metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua­(μ4-benzene-1,2,4,5-tetra­carboxyl­ato)tetra­kis­­(1H-imidazole-κN3)dicopper(II)] N,N-di­methyl­formamide monosolvate]

aCollege of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China
*Correspondence e-mail: lixinhua01@126.com

(Received 18 March 2013; accepted 14 April 2013; online 20 April 2013)

The asymmetric unit of the polymeric title compound, {[Cu2(C10H2O8)(C3H4N2)4(H2O)2]·C3H7NO}n, contains two independent CuII ions, each coordinated by one water mol­ecule, two imidazole N atoms and two carboxyl­ate O atoms from benzene-1,2,4,5-tetra­carboxyl­ate anions in a distorted square-pyramidal geometry. The benzene-1,2,4,5-tetra­carboxyl­ate anion bridges four CuII ions, forming a polymeric sheet parallel to (010). In the crystal, extensive N—H⋯O and O—H⋯O hydrogen bonds link the polymeric sheets and di­methyl­formamide solvent mol­ecules into a three-dimensional supra­molecular structure.

Related literature

For background to the benzene-1,2,4,5-tera­carboxyl­ate ligand in coordination polymers, see: Andruh et al. (2011[Andruh, M., Ruiz-Perez, C., Fokin, A. A., Gerbig, D. & Schreiner, P. R. (2011). J. Am. Chem. Soc. 133, 20036-20039.]); Clarke et al. (2012[Clarke, H. D., Hickey, M. B., Moulton, B., Perman, J. A., Peterson, M. L., Wojtas, L., Almarsson, O. & Zaworotko, M. J. (2012). Cryst. Growth Des. 12, 4194-4201.]); Jiang et al. (2008[Jiang, X.-D., Li, X.-B. & Sun, B.-W. (2008). Acta Cryst. E64, m922-m923.]); Aghabozorg et al. (2007[Aghabozorg, H., Bahrami, Z., Tabatabaie, M., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2022-m2023.]); Chu et al. (2001[Chu, D.-Q., Xu, J.-Q., Duan, L.-M., Wang, T.-G., Tang, A.-Q. & Ye, L. (2001). Eur. J. Inorg. Chem. pp. 1135-1137.]); Liu & Ding (2007[Liu, Y.-H. & Ding, M.-T. (2007). Acta Cryst. E63, m1828-m1829.]); Wu et al. (2006[Wu, J.-Y., Chang, C.-H., Tseng, T.-W. & Lu, K.-L. (2006). J. Mol. Struct. 796, 69-75.]). For related structures, see: Zhan & Li (2010[Zhan, G. & Li, X.-H. (2010). Acta Cryst. C66, m29-m31.]); Luo et al. (2007[Luo, J.-H., Huang, C.-C., Huang, X.-H. & Chen, X.-J. (2007). Acta Cryst. C63, m273-m276.]); Yang et al. (2004[Yang, E., Zhang, J., Wen, Y.-H., Chen, Y.-B., Kang, Y., Li, Z.-J. & Yao, Y.-G. (2004). Acta Cryst. C60, m280-m282.]). For the synthesis, see: Zhao et al. (2010[Zhao, J., Shi, D., Cheng, H., Chen, L., Ma, P. & Niu, J. (2010). Inorg. Chem. Commun. 13, 822-827.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C10H2O8)(C3H4N2)4(H2O)2]·C3H7NO

  • Mr = 758.65

  • Monoclinic, P 21 /c

  • a = 8.999 (4) Å

  • b = 19.296 (8) Å

  • c = 18.926 (7) Å

  • β = 110.590 (18)°

  • V = 3076 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 298 K

  • 0.23 × 0.21 × 0.15 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.731, Tmax = 0.811

  • 17289 measured reflections

  • 5445 independent reflections

  • 4149 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.153

  • S = 1.11

  • 5445 reflections

  • 426 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 2.003 (4)
Cu1—N3 2.025 (4)
Cu1—O1 1.984 (3)
Cu1—O5i 1.985 (3)
Cu1—O9 2.344 (3)
Cu2—N5 1.985 (3)
Cu2—N7 1.980 (3)
Cu2—O3 2.243 (3)
Cu2—O7ii 2.003 (3)
Cu2—O10 2.043 (3)
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O3iii 0.86 2.01 2.807 (5) 153
N4—H4N⋯O7ii 0.86 2.35 3.099 (5) 146
N6—H6N⋯O6i 0.86 2.03 2.733 (5) 138
N8—H8N⋯O2iv 0.86 2.35 2.952 (5) 127
N8—H8N⋯O4iv 0.86 2.26 3.033 (6) 149
O9—H9B⋯O11v 0.85 2.06 2.909 (5) 177
O9—H9C⋯O11iv 0.85 2.02 2.805 (6) 153
O10—H10A⋯O8vi 0.85 1.90 2.655 (4) 147
O10—H10B⋯O4 0.85 2.24 2.703 (5) 114
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) x-1, y, z; (v) -x+2, -y+1, -z+1; (vi) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, many successful implementation of crystal engineering concepts has produced a great deal of coordination and supramolecular networks (Andruh et al., 2011), many of which exhibit unusual and fascinating architectures (Clarke et al., 2012). The benzene-1,2,4,5-teracarboxylate ligand as a multi-connecting ligand is also an excellent candidate for the structuring of coordination networks (Jiang et al., 2008), and comparatively few examples have been reported in relation to applying it to the building of coordination polymers (Aghabozorg et al., 2007; Chu et al., 2001; Liu & Ding, 2007; Wu et al., 2006). Here, the title complex, {[Cu2(idz)4(btc)(H2O)2].DMF}n (idz=imidazole, DMF=N,N-dimethylformamide, btc=benzene-1,2,4,5-tetracarboxylato), (I), represents as a novel example.

As shown in Figure 1, the asymmetric unit of (I) consists of two crystallographically independent CuII atoms. Both are five-coordinate in a slight distorted tetragonal pyramid geometry, and chemical environment of them are similar. Each CuII cation is surrounded by two O atoms from two btc tetraanions, two N atoms from two monodentate idz ligands, and one water molecule (O9 or O10) which occupies the axial position. All the bond lengths fall within the typical range of Cu—N bond and Cu—O bond lengths (Luo et al., 2007; Yang et al., 2004).

Cu1 and Cu2 are bridged by a btc tetraanion, which acts as µ4-bridge, forming a two-dimensional sheet along the a,c axis, as shown in Figure 2. The structure can be regarded as a grid sheets with (4,4) net topology which is constructed through CuII centers bridged by btc tetraanions. Adjacent two-dimensional sheets are parallel and are linked via hydrogen-bonding interactions (see Table 1) through uncoordinated DMF solvent molecules to form a sandwich structure(Zhan & Li, 2010).

Related literature top

For background to the benzene-1,2,4,5-teracarboxylate ligand in coordination polymers, see: Andruh et al. (2011); Clarke et al. (2012); Jiang et al. (2008); Aghabozorg et al. (2007); Chu et al. (2001); Liu & Ding (2007); Wu et al. (2006). For related structures, see: Zhan & Li (2010); Luo et al. (2007); Yang et al. (2004). For the synthesis, see: Zhao et al. (2010).

Experimental top

A dimethylformamide (DMF) solution (20 ml) of benzene-1,2,4,5-tetracarboxylic acid (0.1 mmol,0.0254 g) was added dropwise to an aqueous solution (10 ml) containing copper sulfate pentahydrate (0.2 mmol,0.0498 g), N,N-carbonyldiimidazole (0.3 mmol,0.0486 g) and NaOH (0.01 mmol, 0.0004 g) at room temperature (Zhao et al., 2010). The reaction mixture was filtered and the filtrate was left to stand for about three weeks until blue single crystals were obtained (yield 31%, based on Cu).

Refinement top

The nitrogen H atoms were refined subject to the restraint N—H = 0.86 Å. The water H atoms were refined subject to the restraint O—H = 0.85 Å. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of C—H = 0.93-0.96 Å. Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O).

Structure description top

In recent years, many successful implementation of crystal engineering concepts has produced a great deal of coordination and supramolecular networks (Andruh et al., 2011), many of which exhibit unusual and fascinating architectures (Clarke et al., 2012). The benzene-1,2,4,5-teracarboxylate ligand as a multi-connecting ligand is also an excellent candidate for the structuring of coordination networks (Jiang et al., 2008), and comparatively few examples have been reported in relation to applying it to the building of coordination polymers (Aghabozorg et al., 2007; Chu et al., 2001; Liu & Ding, 2007; Wu et al., 2006). Here, the title complex, {[Cu2(idz)4(btc)(H2O)2].DMF}n (idz=imidazole, DMF=N,N-dimethylformamide, btc=benzene-1,2,4,5-tetracarboxylato), (I), represents as a novel example.

As shown in Figure 1, the asymmetric unit of (I) consists of two crystallographically independent CuII atoms. Both are five-coordinate in a slight distorted tetragonal pyramid geometry, and chemical environment of them are similar. Each CuII cation is surrounded by two O atoms from two btc tetraanions, two N atoms from two monodentate idz ligands, and one water molecule (O9 or O10) which occupies the axial position. All the bond lengths fall within the typical range of Cu—N bond and Cu—O bond lengths (Luo et al., 2007; Yang et al., 2004).

Cu1 and Cu2 are bridged by a btc tetraanion, which acts as µ4-bridge, forming a two-dimensional sheet along the a,c axis, as shown in Figure 2. The structure can be regarded as a grid sheets with (4,4) net topology which is constructed through CuII centers bridged by btc tetraanions. Adjacent two-dimensional sheets are parallel and are linked via hydrogen-bonding interactions (see Table 1) through uncoordinated DMF solvent molecules to form a sandwich structure(Zhan & Li, 2010).

For background to the benzene-1,2,4,5-teracarboxylate ligand in coordination polymers, see: Andruh et al. (2011); Clarke et al. (2012); Jiang et al. (2008); Aghabozorg et al. (2007); Chu et al. (2001); Liu & Ding (2007); Wu et al. (2006). For related structures, see: Zhan & Li (2010); Luo et al. (2007); Yang et al. (2004). For the synthesis, see: Zhao et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the (I) with the atom numbering, showing displacement ellipsoids at the 30% probability level. H atoms and DMF molecule have been omitted for clarity.
[Figure 2] Fig. 2. Perspective view of the 2-D sheet of (I).
Poly[[diaqua(µ4-benzene-1,2,4,5-tetracarboxylato)tetrakis(1H-imidazole-κN3)dicopper(II)] N,N-dimethylformamide monosolvate] top
Crystal data top
[Cu2(C10H2O8)(C3H4N2)4(H2O)2]·C3H7NOF(000) = 1552
Mr = 758.65Dx = 1.638 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4538 reflections
a = 8.999 (4) Åθ = 2.3–25.1°
b = 19.296 (8) ŵ = 1.46 mm1
c = 18.926 (7) ÅT = 298 K
β = 110.590 (18)°Block, blue
V = 3076 (2) Å30.23 × 0.21 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
5445 independent reflections
Radiation source: fine-focus sealed tube4149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 25.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 107
Tmin = 0.731, Tmax = 0.811k = 1123
17289 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.094P)2 + 0.3347P]
where P = (Fo2 + 2Fc2)/3
5445 reflections(Δ/σ)max = 0.001
426 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Cu2(C10H2O8)(C3H4N2)4(H2O)2]·C3H7NOV = 3076 (2) Å3
Mr = 758.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.999 (4) ŵ = 1.46 mm1
b = 19.296 (8) ÅT = 298 K
c = 18.926 (7) Å0.23 × 0.21 × 0.15 mm
β = 110.590 (18)°
Data collection top
Bruker APEXII area-detector
diffractometer
5445 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4149 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 0.811Rint = 0.038
17289 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.11Δρmax = 0.51 e Å3
5445 reflectionsΔρmin = 0.60 e Å3
426 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.49949 (5)0.66350 (3)0.40320 (2)0.02190 (17)
Cu20.01800 (5)0.90670 (3)0.40567 (2)0.02186 (17)
O30.0200 (3)0.83286 (14)0.32205 (15)0.0254 (6)
O40.1425 (4)0.90382 (15)0.26628 (17)0.0308 (7)
O20.3393 (3)0.77371 (15)0.32593 (16)0.0302 (7)
O10.3008 (3)0.65963 (14)0.31383 (15)0.0265 (7)
O50.3003 (3)0.82712 (14)0.00888 (15)0.0259 (7)
O60.3577 (3)0.71481 (15)0.01062 (16)0.0289 (7)
O80.0973 (4)0.58140 (16)0.04247 (18)0.0432 (9)
O70.0517 (3)0.66614 (14)0.02611 (14)0.0245 (6)
O100.0235 (3)0.98875 (15)0.34694 (16)0.0313 (7)
H10A0.01561.02620.36900.047*
H10B0.11660.98550.34540.047*
O90.5490 (4)0.54417 (17)0.41879 (19)0.0445 (8)
H9B0.59930.53560.46510.067*
H9C0.46120.52250.40440.067*
N10.6196 (4)0.67888 (18)0.33332 (19)0.0276 (8)
N70.2465 (4)0.91606 (18)0.34494 (19)0.0273 (8)
N30.3720 (4)0.67091 (19)0.4723 (2)0.0316 (9)
N50.2083 (4)0.91014 (18)0.47251 (19)0.0265 (8)
C70.2741 (4)0.7665 (2)0.0167 (2)0.0227 (9)
C20.1268 (4)0.7328 (2)0.2199 (2)0.0193 (8)
C40.0744 (4)0.8489 (2)0.2715 (2)0.0224 (9)
C10.2665 (4)0.7223 (2)0.2915 (2)0.0247 (9)
C100.0832 (4)0.6832 (2)0.1639 (2)0.0220 (9)
H100.13800.64140.17180.026*
N80.5031 (4)0.8996 (2)0.2980 (2)0.0443 (11)
H8N0.59590.88400.29280.053*
C30.0416 (4)0.7953 (2)0.20941 (19)0.0173 (8)
C60.1278 (4)0.7559 (2)0.0861 (2)0.0191 (8)
C80.0412 (4)0.6942 (2)0.09592 (19)0.0176 (8)
C50.0858 (4)0.8058 (2)0.1428 (2)0.0220 (9)
H50.14380.84670.13600.026*
C130.5758 (6)0.6644 (3)0.2580 (3)0.0410 (12)
H130.49160.63600.23080.049*
C170.3268 (5)0.8762 (2)0.4620 (3)0.0358 (11)
H170.31610.84770.42090.043*
C110.7426 (5)0.7202 (2)0.3478 (3)0.0310 (10)
H110.79810.73850.39530.037*
N60.4627 (4)0.8883 (2)0.5180 (2)0.0450 (11)
H6N0.55400.87150.52220.054*
C200.3691 (5)0.8842 (2)0.3536 (2)0.0336 (11)
H200.36220.85470.39350.040*
C90.0702 (4)0.6424 (2)0.0330 (2)0.0239 (9)
N20.7785 (5)0.7327 (2)0.2862 (2)0.0396 (10)
H2N0.85430.75840.28340.047*
C140.4166 (6)0.6577 (3)0.5468 (3)0.0455 (13)
H140.50650.63260.57450.055*
C190.2747 (5)0.9448 (3)0.5398 (3)0.0404 (12)
H190.22000.97270.56260.048*
C220.3115 (6)0.9542 (3)0.2796 (3)0.0466 (14)
H220.25480.98280.25860.056*
C210.4691 (6)0.9439 (3)0.2511 (3)0.0531 (15)
H210.54050.96350.20740.064*
C180.4314 (6)0.9319 (3)0.5673 (3)0.0496 (14)
H180.50460.94950.61160.060*
N40.2023 (5)0.7178 (3)0.5191 (3)0.0549 (12)
H4N0.12220.74050.52180.066*
C160.2400 (5)0.7077 (3)0.4577 (3)0.0441 (12)
H160.18060.72460.41010.053*
C150.3138 (7)0.6855 (4)0.5755 (4)0.0633 (17)
H150.31920.68280.62540.076*
C120.6730 (6)0.6973 (3)0.2298 (3)0.0525 (14)
H120.66830.69600.17990.063*
O111.2716 (4)0.4804 (2)0.4224 (2)0.0636 (12)
N91.0139 (5)0.5105 (2)0.3827 (3)0.0555 (12)
C240.9597 (8)0.4537 (4)0.4157 (4)0.073 (2)
H24A0.94360.41390.38340.110*
H24B0.86140.46600.42170.110*
H24C1.03760.44310.46410.110*
C231.1617 (7)0.5176 (3)0.3867 (3)0.0634 (17)
H231.18430.55420.36000.076*
C250.8863 (10)0.5547 (4)0.3310 (6)0.132 (4)
H25A0.93200.58770.30660.198*
H25B0.83270.57880.35950.198*
H25C0.81170.52610.29360.198*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0181 (3)0.0249 (3)0.0169 (3)0.00076 (19)0.00107 (19)0.0007 (2)
Cu20.0243 (3)0.0221 (3)0.0170 (3)0.00021 (19)0.0045 (2)0.00088 (19)
O30.0329 (15)0.0251 (17)0.0207 (14)0.0055 (12)0.0123 (12)0.0071 (12)
O40.0410 (17)0.0231 (18)0.0303 (16)0.0099 (13)0.0149 (13)0.0024 (13)
O20.0269 (15)0.0292 (18)0.0246 (15)0.0017 (13)0.0034 (12)0.0083 (13)
O10.0223 (13)0.0270 (18)0.0223 (15)0.0006 (12)0.0017 (11)0.0024 (13)
O50.0264 (14)0.0209 (17)0.0222 (15)0.0019 (12)0.0017 (11)0.0024 (12)
O60.0229 (14)0.0276 (18)0.0291 (16)0.0052 (12)0.0003 (12)0.0042 (13)
O80.074 (2)0.0191 (19)0.0305 (18)0.0097 (16)0.0105 (16)0.0003 (14)
O70.0304 (14)0.0242 (17)0.0184 (14)0.0015 (12)0.0081 (11)0.0029 (12)
O100.0335 (15)0.0196 (17)0.0401 (17)0.0000 (13)0.0120 (13)0.0002 (13)
O90.0472 (19)0.030 (2)0.053 (2)0.0015 (15)0.0126 (16)0.0056 (16)
N10.0276 (18)0.026 (2)0.0263 (19)0.0016 (15)0.0055 (14)0.0036 (15)
N70.0266 (18)0.029 (2)0.0240 (18)0.0003 (15)0.0060 (14)0.0036 (15)
N30.0258 (18)0.035 (2)0.032 (2)0.0033 (15)0.0071 (15)0.0034 (17)
N50.0288 (18)0.023 (2)0.0249 (18)0.0021 (15)0.0064 (14)0.0010 (15)
C70.0177 (18)0.029 (3)0.020 (2)0.0013 (17)0.0060 (15)0.0044 (18)
C20.0225 (18)0.022 (2)0.0096 (17)0.0001 (16)0.0008 (14)0.0012 (15)
C40.0200 (18)0.020 (2)0.022 (2)0.0035 (16)0.0009 (15)0.0021 (17)
C10.0188 (18)0.029 (3)0.024 (2)0.0015 (17)0.0045 (16)0.0004 (19)
C100.0226 (19)0.019 (2)0.023 (2)0.0034 (16)0.0061 (15)0.0001 (17)
N80.0246 (19)0.055 (3)0.046 (2)0.0078 (18)0.0035 (17)0.006 (2)
C30.0184 (17)0.019 (2)0.0125 (18)0.0038 (15)0.0034 (14)0.0031 (15)
C60.0233 (18)0.020 (2)0.0109 (17)0.0009 (16)0.0029 (14)0.0005 (15)
C80.0197 (17)0.021 (2)0.0102 (17)0.0042 (16)0.0028 (13)0.0008 (15)
C50.0210 (18)0.021 (2)0.022 (2)0.0009 (16)0.0042 (15)0.0005 (17)
C130.041 (3)0.057 (4)0.023 (2)0.012 (2)0.0088 (19)0.012 (2)
C170.038 (2)0.036 (3)0.031 (2)0.004 (2)0.0090 (19)0.006 (2)
C110.033 (2)0.023 (3)0.039 (3)0.0059 (19)0.0151 (19)0.0070 (19)
N60.029 (2)0.054 (3)0.042 (2)0.0132 (19)0.0003 (17)0.006 (2)
C200.035 (2)0.035 (3)0.027 (2)0.002 (2)0.0065 (18)0.004 (2)
C90.0205 (19)0.024 (2)0.021 (2)0.0015 (17)0.0008 (15)0.0011 (17)
N20.046 (2)0.044 (3)0.037 (2)0.0142 (19)0.0242 (18)0.0041 (19)
C140.047 (3)0.058 (4)0.033 (3)0.007 (2)0.014 (2)0.014 (2)
C190.039 (3)0.041 (3)0.030 (3)0.009 (2)0.0005 (19)0.016 (2)
C220.043 (3)0.065 (4)0.026 (2)0.006 (3)0.005 (2)0.023 (2)
C210.034 (3)0.081 (4)0.036 (3)0.001 (3)0.002 (2)0.031 (3)
C180.036 (3)0.057 (4)0.042 (3)0.005 (2)0.004 (2)0.023 (3)
N40.055 (3)0.064 (3)0.058 (3)0.011 (2)0.034 (2)0.005 (2)
C160.037 (3)0.051 (3)0.049 (3)0.008 (2)0.022 (2)0.006 (3)
C150.064 (4)0.084 (5)0.054 (4)0.000 (3)0.036 (3)0.000 (3)
C120.059 (3)0.069 (4)0.036 (3)0.011 (3)0.026 (2)0.008 (3)
O110.042 (2)0.055 (3)0.082 (3)0.0004 (18)0.0066 (19)0.027 (2)
N90.042 (2)0.043 (3)0.076 (3)0.006 (2)0.014 (2)0.014 (2)
C240.083 (4)0.071 (5)0.078 (5)0.021 (4)0.044 (4)0.027 (4)
C230.068 (4)0.048 (4)0.062 (4)0.014 (3)0.008 (3)0.002 (3)
C250.091 (6)0.083 (6)0.173 (10)0.048 (5)0.014 (6)0.025 (6)
Geometric parameters (Å, º) top
Cu1—N12.003 (4)C3—C51.389 (5)
Cu1—N32.025 (4)C6—C51.393 (5)
Cu1—O11.984 (3)C6—C81.398 (5)
Cu1—O5i1.985 (3)C8—C91.506 (5)
Cu1—O92.344 (3)C5—H50.9300
Cu2—N51.985 (3)C13—C121.335 (7)
Cu2—N71.980 (3)C13—H130.9300
Cu2—O32.243 (3)C17—N61.327 (6)
Cu2—O7ii2.003 (3)C17—H170.9300
Cu2—O102.043 (3)C11—N21.337 (6)
O3—C41.257 (5)C11—H110.9300
O4—C41.245 (5)N6—C181.358 (6)
O2—C11.240 (5)N6—H6N0.8600
O1—C11.282 (5)C20—H200.9300
O5—C71.256 (5)N2—C121.340 (6)
O5—Cu1iii1.985 (3)N2—H2N0.8600
O6—C71.247 (5)C14—C151.339 (8)
O8—C91.228 (5)C14—H140.9300
O7—C91.273 (5)C19—C181.344 (6)
O7—Cu2iv2.003 (3)C19—H190.9300
O10—H10A0.8500C22—C211.344 (7)
O10—H10B0.8500C22—H220.9300
O9—H9B0.8499C21—H210.9300
O9—H9C0.8500C18—H180.9300
N1—C111.312 (5)N4—C161.335 (7)
N1—C131.367 (6)N4—C151.335 (7)
N7—C201.323 (6)N4—H4N0.8600
N7—C221.380 (5)C16—H160.9300
N3—C161.327 (6)C15—H150.9300
N3—C141.348 (6)C12—H120.9300
N5—C171.325 (6)O11—C231.217 (7)
N5—C191.376 (5)N9—C231.313 (8)
C7—C61.512 (5)N9—C241.429 (8)
C2—C101.378 (5)N9—C251.487 (8)
C2—C31.406 (5)C24—H24A0.9600
C2—C11.503 (5)C24—H24B0.9600
C4—C31.514 (5)C24—H24C0.9600
C10—C81.393 (5)C23—H230.9300
C10—H100.9300C25—H25A0.9600
N8—C201.327 (6)C25—H25B0.9600
N8—C211.342 (6)C25—H25C0.9600
N8—H8N0.8600
O1—Cu1—O5i176.77 (12)C3—C5—C6120.8 (4)
O1—Cu1—N188.65 (13)C3—C5—H5119.6
O5i—Cu1—N189.92 (13)C6—C5—H5119.6
O1—Cu1—N390.46 (13)C12—C13—N1109.2 (4)
O5i—Cu1—N390.31 (13)C12—C13—H13125.4
N1—Cu1—N3167.36 (15)N1—C13—H13125.4
O1—Cu1—O998.32 (12)N5—C17—N6111.0 (4)
O5i—Cu1—O984.71 (12)N5—C17—H17124.5
N1—Cu1—O996.07 (13)N6—C17—H17124.5
N3—Cu1—O996.53 (14)N1—C11—N2111.8 (4)
N7—Cu2—N5172.01 (15)N1—C11—H11124.1
N7—Cu2—O7ii94.38 (13)N2—C11—H11124.1
N5—Cu2—O7ii88.09 (13)C17—N6—C18107.6 (4)
N7—Cu2—O1087.98 (13)C17—N6—H6N126.2
N5—Cu2—O1088.73 (13)C18—N6—H6N126.2
O7ii—Cu2—O10173.16 (12)N7—C20—N8111.2 (4)
N7—Cu2—O391.92 (13)N7—C20—H20124.4
N5—Cu2—O395.39 (13)N8—C20—H20124.4
O7ii—Cu2—O395.99 (11)O8—C9—O7124.6 (4)
O10—Cu2—O390.34 (12)O8—C9—C8120.6 (4)
C4—O3—Cu2125.3 (3)O7—C9—C8114.6 (4)
C1—O1—Cu1106.6 (2)C11—N2—C12106.3 (4)
C7—O5—Cu1iii113.6 (2)C11—N2—H2N126.8
C9—O7—Cu2iv114.2 (3)C12—N2—H2N126.8
Cu2—O10—H10A109.2C15—C14—N3110.8 (5)
Cu2—O10—H10B109.3C15—C14—H14124.6
H10A—O10—H10B109.5N3—C14—H14124.6
Cu1—O9—H9B109.2C18—C19—N5108.8 (4)
Cu1—O9—H9C109.3C18—C19—H19125.6
H9B—O9—H9C109.5N5—C19—H19125.6
C11—N1—C13104.8 (4)C21—C22—N7109.6 (4)
C11—N1—Cu1124.3 (3)C21—C22—H22125.2
C13—N1—Cu1129.3 (3)N7—C22—H22125.2
C20—N7—C22104.5 (4)N8—C21—C22106.4 (4)
C20—N7—Cu2128.8 (3)N8—C21—H21126.8
C22—N7—Cu2126.5 (3)C22—C21—H21126.8
C16—N3—C14103.6 (4)C19—C18—N6107.0 (4)
C16—N3—Cu1124.9 (3)C19—C18—H18126.5
C14—N3—Cu1129.4 (3)N6—C18—H18126.5
C17—N5—C19105.7 (4)C16—N4—C15106.2 (5)
C17—N5—Cu2126.0 (3)C16—N4—H4N126.9
C19—N5—Cu2128.3 (3)C15—N4—H4N126.9
O6—C7—O5125.6 (3)N3—C16—N4112.3 (5)
O6—C7—C6117.8 (4)N3—C16—H16123.9
O5—C7—C6116.7 (3)N4—C16—H16123.9
C10—C2—C3119.5 (3)N4—C15—C14107.1 (5)
C10—C2—C1121.4 (4)N4—C15—H15126.4
C3—C2—C1119.0 (3)C14—C15—H15126.4
O4—C4—O3127.1 (4)C13—C12—N2107.8 (5)
O4—C4—C3119.1 (4)C13—C12—H12126.1
O3—C4—C3113.6 (3)N2—C12—H12126.1
O2—C1—O1124.0 (3)C23—N9—C24123.4 (5)
O2—C1—C2119.0 (4)C23—N9—C25120.7 (7)
O1—C1—C2116.9 (3)C24—N9—C25115.0 (6)
C2—C10—C8121.6 (4)N9—C24—H24A109.5
C2—C10—H10119.2N9—C24—H24B109.5
C8—C10—H10119.2H24A—C24—H24B109.5
C20—N8—C21108.2 (4)N9—C24—H24C109.5
C20—N8—H8N125.9H24A—C24—H24C109.5
C21—N8—H8N125.9H24B—C24—H24C109.5
C5—C3—C2119.3 (3)O11—C23—N9125.4 (6)
C5—C3—C4118.6 (3)O11—C23—H23117.3
C2—C3—C4121.9 (3)N9—C23—H23117.3
C5—C6—C8119.9 (3)N9—C25—H25A109.5
C5—C6—C7119.6 (3)N9—C25—H25B109.5
C8—C6—C7120.4 (3)H25A—C25—H25B109.5
C10—C8—C6118.8 (3)N9—C25—H25C109.5
C10—C8—C9119.3 (3)H25A—C25—H25C109.5
C6—C8—C9121.7 (3)H25B—C25—H25C109.5
N7—Cu2—O3—C498.4 (3)C1—C2—C3—C47.1 (5)
N5—Cu2—O3—C478.3 (3)O4—C4—C3—C578.2 (5)
O7ii—Cu2—O3—C4167.0 (3)O3—C4—C3—C598.4 (4)
O10—Cu2—O3—C410.4 (3)O4—C4—C3—C2107.7 (4)
O5i—Cu1—O1—C113 (2)O3—C4—C3—C275.7 (5)
N1—Cu1—O1—C176.3 (3)O6—C7—C6—C5141.6 (4)
N3—Cu1—O1—C191.1 (3)O5—C7—C6—C538.7 (5)
O9—Cu1—O1—C1172.2 (3)O6—C7—C6—C833.9 (5)
O1—Cu1—N1—C11142.5 (4)O5—C7—C6—C8145.8 (4)
O5i—Cu1—N1—C1134.6 (3)C2—C10—C8—C63.0 (6)
N3—Cu1—N1—C1156.4 (7)C2—C10—C8—C9172.2 (4)
O9—Cu1—N1—C11119.3 (3)C5—C6—C8—C102.0 (6)
O1—Cu1—N1—C1320.6 (4)C7—C6—C8—C10173.5 (3)
O5i—Cu1—N1—C13162.3 (4)C5—C6—C8—C9173.0 (4)
N3—Cu1—N1—C13106.6 (7)C7—C6—C8—C911.5 (6)
O9—Cu1—N1—C1377.7 (4)C2—C3—C5—C61.3 (6)
N5—Cu2—N7—C20105.7 (10)C4—C3—C5—C6175.5 (4)
O7ii—Cu2—N7—C202.1 (4)C8—C6—C5—C30.1 (6)
O10—Cu2—N7—C20171.5 (4)C7—C6—C5—C3175.6 (3)
O3—Cu2—N7—C2098.3 (4)C11—N1—C13—C120.1 (6)
N5—Cu2—N7—C2279.8 (11)Cu1—N1—C13—C12165.4 (4)
O7ii—Cu2—N7—C22172.4 (4)C19—N5—C17—N60.8 (5)
O10—Cu2—N7—C2214.0 (4)Cu2—N5—C17—N6178.3 (3)
O3—Cu2—N7—C2276.2 (4)C13—N1—C11—N20.2 (5)
O1—Cu1—N3—C1639.4 (4)Cu1—N1—C11—N2166.3 (3)
O5i—Cu1—N3—C16137.5 (4)N5—C17—N6—C180.2 (6)
N1—Cu1—N3—C1646.5 (8)C22—N7—C20—N80.7 (5)
O9—Cu1—N3—C16137.8 (4)Cu2—N7—C20—N8174.8 (3)
O1—Cu1—N3—C14160.2 (4)C21—N8—C20—N70.7 (6)
O5i—Cu1—N3—C1423.0 (4)Cu2iv—O7—C9—O814.0 (5)
N1—Cu1—N3—C14114.0 (6)Cu2iv—O7—C9—C8160.5 (2)
O9—Cu1—N3—C1461.7 (4)C10—C8—C9—O858.3 (5)
N7—Cu2—N5—C17156.0 (9)C6—C8—C9—O8126.6 (4)
O7ii—Cu2—N5—C1795.8 (4)C10—C8—C9—O7116.4 (4)
O10—Cu2—N5—C1790.3 (4)C6—C8—C9—O758.6 (5)
O3—Cu2—N5—C170.1 (4)N1—C11—N2—C120.2 (6)
N7—Cu2—N5—C1927.0 (12)C16—N3—C14—C150.3 (6)
O7ii—Cu2—N5—C1981.2 (4)Cu1—N3—C14—C15163.9 (4)
O10—Cu2—N5—C1992.8 (4)C17—N5—C19—C181.1 (6)
O3—Cu2—N5—C19177.0 (4)Cu2—N5—C19—C18178.6 (4)
Cu1iii—O5—C7—O63.3 (5)C20—N7—C22—C210.4 (6)
Cu1iii—O5—C7—C6177.1 (2)Cu2—N7—C22—C21175.2 (4)
Cu2—O3—C4—O413.8 (5)C20—N8—C21—C220.4 (7)
Cu2—O3—C4—C3162.4 (2)N7—C22—C21—N80.0 (7)
Cu1—O1—C1—O26.3 (5)N5—C19—C18—N61.1 (7)
Cu1—O1—C1—C2175.1 (3)C17—N6—C18—C190.5 (6)
C10—C2—C1—O2152.4 (4)C14—N3—C16—N40.2 (6)
C3—C2—C1—O226.0 (6)Cu1—N3—C16—N4164.4 (3)
C10—C2—C1—O128.9 (6)C15—N4—C16—N30.6 (7)
C3—C2—C1—O1152.7 (4)C16—N4—C15—C140.8 (7)
C3—C2—C10—C81.8 (6)N3—C14—C15—N40.7 (7)
C1—C2—C10—C8176.7 (4)N1—C13—C12—N20.0 (7)
C10—C2—C3—C50.3 (6)C11—N2—C12—C130.1 (6)
C1—C2—C3—C5178.8 (3)C24—N9—C23—O115.1 (10)
C10—C2—C3—C4174.4 (4)C25—N9—C23—O11173.7 (6)
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x1, y+3/2, z1/2; (iv) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O3v0.862.012.807 (5)153
N4—H4N···O7ii0.862.353.099 (5)146
N6—H6N···O6i0.862.032.733 (5)138
N8—H8N···O2vi0.862.352.952 (5)127
N8—H8N···O4vi0.862.263.033 (6)149
O9—H9B···O11vii0.852.062.909 (5)177
O9—H9C···O11vi0.852.022.805 (6)153
O10—H10A···O8viii0.851.902.655 (4)147
O10—H10B···O40.852.242.703 (5)114
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2; (v) x+1, y, z; (vi) x1, y, z; (vii) x+2, y+1, z+1; (viii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C10H2O8)(C3H4N2)4(H2O)2]·C3H7NO
Mr758.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.999 (4), 19.296 (8), 18.926 (7)
β (°) 110.590 (18)
V3)3076 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.23 × 0.21 × 0.15
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.731, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
17289, 5445, 4149
Rint0.038
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.153, 1.11
No. of reflections5445
No. of parameters426
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.60

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N12.003 (4)Cu2—N51.985 (3)
Cu1—N32.025 (4)Cu2—N71.980 (3)
Cu1—O11.984 (3)Cu2—O32.243 (3)
Cu1—O5i1.985 (3)Cu2—O7ii2.003 (3)
Cu1—O92.344 (3)Cu2—O102.043 (3)
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O3iii0.862.012.807 (5)153
N4—H4N···O7ii0.862.353.099 (5)146
N6—H6N···O6i0.862.032.733 (5)138
N8—H8N···O2iv0.862.352.952 (5)127
N8—H8N···O4iv0.862.263.033 (6)149
O9—H9B···O11v0.852.062.909 (5)177
O9—H9C···O11iv0.852.022.805 (6)153
O10—H10A···O8vi0.851.902.655 (4)147
O10—H10B···O40.852.242.703 (5)114
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y, z; (iv) x1, y, z; (v) x+2, y+1, z+1; (vi) x, y+1/2, z+1/2.
 

Acknowledgements

The work was supported by the National Natural Science Foundation of China (grant Nos. 21171133 and 21271143) and the Opening Foundation of Zhejiang Provincial Top Key Discipline (20121112).

References

First citationAghabozorg, H., Bahrami, Z., Tabatabaie, M., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2022–m2023.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAndruh, M., Ruiz-Perez, C., Fokin, A. A., Gerbig, D. & Schreiner, P. R. (2011). J. Am. Chem. Soc. 133, 20036–20039.  Web of Science PubMed Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChu, D.-Q., Xu, J.-Q., Duan, L.-M., Wang, T.-G., Tang, A.-Q. & Ye, L. (2001). Eur. J. Inorg. Chem. pp. 1135–1137.  CrossRef Google Scholar
First citationClarke, H. D., Hickey, M. B., Moulton, B., Perman, J. A., Peterson, M. L., Wojtas, L., Almarsson, O. & Zaworotko, M. J. (2012). Cryst. Growth Des. 12, 4194–4201.  Web of Science CSD CrossRef CAS Google Scholar
First citationJiang, X.-D., Li, X.-B. & Sun, B.-W. (2008). Acta Cryst. E64, m922–m923.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, Y.-H. & Ding, M.-T. (2007). Acta Cryst. E63, m1828–m1829.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLuo, J.-H., Huang, C.-C., Huang, X.-H. & Chen, X.-J. (2007). Acta Cryst. C63, m273–m276.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J.-Y., Chang, C.-H., Tseng, T.-W. & Lu, K.-L. (2006). J. Mol. Struct. 796, 69–75.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, E., Zhang, J., Wen, Y.-H., Chen, Y.-B., Kang, Y., Li, Z.-J. & Yao, Y.-G. (2004). Acta Cryst. C60, m280–m282.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhan, G. & Li, X.-H. (2010). Acta Cryst. C66, m29–m31.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhao, J., Shi, D., Cheng, H., Chen, L., Ma, P. & Niu, J. (2010). Inorg. Chem. Commun. 13, 822–827.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds