organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1Z,2E)-1-(3,4-Di­phenyl-2,3-di­hydro-1,3-thia­zol-2-yl­­idene)-2-(1-p-tolyl­ethyl­­idene)hydrazine

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Mini University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 19 July 2013; accepted 22 July 2013; online 27 July 2013)

In the title compound, C24H21N3S, the thia­zole ring makes dihedral angles of 52.03 (6), 62.63 (6) and 12.35 (6)°, respectively, with the two phenyl rings and the benzene ring. In the crystal, weak C—H⋯π inter­actions occur between inversion-related mol­ecules.

Related literature

For the syntheses and bioactivity of thia­zole-containing compounds, see: Siddiqui et al. (2009[Siddiqui, N., Arshad, M. F., Ahsan, W. & Alam, M. S. (2009). IJPSDR, 1, 136-143.]); Ramla et al. (2006[Ramla, M. M., Omar, M. A., El-Khamry, A. M. M. & El-Diwan, H. I. (2006). Bioorg. Med. Chem. 14, 7324-7332.]); Popsavin et al. (2007[Popsavin, M., Spaic, S., Svircev, M., Kojic, V., Bogdanovic, G. & Popsavin, V. (2007). Bioorg. Med. Chem. Lett. 17, 4123-4127.]); Kumar et al. (2007[Kumar, A., Rajput, C. S. & Bhati, S. K. (2007). Bioorg. Med. Chem. 15, 3089-3096.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & DeClerq, E. (1999). Eur. J. Pharm. Sci. 9, 25-31.]); Narayana et al. (2004[Narayana, B., Raj, K. K. V., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2004). Eur. J. Med. Chem. 39, 867-872.]); Shiradkar et al. (2007[Shiradkar, M. R., Murahari, K. K., Gangadasu, H. R., Suresh, T., Kalyan, C. A., Panchal, D., Kaur, R., Burange, P., Ghogare, J., Mokalec, V. & Raut, M. (2007). Bioorg. Med. Chem. 15, 3997-4008.]); Amin et al. (2008[Amin, K. M., Rahman, A. D. E. & Al-Eryani, Y. A. (2008). Bioorg. Med. Chem. 16, 5377-5388.]); Shih & Ying (2004[Shih, M. H. & Ying, K. F. (2004). Bioorg. Med. Chem. 12, 4633-4643.]); Andreani et al. (1987[Andreani, A., Rambaldi, M., Mascellani, G. & Rugarli, P. (1987). Eur. J. Med. Chem. 22, 19-22.]).

[Scheme 1]

Experimental

Crystal data
  • C24H21N3S

  • Mr = 383.51

  • Triclinic, [P \overline 1]

  • a = 7.9370 (8) Å

  • b = 10.7587 (11) Å

  • c = 11.9325 (13) Å

  • α = 94.922 (2)°

  • β = 97.436 (2)°

  • γ = 95.383 (2)°

  • V = 1000.95 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 150 K

  • 0.30 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.83, Tmax = 0.98

  • 17908 measured reflections

  • 4870 independent reflections

  • 4287 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.06

  • 4870 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯Cg4i 0.95 2.71 3.6170 (16) 160
C16—H16ACg4ii 0.98 2.77 3.5984 (16) 143
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,3-Thiazole containing compounds are a great class of sulfur heterocyclic molecules due to their vital interest in pharmaceutical and industrial chemistry. Numerous of synthesized active thiazole scaffold molecules having diverse of biologically activities have been reported (Ramla et al., 2006; Popsavin et al., 2007; Kumar et al., 2007; Pandeya et al., 1999; Narayana et al., 2004; Shiradkar et al., 2007; Amin et al., 2008; Shih & Ying, 2004; Andreani et al., 1987). In addition, thiazole compounds have not only found in natural molecules such as Thiamin (vitamin B1) but also have been found in many drugs such as Abafungin (antifungal drug), Bleomycine and Tiazofurin (antineoplastic drug), Ritonavir (antiretroviral drug) and Sulfathiazol (antimicrobial drug) (Siddiqui et al., 2009).

In the title compound (I), (Fig. 1), the (S1/N1/C1–C3) thiazole ring is essentially planar with a maximum deviation of -0.006 (1) Å for C2. The dihedral angles between the thiazole ring, and the phenyl rings (C4–C9 and C10–C15) and the benzene ring (C18—C23) are 52.03 (6), 62.63 (6) and 12.35 (6)°, respectively.

In the crystal structure, the title molecules pack in a layer structure with the layers approximately parallel to [101] and held together by a combination of C—H···S hydrogen bonds (Table 1 and Fig. 2) and C—H···π interactions (Fig. 3: H15···Cg1 = 2.71 Å; C15—H15···Cg1 = 160° and H16a···Cg2 = 2.77 Å; C16—H16a···Cg2 = 143° where Cg1 is the centroid of the ring C18–C23 at 1 - x, 1 - y, 1 - z and Cg2 is the centroid of the ring C18–C23 at 2 - x, 1 - y, 1 - z).

Related literature top

For the syntheses and bioactivity of thiazole-containing compounds, see: Siddiqui et al. (2009); Ramla et al. (2006); Popsavin et al. (2007); Kumar et al. (2007); Pandeya et al. (1999); Narayana et al. (2004); Shiradkar et al. (2007); Amin et al. (2008); Shih & Ying (2004); Andreani et al. (1987).

Experimental top

A solution of 283 mg (1 mmol) (2E)-2-[1-(4-methylphenyl)ethylidene]-N-phenylhydrazinecarbothioamide in 15 ml e thanol was added dropwise to a solution of 199 mg (1 mmol) 2-bromo-1-phenylethanone in 20 ml e thanol and few drops of piperidine. The reaction mixture was stirred and refluxed for 6 h. On cooling the solid product was precipitated, filtered off and recrystallized from ethanol to furnish translucent yellow blocks (M.p. 509 - 511 K) suitable for X-ray diffraction.

IR [ν, cm-1,KBr]: 3052 (Ar—CH), 2941, 2863 (Ali – CH), 1594 (Ar—C=C), 1350(C=S); 1H– NMR [δ, p.p.m., CDCl3]: 1.26, 1.65, 1.94 and 2.20 (10H, cyclohexane – CH2), 7.707,7.51, 7.55 (SH, Ar –H); 13C–NMR [δ, p.p.m., CDCl3]: 23.58, 24.52 and 33.90 (cyclohexane- CH2), 112.19 (spiro Cx b), 127.81, 129.87, 130.22 (Ar- CH), 135.07 (Ar-c), 187.83 (C=S).

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.95 (aromatic H) and 0.98 Å (methyl H), with Uiso(H) = 1.2 Uiso(C) for aromatic H atoms and Uiso(H) = 1.5 Uiso(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Closeup view (down b) of the C—H···π interactions.
(1Z,2E)-1-(3,4-Diphenyl-2,3-dihydro-1,3-thiazol-2-ylidene)-2-(1-p-tolylethylidene)hydrazine top
Crystal data top
C24H21N3SZ = 2
Mr = 383.51F(000) = 404
Triclinic, P1Dx = 1.273 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9370 (8) ÅCell parameters from 9946 reflections
b = 10.7587 (11) Åθ = 2.5–29.1°
c = 11.9325 (13) ŵ = 0.18 mm1
α = 94.922 (2)°T = 150 K
β = 97.436 (2)°Block, translucent yellow
γ = 95.383 (2)°0.30 × 0.15 × 0.12 mm
V = 1000.95 (18) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
4870 independent reflections
Radiation source: fine-focus sealed tube4287 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 28.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1010
Tmin = 0.83, Tmax = 0.98k = 1413
17908 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.119 W = 1/[Σ2(FO2) + (0.0663P)2 + 0.2395P] WHERE P = (FO2 + 2FC2)/3
S = 1.06(Δ/σ)max < 0.001
4870 reflectionsΔρmax = 0.33 e Å3
255 parametersΔρmin = 0.30 e Å3
Crystal data top
C24H21N3Sγ = 95.383 (2)°
Mr = 383.51V = 1000.95 (18) Å3
Triclinic, P1Z = 2
a = 7.9370 (8) ÅMo Kα radiation
b = 10.7587 (11) ŵ = 0.18 mm1
c = 11.9325 (13) ÅT = 150 K
α = 94.922 (2)°0.30 × 0.15 × 0.12 mm
β = 97.436 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4870 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
4287 reflections with I > 2σ(I)
Tmin = 0.83, Tmax = 0.98Rint = 0.034
17908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
4870 reflectionsΔρmin = 0.30 e Å3
255 parameters
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at ϕ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in ϕ, collected at ω = -30.00 and 210.00°. The scan time was 20 sec/frame.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39566 (4)0.41513 (3)0.16060 (3)0.0296 (1)
N10.40562 (13)0.65478 (10)0.15561 (9)0.0266 (3)
N20.58080 (15)0.59963 (11)0.31261 (10)0.0320 (3)
N30.63650 (14)0.49413 (11)0.36084 (9)0.0304 (3)
C10.27238 (16)0.47641 (12)0.05087 (11)0.0294 (3)
C20.28971 (15)0.60194 (12)0.06040 (10)0.0250 (3)
C30.47515 (15)0.56729 (12)0.22097 (10)0.0269 (3)
C40.18436 (15)0.68175 (12)0.00790 (10)0.0250 (3)
C50.16266 (16)0.66568 (13)0.12623 (11)0.0299 (4)
C60.05372 (18)0.73637 (14)0.18849 (12)0.0353 (4)
C70.03595 (18)0.82156 (13)0.13387 (13)0.0371 (4)
C80.01560 (18)0.83778 (13)0.01614 (13)0.0354 (4)
C90.09520 (17)0.76964 (12)0.04655 (11)0.0298 (3)
C100.46544 (15)0.78546 (12)0.17887 (11)0.0268 (3)
C110.54876 (16)0.84599 (12)0.10073 (11)0.0296 (4)
C120.60307 (18)0.97346 (14)0.12303 (12)0.0357 (4)
C130.5727 (2)1.03903 (14)0.22148 (14)0.0417 (5)
C140.4910 (2)0.97690 (16)0.30020 (14)0.0445 (5)
C150.43855 (18)0.84986 (14)0.27966 (12)0.0361 (4)
C160.72732 (18)0.64349 (13)0.53188 (11)0.0338 (4)
C170.70933 (16)0.51734 (13)0.46504 (11)0.0281 (3)
C180.78315 (15)0.41138 (13)0.51776 (10)0.0283 (4)
C190.89132 (17)0.43040 (14)0.62146 (11)0.0323 (4)
C200.97073 (17)0.33273 (15)0.66605 (11)0.0347 (4)
C210.94400 (18)0.21266 (15)0.61090 (12)0.0357 (4)
C220.83119 (19)0.19244 (15)0.50894 (12)0.0371 (4)
C230.75304 (17)0.28937 (14)0.46339 (11)0.0328 (4)
C241.0340 (3)0.10791 (18)0.65903 (15)0.0536 (6)
H10.200600.426000.009200.0350*
H50.222400.606300.164400.0360*
H60.040800.726100.269100.0420*
H70.111300.868900.176900.0440*
H80.077800.895800.021500.0430*
H90.110800.782600.127100.0360*
H110.568700.800900.032500.0360*
H120.661401.015500.070200.0430*
H130.607401.126500.235500.0500*
H140.471201.022000.368400.0530*
H150.384600.807100.334100.0430*
H16A0.846500.680300.540400.0510*
H16B0.693400.634100.607100.0510*
H16C0.653800.698500.491900.0510*
H190.910600.511600.661900.0390*
H201.045100.348500.736000.0420*
H220.808200.110300.470500.0440*
H230.677500.273100.394000.0390*
H24A1.145200.106400.631900.0800*
H24B0.964500.027700.634400.0800*
H24C1.050800.121500.742200.0800*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0294 (2)0.0278 (2)0.0296 (2)0.0005 (1)0.0006 (1)0.0023 (1)
N10.0260 (5)0.0270 (5)0.0233 (5)0.0051 (4)0.0028 (4)0.0006 (4)
N20.0311 (5)0.0341 (6)0.0279 (5)0.0028 (4)0.0036 (4)0.0043 (4)
N30.0277 (5)0.0358 (6)0.0255 (5)0.0031 (4)0.0008 (4)0.0040 (4)
C10.0282 (6)0.0294 (6)0.0273 (6)0.0009 (5)0.0031 (5)0.0007 (5)
C20.0221 (5)0.0291 (6)0.0213 (5)0.0028 (4)0.0002 (4)0.0010 (4)
C30.0238 (5)0.0312 (6)0.0243 (6)0.0028 (5)0.0020 (4)0.0027 (5)
C40.0213 (5)0.0258 (6)0.0253 (6)0.0045 (4)0.0002 (4)0.0004 (4)
C50.0262 (6)0.0337 (7)0.0265 (6)0.0027 (5)0.0002 (5)0.0026 (5)
C60.0334 (7)0.0401 (8)0.0277 (6)0.0067 (6)0.0064 (5)0.0051 (5)
C70.0299 (6)0.0306 (7)0.0480 (8)0.0027 (5)0.0052 (6)0.0112 (6)
C80.0319 (6)0.0249 (6)0.0491 (8)0.0002 (5)0.0068 (6)0.0031 (6)
C90.0300 (6)0.0275 (6)0.0300 (6)0.0030 (5)0.0043 (5)0.0008 (5)
C100.0234 (5)0.0276 (6)0.0260 (6)0.0037 (4)0.0022 (4)0.0004 (5)
C110.0292 (6)0.0315 (7)0.0258 (6)0.0018 (5)0.0006 (5)0.0007 (5)
C120.0333 (7)0.0338 (7)0.0369 (7)0.0064 (5)0.0017 (6)0.0071 (6)
C130.0401 (8)0.0297 (7)0.0491 (9)0.0065 (6)0.0044 (6)0.0044 (6)
C140.0436 (8)0.0439 (9)0.0404 (8)0.0039 (7)0.0045 (6)0.0158 (6)
C150.0331 (7)0.0413 (8)0.0306 (7)0.0064 (6)0.0059 (5)0.0057 (6)
C160.0362 (7)0.0374 (7)0.0252 (6)0.0020 (6)0.0002 (5)0.0017 (5)
C170.0236 (5)0.0349 (7)0.0240 (6)0.0047 (5)0.0021 (4)0.0024 (5)
C180.0235 (6)0.0380 (7)0.0225 (6)0.0024 (5)0.0041 (5)0.0035 (5)
C190.0313 (6)0.0379 (7)0.0248 (6)0.0064 (5)0.0009 (5)0.0030 (5)
C200.0291 (6)0.0480 (8)0.0256 (6)0.0024 (6)0.0001 (5)0.0085 (6)
C210.0317 (7)0.0482 (8)0.0301 (7)0.0097 (6)0.0088 (5)0.0077 (6)
C220.0386 (7)0.0406 (8)0.0321 (7)0.0076 (6)0.0068 (6)0.0027 (6)
C230.0317 (6)0.0414 (8)0.0235 (6)0.0031 (5)0.0009 (5)0.0024 (5)
C240.0609 (11)0.0606 (11)0.0427 (9)0.0267 (9)0.0043 (8)0.0063 (8)
Geometric parameters (Å, º) top
S1—C11.7447 (13)C19—C201.385 (2)
S1—C31.7559 (13)C20—C211.383 (2)
N1—C21.4074 (16)C21—C221.402 (2)
N1—C31.3823 (16)C21—C241.505 (3)
N1—C101.4328 (17)C22—C231.378 (2)
N2—N31.3983 (17)C1—H10.9500
N2—C31.2894 (17)C5—H50.9500
N3—C171.2946 (17)C6—H60.9500
C1—C21.3381 (18)C7—H70.9500
C2—C41.4762 (18)C8—H80.9500
C4—C51.3938 (18)C9—H90.9500
C4—C91.3986 (18)C11—H110.9500
C5—C61.390 (2)C12—H120.9500
C6—C71.383 (2)C13—H130.9500
C7—C81.387 (2)C14—H140.9500
C8—C91.384 (2)C15—H150.9500
C10—C111.3834 (18)C16—H16A0.9800
C10—C151.3868 (19)C16—H16B0.9800
C11—C121.391 (2)C16—H16C0.9800
C12—C131.378 (2)C19—H190.9500
C13—C141.391 (2)C20—H200.9500
C14—C151.382 (2)C22—H220.9500
C16—C171.4990 (19)C23—H230.9500
C17—C181.4804 (19)C24—H24A0.9800
C18—C191.3996 (18)C24—H24B0.9800
C18—C231.399 (2)C24—H24C0.9800
C1—S1—C390.54 (6)S1—C1—H1124.00
C2—N1—C3113.96 (10)C2—C1—H1124.00
C2—N1—C10124.82 (11)C4—C5—H5120.00
C3—N1—C10120.84 (10)C6—C5—H5120.00
N3—N2—C3110.94 (11)C5—C6—H6120.00
N2—N3—C17113.90 (11)C7—C6—H6120.00
S1—C1—C2112.82 (10)C6—C7—H7120.00
N1—C2—C1112.76 (11)C8—C7—H7120.00
N1—C2—C4120.69 (11)C7—C8—H8120.00
C1—C2—C4125.95 (11)C9—C8—H8120.00
S1—C3—N1109.91 (9)C4—C9—H9120.00
S1—C3—N2128.02 (10)C8—C9—H9120.00
N1—C3—N2122.07 (12)C10—C11—H11120.00
C2—C4—C5121.26 (11)C12—C11—H11120.00
C2—C4—C9119.58 (11)C11—C12—H12120.00
C5—C4—C9119.02 (12)C13—C12—H12120.00
C4—C5—C6120.09 (12)C12—C13—H13120.00
C5—C6—C7120.45 (13)C14—C13—H13120.00
C6—C7—C8119.83 (13)C13—C14—H14120.00
C7—C8—C9120.12 (13)C15—C14—H14120.00
C4—C9—C8120.47 (12)C10—C15—H15120.00
N1—C10—C11119.80 (11)C14—C15—H15120.00
N1—C10—C15119.42 (12)C17—C16—H16A109.00
C11—C10—C15120.78 (12)C17—C16—H16B109.00
C10—C11—C12119.34 (12)C17—C16—H16C109.00
C11—C12—C13120.31 (13)H16A—C16—H16B109.00
C12—C13—C14119.87 (14)H16A—C16—H16C109.00
C13—C14—C15120.31 (15)H16B—C16—H16C109.00
C10—C15—C14119.35 (13)C18—C19—H19119.00
N3—C17—C16124.23 (12)C20—C19—H19119.00
N3—C17—C18116.36 (12)C19—C20—H20119.00
C16—C17—C18119.37 (11)C21—C20—H20119.00
C17—C18—C19121.26 (12)C21—C22—H22119.00
C17—C18—C23121.15 (11)C23—C22—H22119.00
C19—C18—C23117.54 (12)C18—C23—H23119.00
C18—C19—C20121.03 (13)C22—C23—H23120.00
C19—C20—C21121.36 (13)C21—C24—H24A109.00
C20—C21—C22117.72 (14)C21—C24—H24B109.00
C20—C21—C24120.83 (13)C21—C24—H24C109.00
C22—C21—C24121.45 (15)H24A—C24—H24B110.00
C21—C22—C23121.27 (14)H24A—C24—H24C109.00
C18—C23—C22121.02 (12)H24B—C24—H24C109.00
C3—S1—C1—C20.49 (11)C2—C4—C9—C8174.46 (12)
C1—S1—C3—N10.21 (9)C5—C4—C9—C81.3 (2)
C1—S1—C3—N2179.04 (13)C4—C5—C6—C71.0 (2)
C3—N1—C2—C11.24 (15)C5—C6—C7—C80.8 (2)
C3—N1—C2—C4170.45 (11)C6—C7—C8—C90.5 (2)
C10—N1—C2—C1171.65 (11)C7—C8—C9—C41.6 (2)
C10—N1—C2—C416.66 (18)N1—C10—C11—C12178.63 (12)
C2—N1—C3—S10.84 (13)C15—C10—C11—C121.2 (2)
C2—N1—C3—N2178.47 (12)N1—C10—C15—C14177.75 (13)
C10—N1—C3—S1172.37 (9)C11—C10—C15—C142.1 (2)
C10—N1—C3—N28.33 (18)C10—C11—C12—C130.6 (2)
C2—N1—C10—C1158.30 (17)C11—C12—C13—C141.5 (2)
C2—N1—C10—C15121.54 (14)C12—C13—C14—C150.6 (2)
C3—N1—C10—C11114.13 (14)C13—C14—C15—C101.2 (2)
C3—N1—C10—C1566.03 (16)N3—C17—C18—C19168.14 (12)
C3—N2—N3—C17164.53 (12)N3—C17—C18—C239.15 (18)
N3—N2—C3—S12.76 (17)C16—C17—C18—C199.91 (18)
N3—N2—C3—N1178.07 (11)C16—C17—C18—C23172.80 (12)
N2—N3—C17—C162.60 (18)C17—C18—C19—C20174.87 (12)
N2—N3—C17—C18175.34 (11)C23—C18—C19—C202.51 (19)
S1—C1—C2—N11.06 (14)C17—C18—C23—C22175.55 (13)
S1—C1—C2—C4170.11 (10)C19—C18—C23—C221.8 (2)
N1—C2—C4—C5136.04 (13)C18—C19—C20—C211.1 (2)
N1—C2—C4—C948.28 (17)C19—C20—C21—C221.1 (2)
C1—C2—C4—C553.44 (19)C19—C20—C21—C24178.69 (15)
C1—C2—C4—C9122.24 (15)C20—C21—C22—C231.8 (2)
C2—C4—C5—C6175.69 (12)C24—C21—C22—C23178.01 (15)
C9—C4—C5—C60.0 (2)C21—C22—C23—C180.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C16—H16B···S1i0.983.034.0031 (14)175
C16—H16C···N20.982.282.7053 (18)105
C15—H15···Cg4i0.952.713.6170 (16)160
C16—H16A···Cg4ii0.982.773.5984 (16)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15···Cg4i0.952.713.6170 (16)160
C16—H16A···Cg4ii0.982.773.5984 (16)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

Manchester Metropolitan University, Tulane University and Erciyes University are gratefully acknowledged for supporting this study.

References

First citationAmin, K. M., Rahman, A. D. E. & Al-Eryani, Y. A. (2008). Bioorg. Med. Chem. 16, 5377–5388.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAndreani, A., Rambaldi, M., Mascellani, G. & Rugarli, P. (1987). Eur. J. Med. Chem. 22, 19–22.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKumar, A., Rajput, C. S. & Bhati, S. K. (2007). Bioorg. Med. Chem. 15, 3089–3096.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNarayana, B., Raj, K. K. V., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2004). Eur. J. Med. Chem. 39, 867–872.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & DeClerq, E. (1999). Eur. J. Pharm. Sci. 9, 25–31.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPopsavin, M., Spaic, S., Svircev, M., Kojic, V., Bogdanovic, G. & Popsavin, V. (2007). Bioorg. Med. Chem. Lett. 17, 4123–4127.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamla, M. M., Omar, M. A., El-Khamry, A. M. M. & El-Diwan, H. I. (2006). Bioorg. Med. Chem. 14, 7324–7332.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShih, M. H. & Ying, K. F. (2004). Bioorg. Med. Chem. 12, 4633–4643.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationShiradkar, M. R., Murahari, K. K., Gangadasu, H. R., Suresh, T., Kalyan, C. A., Panchal, D., Kaur, R., Burange, P., Ghogare, J., Mokalec, V. & Raut, M. (2007). Bioorg. Med. Chem. 15, 3997–4008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSiddiqui, N., Arshad, M. F., Ahsan, W. & Alam, M. S. (2009). IJPSDR, 1, 136–143.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds