689 (19)0.0397 (17)
C10.0490 (16)0.0491 (15)0.0432 (15)0.0057 (12)0.0266 (14)0.0033 (12)
C20.0590 (18)0.0460 (15)0.0401 (15)0.0019 (13)0.0234 (14)0.0079 (12)
C30.0449 (16)0.0477 (15)0.0456 (15)0.0049 (12)0.0152 (14)0.0002 (13)
C40.0369 (14)0.0487 (14)0.0440 (14)0.0026 (11)0.0198 (12)0.0014 (12)
C50.0343 (13)0.0420 (13)0.0314 (12)0.0063 (10)0.0158 (11)0.0053 (10)
C60.0388 (14)0.0393 (12)0.0342 (13)0.0046 (10)0.0185 (11)0.0013 (10)
C70.0463 (16)0.0550 (16)0.0514 (16)0.0056 (13)0.0293 (14)0.0022 (13)
C80.070 (2)0.0595 (17)0.0580 (19)0.0072 (16)0.0421 (18)0.0075 (15)
C90.081 (2)0.0558 (17)0.0531 (18)0.0018 (16)0.0347 (18)0.0170 (15)
C100.0571 (19)0.0517 (16)0.0519 (17)0.0059 (14)0.0239 (15)0.0120 (14)
Geometric parameters (Å, º) top
Cu1—N11.966 (2)C1—H10.9300
Cu1—N21.970 (2)C2—C31.376 (4)
Cu1—O12.411 (2)C2—H20.9300
Cu1—O21.994 (2)C3—C41.385 (4)
Cu1—O42.437 (2)C3—H30.9300
Cu1—O51.9987 (19)C4—C51.383 (3)
N1—C11.338 (3)C4—H40.9300
N1—C51.350 (3)C5—C61.480 (3)
N2—C101.337 (3)C6—C71.378 (3)
N2—C61.351 (3)C7—C81.380 (4)
N3—O31.223 (3)C7—H70.9300
N3—O11.247 (3)C8—C91.374 (4)
N3—O21.285 (3)C8—H80.9300
N4—O61.210 (3)C9—C101.386 (4)
N4—O41.236 (3)C9—H90.9300
N4—O51.296 (3)C10—H100.9300
C1—C21.373 (4)
N1—Cu1—N282.47 (9)N1—C1—C2122.5 (2)
N1—Cu1—O2163.34 (8)N1—C1—H1118.8
N2—Cu1—O295.09 (9)C2—C1—H1118.8
N1—Cu1—O594.96 (9)C1—C2—C3118.7 (3)
N2—Cu1—O5163.31 (9)C1—C2—H2120.6
O2—Cu1—O591.92 (9)C3—C2—H2120.6
N1—Cu1—O1106.76 (8)C2—C3—C4119.4 (3)
N2—Cu1—O1104.35 (8)C2—C3—H3120.3
O2—Cu1—O157.74 (8)C4—C3—H3120.3
O5—Cu1—O192.20 (8)C5—C4—C3119.2 (2)
N1—Cu1—O4104.21 (9)C5—C4—H4120.4
N2—Cu1—O4107.43 (8)C3—C4—H4120.4
O2—Cu1—O492.26 (9)N1—C5—C4121.0 (2)
O5—Cu1—O457.07 (8)N1—C5—C6114.3 (2)
O1—Cu1—O4137.86 (8)C4—C5—C6124.8 (2)
C1—N1—C5119.2 (2)N2—C6—C7121.0 (2)
C1—N1—Cu1126.18 (17)N2—C6—C5114.4 (2)
C5—N1—Cu1114.53 (16)C7—C6—C5124.6 (2)
C10—N2—C6119.7 (2)C6—C7—C8119.3 (3)
C10—N2—Cu1126.0 (2)C6—C7—H7120.4
C6—N2—Cu1114.28 (17)C8—C7—H7120.4
O3—N3—O1123.4 (3)C9—C8—C7119.6 (3)
O3—N3—O2119.6 (2)C9—C8—H8120.2
O1—N3—O2116.9 (2)C7—C8—H8120.2
O6—N4—O4124.3 (3)C8—C9—C10118.8 (3)
O6—N4—O5119.2 (3)C8—C9—H9120.6
O4—N4—O5116.5 (2)C10—C9—H9120.6
N3—O1—Cu183.43 (15)N2—C10—C9121.6 (3)
N3—O2—Cu1101.85 (16)N2—C10—H10119.2
N4—O4—Cu183.75 (17)C9—C10—H10119.2
N4—O5—Cu1102.68 (17)
N2—Cu1—N1—C1178.0 (2)N2—Cu1—O4—N4172.5 (2)
O2—Cu1—N1—C195.5 (3)O2—Cu1—O4—N491.5 (2)
O5—Cu1—N1—C118.6 (2)O5—Cu1—O4—N40.64 (19)
O1—Cu1—N1—C175.2 (2)O1—Cu1—O4—N450.3 (3)
O4—Cu1—N1—C175.8 (2)O6—N4—O5—Cu1179.7 (3)
N2—Cu1—N1—C50.66 (17)O4—N4—O5—Cu11.1 (3)
O2—Cu1—N1—C581.9 (3)N1—Cu1—O5—N4103.1 (2)
O5—Cu1—N1—C5164.07 (17)N2—Cu1—O5—N422.8 (4)
O1—Cu1—N1—C5102.12 (17)O2—Cu1—O5—N492.1 (2)
O4—Cu1—N1—C5106.82 (17)O1—Cu1—O5—N4149.85 (19)
N1—Cu1—N2—C10178.3 (2)O4—Cu1—O5—N40.62 (19)
O2—Cu1—N2—C1018.3 (2)C5—N1—C1—C20.1 (4)
O5—Cu1—N2—C1096.2 (4)Cu1—N1—C1—C2177.4 (2)
O1—Cu1—N2—C1076.3 (2)N1—C1—C2—C30.5 (4)
O4—Cu1—N2—C1075.7 (2)C1—C2—C3—C40.8 (4)
N1—Cu1—N2—C60.38 (18)C2—C3—C4—C50.4 (4)
O2—Cu1—N2—C6163.80 (18)C1—N1—C5—C40.5 (3)
O5—Cu1—N2—C681.7 (4)Cu1—N1—C5—C4178.04 (18)
O1—Cu1—N2—C6105.83 (18)C1—N1—C5—C6179.0 (2)
O4—Cu1—N2—C6102.22 (18)Cu1—N1—C5—C61.5 (3)
O3—N3—O1—Cu1176.9 (2)C3—C4—C5—N10.2 (4)
O2—N3—O1—Cu12.4 (2)C3—C4—C5—C6179.3 (2)
N1—Cu1—O1—N3174.92 (14)C10—N2—C6—C70.7 (4)
N2—Cu1—O1—N388.61 (15)Cu1—N2—C6—C7178.7 (2)
O2—Cu1—O1—N31.66 (14)C10—N2—C6—C5179.3 (2)
O5—Cu1—O1—N389.22 (15)Cu1—N2—C6—C51.3 (3)
O4—Cu1—O1—N349.43 (19)N1—C5—C6—N21.8 (3)
O3—N3—O2—Cu1176.4 (2)C4—C5—C6—N2177.7 (2)
O1—N3—O2—Cu13.0 (2)N1—C5—C6—C7178.2 (2)
N1—Cu1—O2—N324.7 (4)C4—C5—C6—C72.3 (4)
N2—Cu1—O2—N3105.41 (15)N2—C6—C7—C80.9 (4)
O5—Cu1—O2—N389.75 (15)C5—C6—C7—C8179.1 (3)
O1—Cu1—O2—N31.63 (13)C6—C7—C8—C90.3 (5)
O4—Cu1—O2—N3146.86 (15)C7—C8—C9—C100.6 (5)
O6—N4—O4—Cu1179.4 (4)C6—N2—C10—C90.2 (4)
O5—N4—O4—Cu10.9 (3)Cu1—N2—C10—C9177.6 (2)
N1—Cu1—O4—N486.1 (2)C8—C9—C10—N20.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.563.390 (3)149
C4—H4···O5ii0.932.503.422 (3)169
Symmetry codes: (i) x+2, y+2, z+2; (ii) x1, y, z.
Selected bond lengths (Å) top
Cu1—N11.966 (2)Cu1—O21.994 (2)
Cu1—N21.970 (2)Cu1—O42.437 (2)
Cu1—O12.411 (2)Cu1—O51.9987 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.563.390 (3)149
C4—H4···O5ii0.932.503.422 (3)169
Symmetry codes: (i) x+2, y+2, z+2; (ii) x1, y, z.
 

Acknowledgements

The work was supported by the Scientific Research Foundation of Yunnan Provincial Department of Education, China (grant No. 22012Z019).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGarribba, E., Micera, G., Sanna, D. & Strinna-Erre, L. (2000). Inorg. Chim. Acta, 6, 753–756.  Google Scholar
First citationMukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC. (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds