organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Eth­­oxy-N-(4-eth­­oxy­phen­yl)-N-(4-nitro­phen­yl)aniline

aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, Key Laboratory of Functional Inorganic Materials Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: jywu1957@163.com

(Received 18 August 2013; accepted 20 August 2013; online 23 August 2013)

In the title mol­ecule, C22H22N2O4, the eth­oxy­phenyl rings are oriented at dihedral angles of 69.31 (13) and 75.90 (13)° to the nitro­phenyl ring and are twisted to each other, making a dihedral angle of 78.55 (13)°. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π inter­action link the mol­ecules into a three-dimensional supra­molecular architecture.

Related literature

For applications of tri­phenyl­amine derivatives, see: Liu et al. (2012[Liu, B., Zhang, Q., Ding, H.-J., Du, Y.-J., Wang, C.-K., Wu, J.-Y., Li, S.-L., Zhou, H.-P., Yang, J.-X. & Tian, Y.-P. (2012). Dyes Pigments, 95, 149-160.]). For related compounds, see: Wang et al. (2011[Wang, X.-M., Jin, F., Chen, Z.-G., Liu, S.-Q., Wang, X.-H., Duan, X.-M., Tao, X.-T. & Jiang, M.-H. (2011). J. Phys. Chem. C, 115, 776-784.]); Gudeika et al. (2012[Gudeika, D., Michaleviciute, A., Lygaitis, R., Grigalevicius, S., Miasojedovas, A., Jursenas, S. & Sini, G. (2012). J. Phys. Chem. C, 116, 14811-14819.]).

[Scheme 1]

Experimental

Crystal data
  • C22H22N2O4

  • Mr = 378.42

  • Monoclinic, P 21 /c

  • a = 10.926 (5) Å

  • b = 18.380 (5) Å

  • c = 10.345 (5) Å

  • β = 107.998 (5)°

  • V = 1975.8 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • 13718 measured reflections

  • 3456 independent reflections

  • 1884 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.178

  • S = 0.98

  • 3456 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C7–C12 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3i 0.93 2.56 3.371 (5) 146
C14—H14B⋯O4ii 0.96 2.55 3.458 (4) 158
C17—H17⋯Cg2iii 0.93 2.78 3.700 (4) 173
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y, -z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As optical functional materials, triphenylamine derivative have attracted considerable attention, for their fluorescent characters, photostabilities and easy modification (Liu et al., 2012). Besides, the strong ability of electron delocalization in the title compound forms conjugated system which is one of the most excellent properties in two photon absorption materials field. Recent years many research groups choose triphenylamine as molecule core to synthesize a series of compounds (Wang et al., 2011; Gudeika et al., 2012). The length of the two nitrogen oxygen bonds in the crystal structure is nearly identical comparing their bond length data of 1.232 (3) and 1.229 (3) Å. This shows that the two bonds are intervenient between nitrogen oxygen single bond and nitrogen oxygen double bond. Also, the introduction of nitro group transforms the benzene ring plane generatting a dihedral angle of 2.8 (7)° being defined by the two planes of plane1 (C1, C2, C3) and plane2 (C4, C5, C6).

Related literature top

For applications of triphenylamine derivatives, see: Liu et al. (2012). For related compounds, see: Wang et al. (2011); Gudeika et al. (2012).

Experimental top

The intermediate 1-ethoxy-4-iodobenzene was synthesized by mixing 4-iodophenol (110 g, 0.5 mol) with bromoethane (218 g, 2 mol) in methanol (250 ml) in the presence of NaOH (40 g, 1 mol). The mixture was heated to reflux for 12 h. The solution was cooled to room temperature. White solid appeared when poured into a large amount of ice water. The solid was purified by 20% NaOH solution. The target product was obtained by the mixture of 4-nitroaniline (1.97 g, 15 mmol), 1-ethoxy-4-iodobenzene (10 g, 40 mmol), K2CO3 (13.8 g, 100 mmol), a few of L-proline and CuI in DMSO at 100 degrees celsius for 24 h. The mixture was washed with plenty of water and extracted by dichloromethane. The combined organic layer was dried over anhydrous MgSO4 and concentrated using a rotary evaporator. The residue was purified by column chromatography. 1H NMR: (400 Hz, DMSO-d6), d(p.p.m.):8.10 (d, 2H), 7.32 (d, 2H), 7.02 (d, 4H), 6.71 (d, 4H), 4.03 (q, 4H), 1.35 (t, 6H)

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93–0.97 Å, Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I) showing 30% probability displacement ellipsoids.
4-Ethoxy-N-(4-ethoxyphenyl)-N-(4-nitrophenyl)aniline top
Crystal data top
C22H22N2O4F(000) = 800
Mr = 378.42Dx = 1.272 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 1657 reflections
a = 10.926 (5) Åθ = 2.3–19.5°
b = 18.380 (5) ŵ = 0.09 mm1
c = 10.345 (5) ÅT = 298 K
β = 107.998 (5)°Block, red
V = 1975.8 (14) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1884 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
phi and ω scansh = 1212
13718 measured reflectionsk = 2021
3456 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3456 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C22H22N2O4V = 1975.8 (14) Å3
Mr = 378.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.926 (5) ŵ = 0.09 mm1
b = 18.380 (5) ÅT = 298 K
c = 10.345 (5) Å0.30 × 0.20 × 0.20 mm
β = 107.998 (5)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1884 reflections with I > 2σ(I)
13718 measured reflectionsRint = 0.050
3456 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 0.98Δρmax = 0.18 e Å3
3456 reflectionsΔρmin = 0.17 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.91897 (19)0.16945 (11)0.28936 (19)0.0673 (6)
O10.56239 (17)0.18864 (10)0.23010 (17)0.0785 (6)
C90.8292 (2)0.17241 (14)0.1544 (2)0.0607 (7)
C80.7178 (3)0.11519 (15)0.0584 (3)0.0708 (8)
H80.70160.07410.11360.085*
C10.8614 (3)0.04099 (13)0.5958 (2)0.0635 (7)
C151.0222 (2)0.22159 (14)0.3220 (2)0.0609 (7)
C70.8063 (3)0.11222 (15)0.0714 (3)0.0704 (7)
H70.85040.06920.10220.084*
C120.6541 (2)0.17944 (15)0.1048 (2)0.0633 (7)
C60.9971 (3)0.11691 (14)0.5137 (2)0.0661 (7)
H61.07560.14040.52820.079*
N10.8397 (3)0.00099 (13)0.7052 (3)0.0829 (7)
C50.9009 (2)0.12531 (13)0.3896 (2)0.0585 (6)
C171.0181 (3)0.28165 (15)0.4004 (2)0.0708 (8)
H170.94960.28780.43490.085*
C100.7672 (2)0.23642 (15)0.1048 (3)0.0674 (7)
H100.78420.27790.15900.081*
C30.7654 (3)0.04742 (14)0.4739 (3)0.0697 (7)
H30.68720.02390.46120.084*
C40.7844 (3)0.08837 (14)0.3707 (2)0.0687 (7)
H40.71960.09160.28780.082*
C191.1156 (3)0.33271 (15)0.4278 (3)0.0744 (8)
H191.11320.37310.48100.089*
C201.2164 (3)0.32350 (16)0.3758 (3)0.0708 (8)
O40.7323 (3)0.02692 (13)0.6884 (2)0.1098 (8)
C20.9775 (3)0.07440 (14)0.6150 (2)0.0709 (8)
H21.04330.06840.69650.085*
O21.3142 (2)0.37328 (13)0.3914 (2)0.1142 (8)
C110.6805 (2)0.23998 (15)0.0236 (3)0.0689 (7)
H110.63950.28370.05550.083*
O30.9283 (3)0.00806 (12)0.8122 (2)0.1142 (8)
C181.2193 (3)0.26372 (16)0.2976 (3)0.0738 (8)
H181.28740.25750.26250.089*
C161.1235 (3)0.21351 (15)0.2711 (2)0.0675 (7)
H161.12650.17320.21790.081*
C130.5245 (3)0.12818 (17)0.3152 (3)0.0908 (9)
H13A0.49520.08960.26790.109*
H13B0.59660.11010.34180.109*
C140.4178 (3)0.15093 (18)0.4383 (3)0.1043 (11)
H14A0.34160.16030.41340.157*
H14B0.40090.11280.50490.157*
H14C0.44240.19430.47570.157*
C211.3504 (4)0.4187 (2)0.5060 (5)0.1273 (14)
H21A1.27350.43570.52460.153*
H21B1.39480.46090.48610.153*
C221.4317 (4)0.3834 (3)0.6241 (4)0.1555 (19)
H22A1.38180.34990.65830.233*
H22B1.46960.41910.69250.233*
H22C1.49840.35750.60120.233*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0709 (14)0.0801 (15)0.0448 (12)0.0157 (12)0.0088 (11)0.0000 (10)
O10.0823 (13)0.0837 (13)0.0582 (11)0.0070 (10)0.0055 (10)0.0034 (10)
C90.0660 (16)0.0682 (17)0.0454 (14)0.0081 (13)0.0138 (12)0.0001 (13)
C80.0888 (19)0.0678 (18)0.0499 (16)0.0088 (15)0.0131 (14)0.0086 (13)
C10.089 (2)0.0510 (15)0.0502 (16)0.0035 (14)0.0212 (15)0.0016 (12)
C150.0668 (16)0.0706 (17)0.0416 (13)0.0087 (14)0.0111 (12)0.0006 (12)
C70.0844 (19)0.0645 (17)0.0557 (17)0.0031 (14)0.0122 (14)0.0015 (13)
C120.0649 (16)0.0737 (19)0.0482 (15)0.0078 (14)0.0129 (13)0.0067 (14)
C60.0709 (17)0.0708 (17)0.0506 (16)0.0037 (13)0.0100 (14)0.0025 (13)
N10.122 (2)0.0627 (15)0.0669 (18)0.0024 (15)0.0329 (18)0.0051 (13)
C50.0676 (17)0.0603 (15)0.0456 (14)0.0015 (13)0.0145 (13)0.0012 (12)
C170.0784 (18)0.081 (2)0.0578 (16)0.0091 (15)0.0283 (14)0.0113 (14)
C100.0750 (18)0.0654 (17)0.0573 (17)0.0058 (14)0.0140 (14)0.0075 (13)
C30.0780 (19)0.0664 (17)0.0628 (18)0.0064 (14)0.0192 (15)0.0030 (13)
C40.0759 (19)0.0733 (18)0.0509 (15)0.0048 (14)0.0110 (13)0.0032 (13)
C190.096 (2)0.0728 (18)0.0534 (16)0.0129 (16)0.0213 (15)0.0118 (13)
C200.0671 (18)0.081 (2)0.0609 (17)0.0175 (15)0.0143 (14)0.0071 (15)
O40.149 (2)0.0996 (17)0.0863 (16)0.0303 (16)0.0442 (16)0.0067 (12)
C20.089 (2)0.0679 (17)0.0475 (15)0.0074 (15)0.0095 (14)0.0005 (13)
O20.1123 (17)0.1195 (19)0.1136 (19)0.0450 (16)0.0391 (15)0.0177 (15)
C110.0712 (17)0.0653 (17)0.0660 (17)0.0010 (14)0.0148 (14)0.0018 (14)
O30.142 (2)0.1228 (19)0.0680 (15)0.0173 (16)0.0181 (15)0.0345 (13)
C180.0690 (18)0.090 (2)0.0643 (17)0.0004 (16)0.0228 (14)0.0049 (15)
C160.0748 (17)0.0720 (18)0.0555 (15)0.0003 (15)0.0197 (14)0.0019 (13)
C130.108 (2)0.092 (2)0.0624 (19)0.0062 (19)0.0113 (17)0.0076 (17)
C140.092 (2)0.131 (3)0.067 (2)0.009 (2)0.0090 (17)0.0045 (19)
C210.128 (3)0.088 (3)0.159 (4)0.029 (2)0.035 (3)0.046 (3)
C220.112 (3)0.218 (5)0.118 (4)0.022 (3)0.008 (3)0.046 (4)
Geometric parameters (Å, º) top
N2—C51.378 (3)C10—H100.9300
N2—C91.439 (3)C3—C41.373 (3)
N2—C151.439 (3)C3—H30.9300
O1—C121.382 (3)C4—H40.9300
O1—C131.399 (3)C19—C201.377 (4)
C9—C71.375 (3)C19—H190.9300
C9—C101.375 (3)C20—C181.370 (4)
C8—C121.379 (4)C20—O21.378 (3)
C8—C71.393 (4)C2—H20.9300
C8—H80.9300O2—C211.403 (4)
C1—C21.368 (4)C11—H110.9300
C1—C31.373 (3)C18—C161.359 (4)
C1—N11.449 (3)C18—H180.9300
C15—C161.372 (3)C16—H160.9300
C15—C171.379 (3)C13—C141.496 (4)
C7—H70.9300C13—H13A0.9700
C12—C111.370 (3)C13—H13B0.9700
C6—C21.376 (4)C14—H14A0.9600
C6—C51.394 (3)C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
N1—O41.229 (3)C21—C221.426 (5)
N1—O31.232 (3)C21—H21A0.9700
C5—C41.402 (3)C21—H21B0.9700
C17—C191.382 (3)C22—H22A0.9600
C17—H170.9300C22—H22B0.9600
C10—C111.374 (3)C22—H22C0.9600
C5—N2—C9122.7 (2)C20—C19—C17119.7 (3)
C5—N2—C15119.98 (19)C20—C19—H19120.2
C9—N2—C15116.93 (19)C17—C19—H19120.2
C12—O1—C13118.8 (2)C18—C20—C19119.8 (3)
C7—C9—C10118.8 (2)C18—C20—O2116.3 (3)
C7—C9—N2120.9 (2)C19—C20—O2123.9 (3)
C10—C9—N2120.3 (2)C1—C2—C6120.0 (2)
C12—C8—C7119.6 (2)C1—C2—H2120.0
C12—C8—H8120.2C6—C2—H2120.0
C7—C8—H8120.2C20—O2—C21120.0 (3)
C2—C1—C3120.3 (2)C12—C11—C10120.4 (3)
C2—C1—N1119.6 (3)C12—C11—H11119.8
C3—C1—N1120.0 (3)C10—C11—H11119.8
C16—C15—C17119.3 (2)C16—C18—C20120.4 (3)
C16—C15—N2120.3 (2)C16—C18—H18119.8
C17—C15—N2120.4 (2)C20—C18—H18119.8
C9—C7—C8120.6 (3)C18—C16—C15120.8 (3)
C9—C7—H7119.7C18—C16—H16119.6
C8—C7—H7119.7C15—C16—H16119.6
C11—C12—C8119.6 (2)O1—C13—C14108.4 (3)
C11—C12—O1115.5 (2)O1—C13—H13A110.0
C8—C12—O1124.9 (2)C14—C13—H13A110.0
C2—C6—C5120.9 (3)O1—C13—H13B110.0
C2—C6—H6119.5C14—C13—H13B110.0
C5—C6—H6119.5H13A—C13—H13B108.4
O4—N1—O3122.5 (3)C13—C14—H14A109.5
O4—N1—C1118.4 (3)C13—C14—H14B109.5
O3—N1—C1119.0 (3)H14A—C14—H14B109.5
N2—C5—C6121.1 (2)C13—C14—H14C109.5
N2—C5—C4121.0 (2)H14A—C14—H14C109.5
C6—C5—C4117.9 (2)H14B—C14—H14C109.5
C15—C17—C19120.1 (3)O2—C21—C22113.1 (3)
C15—C17—H17120.0O2—C21—H21A109.0
C19—C17—H17120.0C22—C21—H21A109.0
C11—C10—C9120.9 (2)O2—C21—H21B109.0
C11—C10—H10119.5C22—C21—H21B109.0
C9—C10—H10119.5H21A—C21—H21B107.8
C1—C3—C4120.3 (3)C21—C22—H22A109.5
C1—C3—H3119.8C21—C22—H22B109.5
C4—C3—H3119.8H22A—C22—H22B109.5
C3—C4—C5120.4 (2)C21—C22—H22C109.5
C3—C4—H4119.8H22A—C22—H22C109.5
C5—C4—H4119.8H22B—C22—H22C109.5
C5—N2—C9—C763.6 (3)N2—C15—C17—C19177.9 (2)
C15—N2—C9—C7124.0 (3)C7—C9—C10—C112.2 (4)
C5—N2—C9—C10118.2 (3)N2—C9—C10—C11179.6 (2)
C15—N2—C9—C1054.2 (3)C2—C1—C3—C41.0 (4)
C5—N2—C15—C16113.0 (3)N1—C1—C3—C4178.7 (2)
C9—N2—C15—C1674.3 (3)C1—C3—C4—C51.4 (4)
C5—N2—C15—C1769.5 (3)N2—C5—C4—C3176.8 (2)
C9—N2—C15—C17103.2 (3)C6—C5—C4—C32.2 (4)
C10—C9—C7—C82.8 (4)C15—C17—C19—C200.3 (4)
N2—C9—C7—C8179.0 (2)C17—C19—C20—C180.1 (4)
C12—C8—C7—C91.1 (4)C17—C19—C20—O2176.4 (2)
C7—C8—C12—C111.2 (4)C3—C1—C2—C62.4 (4)
C7—C8—C12—O1178.5 (2)N1—C1—C2—C6177.2 (2)
C13—O1—C12—C11176.0 (2)C5—C6—C2—C11.5 (4)
C13—O1—C12—C83.7 (4)C18—C20—O2—C21154.8 (3)
C2—C1—N1—O4175.8 (3)C19—C20—O2—C2128.6 (4)
C3—C1—N1—O43.9 (4)C8—C12—C11—C101.8 (4)
C2—C1—N1—O32.7 (4)O1—C12—C11—C10177.9 (2)
C3—C1—N1—O3177.7 (2)C9—C10—C11—C120.1 (4)
C9—N2—C5—C6171.9 (2)C19—C20—C18—C160.0 (4)
C15—N2—C5—C615.9 (3)O2—C20—C18—C16176.8 (2)
C9—N2—C5—C49.1 (4)C20—C18—C16—C150.0 (4)
C15—N2—C5—C4163.1 (2)C17—C15—C16—C180.3 (4)
C2—C6—C5—N2178.2 (2)N2—C15—C16—C18177.8 (2)
C2—C6—C5—C40.8 (4)C12—O1—C13—C14175.5 (2)
C16—C15—C17—C190.4 (4)C20—O2—C21—C2279.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C7–C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O3i0.932.563.371 (5)146
C14—H14B···O4ii0.962.553.458 (4)158
C17—H17···Cg2iii0.932.783.700 (4)173
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C7–C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O3i0.932.563.371 (5)146
C14—H14B···O4ii0.962.553.458 (4)158
C17—H17···Cg2iii0.932.783.700 (4)173
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 21071001), the Education Committee of Anhui Province (grant No. KJ2010A030) and the Natural Science Foundation of Anhui Province (grant No. 1208085MB22).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGudeika, D., Michaleviciute, A., Lygaitis, R., Grigalevicius, S., Miasojedovas, A., Jursenas, S. & Sini, G. (2012). J. Phys. Chem. C, 116, 14811–14819.  Web of Science CrossRef CAS Google Scholar
First citationLiu, B., Zhang, Q., Ding, H.-J., Du, Y.-J., Wang, C.-K., Wu, J.-Y., Li, S.-L., Zhou, H.-P., Yang, J.-X. & Tian, Y.-P. (2012). Dyes Pigments, 95, 149-160.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-M., Jin, F., Chen, Z.-G., Liu, S.-Q., Wang, X.-H., Duan, X.-M., Tao, X.-T. & Jiang, M.-H. (2011). J. Phys. Chem. C, 115, 776–784.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds