metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua­[μ2-3-carb­­oxy-5-(pyridine-4-carboxamido)­benzoato][μ4-5-(pyridine-4-carboxamido)­isophthalato]cerium(III)] monohydrate]

aDepartment of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, People's Republic of China
*Correspondence e-mail: yifang7124@163.com

(Received 16 March 2012; accepted 28 March 2012; online 4 April 2012)

In the title compound, {[Ce(C14H9N2O5)(C14H8N2O5)(H2O)2]·H2O}n, three carboxyl groups of two independent isophthalate anions are deprotonated and they bridge the CeIII cations, forming a two-dimensional polymeric structure parallel to (001); another carboxyl group is not deprotonated and links with the adjacent pyridine ring via an O—H⋯N hydrogen bond. The CeIII cation is coordinated by six O atoms from carboxyl groups and two O atoms from coordinated water mol­ecules in a distorted square-anti­prismatic arrangement. Extensive O—H⋯O and O—H⋯N hydrogen bonding occurs in the crystal structure.

Related literature

For applications of lanthanide complexes with carboxyl ligands, see: Chin et al. (1994[Chin, K. O. A., Morrow, J. R., Lake, C. H. & Churchill, M. L. (1994). Inorg. Chem. 33, 656-664.]); Singh et al. (2002[Singh, U. P., Tyagi, S., Sharma, C. L., Gorner, H. & Weyhermuller, T. (2002). J. Chem. Soc. Dalton Trans. pp. 4464-4470.]). For related complexes, see: Chen et al. (2011[Chen, M.-S., Fan, J., Okamura, T., Lv, G.-C. & Sun, W.-Y. (2011). Inorg. Chim. Acta, 366, 268-274.]); Deng (2011[Deng, Y.-F. (2011). Acta Cryst. E67, m1298.]); Qiu et al. (2007[Qiu, Y., Liu, H., Ling, Y., Deng, H., Zeng, R., Zhou, G. & Zeller, M. (2007). Inorg. Chem. Commun. 10, 1399-1403.]); Gubina et al. (2000[Gubina, K. E., Shatrava, J. A., Ocvchynnikov, V. A. & Amirkhanov, V. M. (2000). Polyhedron, 19, 2203-2209.]); Wang et al. (2003[Wang, R.-F., Wang, S.-P. & Zhang, J.-J. (2003). J. Mol. Struct. 648, 151-158.]).

[Scheme 1]

Experimental

Crystal data
  • [Ce(C14H9N2O5)(C14H8N2O5)(H2O)2]·H2O

  • Mr = 763.62

  • Triclinic, [P \overline 1]

  • a = 9.6742 (8) Å

  • b = 10.6187 (8) Å

  • c = 15.8542 (12) Å

  • α = 81.443 (1)°

  • β = 78.753 (2)°

  • γ = 64.166 (2)°

  • V = 1433.98 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 293 K

  • 0.18 × 0.14 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.754, Tmax = 0.878

  • 7189 measured reflections

  • 4972 independent reflections

  • 4669 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.086

  • S = 1.04

  • 4972 reflections

  • 416 parameters

  • H-atom parameters constrained

  • Δρmax = 1.26 e Å−3

  • Δρmin = −1.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯N2i 0.85 2.21 2.756 (5) 122
O2W—H2WB⋯O1Wii 0.85 2.53 3.297 (5) 150
O2W—H2WA⋯O3Wiii 0.85 2.07 2.728 (6) 133
O3W—H3WA⋯O10iv 0.85 2.06 2.856 (8) 157
O3W—H3WB⋯O5v 0.85 1.92 2.742 (6) 161
O3—H3⋯N4vi 0.82 1.81 2.583 (5) 156
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+2, -y+2, -z+1; (iii) x, y+1, z; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1; (vi) -x+3, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, lanthanide-carboxylic acid complexes have been widely studied and applied in many fields due to their excellent luminescent properties (Chin et al., 1994; Singh et al., 2002). Distinct structure features with various lanthanides (Qiu et al., 2007; Gubina et al., 2000) or ligands (Wang et al., 2003) have been reported.

The title compound, (I) was synthesized and its structure was determined by X-ray diffraction. Similar crystal structure with 5-isonicotinamidoisophthalic acid as ligand has been reported recently (Chen et al., 2011; Deng, 2011).

In the title compound, the central CeIII ion is eight-coordinated by two O atoms from two water molecules, two carboxylate O atoms from two partial-deprotonated HL- ligands and four other O atoms from four different L2- ligands, which forming a distorted square-antiprismatic geometry (Fig. 1). Moreover, the HL- anions adopt µ2-η1:η1 bridging coordination mode, while two carboxylate groups of each L2- ligand have different coordination modes, one is µ2-η1:η1 bridging and the other one acts as µ2-η2:η1-bridging coordination mode, whereas the pyridyl group is free of coordination. Such a coordination mode makes (I) into an infinite two-dimensional network (Fig. 2). The pyridyl groups are free. Adjacent molecules are linked through O—H···N and O—H···O hydrogen bonds into a three-dimensional network.

Related literature top

For applications of lanthanide complexes with carboxyl ligands, see: Chin et al. (1994); Singh et al. (2002). For related complexes, see: Chen et al. (2011); Deng (2011); Qiu et al. (2007); Gubina et al. (2000); Wang et al. (2003).

Experimental top

A mixture of 0.05 mmol Ce(NO3)3.6H2O (21.2 mg. 0.05 mmol), 5-isonicotinamidoisophthalic acid (28.7 mg, 0.1 mmol), NaOH (6.0 mg, 0.15 mmol), MeOH (5 ml) and water (5 ml) was heated in a 16 ml capacity Teflon-lined reaction vessel at 453 K for 3 d, the reaction mixture then was cooled to room temperature over a period of 40 h. The product was collected by filtration.

Refinement top

Amide H atoms were located in a difference Fourier map and refined as riding in as found relative positions, other H atoms were placed geometrically with O—H = 0.86 (water), 0.82 (carboxyl) and C—H = 0.93 Å), and refined in riding mode, Uiso(H) = 1.2Ueq(N,O,C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP drawing of the title compound (I). Displacement ellipsoids are drawn at 30% probability level. [Symmetry codes: (i) 1 - x,2 - y,1 - z (ii) 2 - x,2 - y,1 - z (iii) -1 + x,1 + y,z (iv) 2 - x,1 - y,1 - z.]
[Figure 2] Fig. 2. Projection showing the two-dimensional structure of the compound, all pyridyl groups are omitted for clarity.
Poly[[diaqua[µ2-3-carboxy-5-(pyridine-4-carboxamido)benzoato][µ4- 5-(pyridine-4-carboxamido)isophthalato]cerium(III)] monohydrate] top
Crystal data top
[Ce(C14H9N2O5)(C14H8N2O5)(H2O)2]·H2OZ = 2
Mr = 763.62F(000) = 762
Triclinic, P1Dx = 1.769 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6742 (8) ÅCell parameters from 4972 reflections
b = 10.6187 (8) Åθ = 2.1–25.0°
c = 15.8542 (12) ŵ = 1.67 mm1
α = 81.443 (1)°T = 293 K
β = 78.753 (2)°Block, colorless
γ = 64.166 (2)°0.18 × 0.14 × 0.08 mm
V = 1433.98 (19) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4972 independent reflections
Radiation source: fine-focus sealed tube4669 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.754, Tmax = 0.878k = 1012
7189 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0565P)2]
where P = (Fo2 + 2Fc2)/3
4972 reflections(Δ/σ)max = 0.002
416 parametersΔρmax = 1.26 e Å3
0 restraintsΔρmin = 1.23 e Å3
Crystal data top
[Ce(C14H9N2O5)(C14H8N2O5)(H2O)2]·H2Oγ = 64.166 (2)°
Mr = 763.62V = 1433.98 (19) Å3
Triclinic, P1Z = 2
a = 9.6742 (8) ÅMo Kα radiation
b = 10.6187 (8) ŵ = 1.67 mm1
c = 15.8542 (12) ÅT = 293 K
α = 81.443 (1)°0.18 × 0.14 × 0.08 mm
β = 78.753 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4972 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4669 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.878Rint = 0.071
7189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.04Δρmax = 1.26 e Å3
4972 reflectionsΔρmin = 1.23 e Å3
416 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.731679 (19)0.960889 (17)0.503370 (11)0.01875 (9)
C70.5111 (4)1.0993 (4)0.3253 (2)0.0249 (7)
C30.5318 (4)1.1620 (4)0.2339 (2)0.0259 (7)
C20.4389 (4)1.1697 (4)0.1751 (2)0.0288 (8)
H20.36711.13090.19030.035*
C10.4534 (4)1.2359 (4)0.0934 (2)0.0299 (8)
C60.5503 (5)1.3043 (4)0.0741 (2)0.0353 (9)
H60.55311.35600.02150.042*
C50.6427 (5)1.2962 (4)0.1326 (2)0.0323 (8)
C40.6388 (4)1.2197 (4)0.2109 (2)0.0299 (8)
H40.70791.20700.24810.036*
C90.3250 (5)1.1435 (5)0.0155 (3)0.0385 (9)
C100.2671 (5)1.1588 (4)0.0677 (2)0.0364 (9)
C140.1640 (6)1.1015 (5)0.0707 (3)0.0480 (11)
H140.12811.05900.02130.058*
C130.1153 (6)1.1087 (6)0.1486 (3)0.0575 (13)
H130.04581.07050.15020.069*
C120.2624 (7)1.2209 (6)0.2179 (3)0.0562 (13)
H120.29691.26150.26870.067*
C110.3175 (6)1.2199 (5)0.1436 (3)0.0496 (11)
H110.38691.25930.14450.059*
C80.7431 (5)1.3750 (5)0.1128 (3)0.0398 (10)
C211.1064 (4)0.7882 (3)0.5569 (2)0.0212 (7)
C171.2354 (4)0.6476 (3)0.5727 (2)0.0210 (7)
C161.3614 (4)0.6391 (4)0.6063 (2)0.0254 (7)
H161.36490.72070.61830.031*
C151.4816 (4)0.5108 (4)0.6220 (2)0.0267 (7)
C201.4817 (4)0.3891 (4)0.6011 (2)0.0267 (8)
H201.56330.30280.61130.032*
C191.3580 (4)0.3973 (4)0.5645 (2)0.0230 (7)
C181.2335 (4)0.5254 (3)0.5521 (2)0.0223 (7)
H181.14910.52960.53010.027*
C231.6591 (5)0.4429 (4)0.7281 (3)0.0389 (9)
C241.7777 (4)0.4767 (4)0.7573 (3)0.0337 (9)
C281.8537 (5)0.5516 (5)0.7061 (3)0.0429 (10)
H281.84010.57840.64870.052*
C271.9499 (5)0.5854 (5)0.7425 (3)0.0487 (12)
H271.99970.63690.70830.058*
C261.9051 (5)0.4746 (5)0.8713 (3)0.0410 (10)
H261.92360.44680.92800.049*
C251.8059 (5)0.4367 (5)0.8415 (3)0.0388 (10)
H251.75830.38480.87730.047*
C221.3639 (4)0.2695 (4)0.5316 (2)0.0266 (7)
N10.3669 (4)1.2433 (4)0.0286 (2)0.0359 (8)
H2A0.42231.25740.02150.043*
N20.1632 (5)1.1672 (5)0.2205 (3)0.0572 (11)
N31.6082 (4)0.5117 (3)0.6555 (2)0.0326 (7)
H3A1.65500.56060.62630.039*
N41.9759 (4)0.5488 (4)0.8236 (2)0.0443 (9)
O10.3837 (3)1.0938 (3)0.35242 (16)0.0368 (6)
O20.6201 (3)1.0635 (3)0.36808 (16)0.0342 (6)
O30.8519 (5)1.3290 (5)0.1605 (3)0.0757 (13)
H30.89141.38460.15530.114*
O40.7212 (4)1.4718 (4)0.0589 (2)0.0537 (9)
O50.3353 (5)1.0419 (4)0.0661 (2)0.0589 (10)
O60.9822 (3)0.7910 (2)0.54280 (17)0.0303 (6)
O71.1291 (3)0.8947 (2)0.56132 (17)0.0300 (6)
O81.4778 (3)0.1545 (3)0.53961 (18)0.0381 (6)
O91.2553 (4)0.2827 (3)0.4946 (3)0.0585 (10)
O101.6089 (5)0.3622 (5)0.7707 (2)0.0748 (13)
O1W0.9238 (4)0.8370 (3)0.37514 (18)0.0537 (8)
H1WB0.89070.77740.36870.064*
H1WA0.90940.88800.32820.064*
O2W0.7983 (3)1.0672 (3)0.61536 (17)0.0369 (6)
H2WB0.87681.08550.59740.044*
H2WA0.80801.01890.66340.044*
O3W0.7921 (9)0.0666 (7)0.7882 (3)0.141 (3)
H3WA0.74100.14970.76800.169*
H3WB0.74690.02490.82510.169*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.01952 (13)0.01527 (12)0.02393 (13)0.00835 (9)0.00774 (8)0.00066 (8)
C70.0299 (19)0.0230 (18)0.0252 (17)0.0131 (15)0.0082 (14)0.0005 (14)
C30.0283 (19)0.0244 (18)0.0276 (18)0.0127 (15)0.0074 (14)0.0006 (14)
C20.032 (2)0.032 (2)0.0277 (18)0.0182 (17)0.0085 (15)0.0009 (15)
C10.036 (2)0.032 (2)0.0289 (18)0.0183 (17)0.0137 (16)0.0009 (15)
C60.044 (2)0.040 (2)0.0303 (19)0.026 (2)0.0115 (17)0.0070 (17)
C50.038 (2)0.037 (2)0.0312 (19)0.0241 (18)0.0091 (16)0.0024 (16)
C40.034 (2)0.032 (2)0.0304 (19)0.0181 (17)0.0119 (16)0.0007 (15)
C90.047 (2)0.044 (2)0.036 (2)0.028 (2)0.0153 (18)0.0044 (19)
C100.046 (2)0.038 (2)0.032 (2)0.0217 (19)0.0141 (17)0.0011 (17)
C140.058 (3)0.059 (3)0.042 (2)0.035 (3)0.018 (2)0.000 (2)
C130.062 (3)0.064 (3)0.058 (3)0.027 (3)0.026 (3)0.016 (3)
C120.070 (3)0.068 (3)0.032 (2)0.027 (3)0.016 (2)0.001 (2)
C110.062 (3)0.056 (3)0.040 (2)0.034 (3)0.012 (2)0.001 (2)
C80.051 (3)0.051 (3)0.035 (2)0.037 (2)0.0121 (19)0.0044 (19)
C210.0236 (17)0.0231 (17)0.0196 (16)0.0112 (14)0.0054 (13)0.0020 (13)
C170.0207 (17)0.0190 (17)0.0262 (17)0.0101 (14)0.0072 (13)0.0006 (13)
C160.0284 (19)0.0244 (18)0.0305 (18)0.0159 (15)0.0086 (14)0.0013 (14)
C150.0250 (18)0.0271 (19)0.0315 (18)0.0121 (15)0.0116 (15)0.0016 (15)
C200.0250 (18)0.0212 (18)0.0341 (19)0.0086 (15)0.0094 (15)0.0008 (14)
C190.0227 (17)0.0216 (17)0.0273 (17)0.0114 (14)0.0059 (14)0.0006 (14)
C180.0204 (17)0.0209 (17)0.0302 (18)0.0115 (14)0.0069 (14)0.0018 (14)
C230.040 (2)0.040 (2)0.046 (2)0.023 (2)0.0188 (19)0.0057 (19)
C240.029 (2)0.034 (2)0.042 (2)0.0148 (17)0.0149 (17)0.0018 (17)
C280.043 (2)0.060 (3)0.037 (2)0.030 (2)0.0140 (18)0.006 (2)
C270.046 (3)0.071 (3)0.046 (2)0.041 (3)0.015 (2)0.008 (2)
C260.039 (2)0.053 (3)0.036 (2)0.023 (2)0.0123 (18)0.0020 (19)
C250.038 (2)0.045 (2)0.041 (2)0.024 (2)0.0171 (18)0.0103 (19)
C220.0270 (19)0.0203 (18)0.0343 (19)0.0124 (15)0.0035 (15)0.0009 (14)
N10.049 (2)0.045 (2)0.0279 (16)0.0308 (17)0.0168 (15)0.0070 (14)
N20.068 (3)0.060 (3)0.042 (2)0.014 (2)0.026 (2)0.0129 (19)
N30.0294 (17)0.0320 (17)0.0443 (18)0.0168 (14)0.0195 (14)0.0048 (14)
N40.043 (2)0.064 (2)0.0414 (19)0.035 (2)0.0151 (16)0.0026 (17)
O10.0304 (15)0.0464 (17)0.0334 (14)0.0189 (13)0.0077 (11)0.0105 (12)
O20.0380 (15)0.0454 (16)0.0303 (13)0.0250 (13)0.0175 (12)0.0055 (12)
O30.088 (3)0.102 (3)0.083 (3)0.080 (3)0.057 (2)0.047 (2)
O40.074 (2)0.061 (2)0.0481 (18)0.0527 (19)0.0203 (16)0.0207 (16)
O50.099 (3)0.059 (2)0.0472 (18)0.057 (2)0.0355 (19)0.0185 (16)
O60.0256 (13)0.0224 (13)0.0483 (15)0.0106 (11)0.0172 (12)0.0009 (11)
O70.0316 (14)0.0194 (12)0.0454 (15)0.0148 (11)0.0152 (12)0.0045 (11)
O80.0426 (17)0.0220 (14)0.0433 (16)0.0051 (12)0.0116 (13)0.0035 (11)
O90.051 (2)0.0288 (16)0.111 (3)0.0155 (14)0.041 (2)0.0168 (17)
O100.089 (3)0.099 (3)0.076 (2)0.076 (3)0.051 (2)0.042 (2)
O1W0.069 (2)0.0480 (19)0.0349 (16)0.0105 (17)0.0130 (15)0.0133 (14)
O2W0.0388 (16)0.0416 (16)0.0379 (15)0.0226 (13)0.0083 (12)0.0033 (12)
O3W0.230 (8)0.154 (6)0.076 (3)0.129 (6)0.007 (4)0.011 (4)
Geometric parameters (Å, º) top
Ce1—O1i2.446 (2)C17—C161.385 (5)
Ce1—O22.477 (2)C17—C181.393 (5)
Ce1—O62.442 (2)C16—C151.379 (5)
Ce1—O7ii2.452 (2)C16—H160.9300
Ce1—O8iii2.447 (3)C15—C201.381 (5)
Ce1—O9iv2.530 (3)C15—N31.431 (4)
Ce1—O1W2.552 (3)C20—C191.394 (5)
Ce1—O2W2.553 (3)C20—H200.9300
C7—O11.248 (4)C19—C181.387 (5)
C7—O21.252 (4)C19—C221.498 (5)
C7—C31.517 (5)C18—H180.9300
C3—C41.385 (5)C23—O101.220 (5)
C3—C21.386 (5)C23—N31.326 (5)
C2—C11.392 (5)C23—C241.508 (5)
C2—H20.9300C24—C251.382 (5)
C1—C61.385 (5)C24—C281.384 (6)
C1—N11.419 (4)C28—C271.374 (6)
C6—C51.377 (5)C28—H280.9300
C6—H60.9300C27—N41.326 (6)
C5—C41.383 (5)C27—H270.9300
C5—C81.501 (5)C26—N41.324 (6)
C4—H40.9300C26—C251.369 (6)
C9—O51.224 (5)C26—H260.9300
C9—N11.344 (5)C25—H250.9300
C9—C101.492 (5)C22—O91.247 (4)
C10—C111.386 (6)C22—O81.248 (4)
C10—C141.387 (6)N1—H2A0.8998
C14—C131.386 (6)N3—H3A0.8600
C14—H140.9300O1—Ce1i2.446 (2)
C13—N21.316 (7)O3—H30.8200
C13—H130.9300O7—Ce1ii2.452 (2)
C12—N21.322 (7)O8—Ce1v2.447 (3)
C12—C111.381 (6)O9—Ce1iv2.530 (3)
C12—H120.9300O1W—H1WB0.8499
C11—H110.9300O1W—H1WA0.8495
C8—O41.205 (5)O2W—H2WB0.8506
C8—O31.291 (5)O2W—H2WA0.8495
C21—O61.252 (4)O3W—H3WA0.8496
C21—O71.256 (4)O3W—H3WB0.8500
C21—C171.496 (5)
O6—Ce1—O1i87.00 (9)O4—C8—O3124.6 (4)
O6—Ce1—O8iii150.29 (9)O4—C8—C5122.7 (4)
O1i—Ce1—O8iii71.37 (9)O3—C8—C5112.8 (4)
O6—Ce1—O7ii85.08 (8)O6—C21—O7124.9 (3)
O1i—Ce1—O7ii137.06 (9)O6—C21—C17117.5 (3)
O8iii—Ce1—O7ii96.89 (9)O7—C21—C17117.6 (3)
O6—Ce1—O2136.56 (9)C16—C17—C18119.4 (3)
O1i—Ce1—O2131.89 (9)C16—C17—C21119.3 (3)
O8iii—Ce1—O272.04 (9)C18—C17—C21121.3 (3)
O7ii—Ce1—O277.34 (8)C15—C16—C17120.6 (3)
O6—Ce1—O9iv71.67 (9)C15—C16—H16119.7
O1i—Ce1—O9iv72.84 (12)C17—C16—H16119.7
O8iii—Ce1—O9iv118.35 (10)C16—C15—C20120.5 (3)
O7ii—Ce1—O9iv141.86 (11)C16—C15—N3117.0 (3)
O2—Ce1—O9iv98.94 (10)C20—C15—N3122.4 (3)
O6—Ce1—O1W66.88 (9)C15—C20—C19119.2 (3)
O1i—Ce1—O1W140.12 (10)C15—C20—H20120.4
O8iii—Ce1—O1W141.96 (9)C19—C20—H20120.4
O7ii—Ce1—O1W72.58 (10)C18—C19—C20120.4 (3)
O2—Ce1—O1W70.00 (10)C18—C19—C22119.1 (3)
O9iv—Ce1—O1W70.61 (12)C20—C19—C22120.3 (3)
O6—Ce1—O2W72.59 (9)C19—C18—C17119.8 (3)
O1i—Ce1—O2W70.31 (9)C19—C18—H18120.1
O8iii—Ce1—O2W80.89 (9)C17—C18—H18120.1
O7ii—Ce1—O2W67.04 (9)O10—C23—N3122.6 (4)
O2—Ce1—O2W131.79 (9)O10—C23—C24121.9 (4)
O9iv—Ce1—O2W129.14 (10)N3—C23—C24115.5 (3)
O1W—Ce1—O2W124.10 (10)C25—C24—C28118.2 (4)
O1—C7—O2125.7 (3)C25—C24—C23117.8 (4)
O1—C7—C3116.8 (3)C28—C24—C23123.9 (3)
O2—C7—C3117.4 (3)C27—C28—C24118.2 (4)
C4—C3—C2119.9 (3)C27—C28—H28120.9
C4—C3—C7119.1 (3)C24—C28—H28120.9
C2—C3—C7120.8 (3)N4—C27—C28123.8 (4)
C3—C2—C1119.7 (3)N4—C27—H27118.1
C3—C2—H2120.1C28—C27—H27118.1
C1—C2—H2120.1N4—C26—C25123.4 (4)
C6—C1—C2119.6 (3)N4—C26—H26118.3
C6—C1—N1117.3 (3)C25—C26—H26118.3
C2—C1—N1123.1 (3)C26—C25—C24119.0 (4)
C5—C6—C1120.2 (4)C26—C25—H25120.5
C5—C6—H6119.9C24—C25—H25120.5
C1—C6—H6119.9O9—C22—O8121.8 (3)
C6—C5—C4120.1 (3)O9—C22—C19118.4 (3)
C6—C5—C8120.1 (3)O8—C22—C19119.8 (3)
C4—C5—C8119.8 (3)C9—N1—C1125.9 (3)
C5—C4—C3119.9 (3)C9—N1—H2A105.5
C5—C4—H4120.0C1—N1—H2A105.1
C3—C4—H4120.0C13—N2—C12118.3 (4)
O5—C9—N1124.0 (4)C23—N3—C15125.0 (3)
O5—C9—C10119.6 (4)C23—N3—H3A117.5
N1—C9—C10116.4 (3)C15—N3—H3A117.5
C11—C10—C14118.0 (4)C26—N4—C27117.4 (4)
C11—C10—C9123.6 (4)C7—O1—Ce1i131.8 (2)
C14—C10—C9118.3 (4)C7—O2—Ce1149.8 (2)
C13—C14—C10118.9 (5)C8—O3—H3109.5
C13—C14—H14120.5C21—O6—Ce1139.3 (2)
C10—C14—H14120.5C21—O7—Ce1ii147.2 (2)
N2—C13—C14122.8 (5)C22—O8—Ce1v159.1 (3)
N2—C13—H13118.6C22—O9—Ce1iv106.3 (2)
C14—C13—H13118.6Ce1—O1W—H1WB101.1
N2—C12—C11123.5 (5)Ce1—O1W—H1WA112.4
N2—C12—H12118.3H1WB—O1W—H1WA101.8
C11—C12—H12118.3Ce1—O2W—H2WB113.4
C12—C11—C10118.5 (5)Ce1—O2W—H2WA113.3
C12—C11—H11120.8H2WB—O2W—H2WA110.7
C10—C11—H11120.8H3WA—O3W—H3WB120.4
O1—C7—C3—C4155.7 (4)N3—C23—C24—C2812.3 (6)
O2—C7—C3—C421.2 (5)C25—C24—C28—C271.7 (7)
O1—C7—C3—C220.4 (5)C23—C24—C28—C27174.8 (4)
O2—C7—C3—C2162.7 (3)C24—C28—C27—N40.9 (8)
C4—C3—C2—C10.2 (6)N4—C26—C25—C240.3 (7)
C7—C3—C2—C1175.9 (3)C28—C24—C25—C261.2 (6)
C3—C2—C1—C65.8 (6)C23—C24—C25—C26175.5 (4)
C3—C2—C1—N1177.5 (4)C18—C19—C22—O90.5 (5)
C2—C1—C6—C56.0 (6)C20—C19—C22—O9175.7 (4)
N1—C1—C6—C5177.1 (4)C18—C19—C22—O8177.5 (3)
C1—C6—C5—C40.1 (6)C20—C19—C22—O82.3 (5)
C1—C6—C5—C8177.7 (4)O5—C9—N1—C111.9 (7)
C6—C5—C4—C35.9 (6)C10—C9—N1—C1166.3 (4)
C8—C5—C4—C3171.6 (4)C6—C1—N1—C9148.1 (4)
C2—C3—C4—C56.0 (6)C2—C1—N1—C935.2 (6)
C7—C3—C4—C5170.1 (3)C14—C13—N2—C120.2 (8)
O5—C9—C10—C11147.1 (5)C11—C12—N2—C130.5 (8)
N1—C9—C10—C1131.2 (7)O10—C23—N3—C155.8 (7)
O5—C9—C10—C1429.0 (7)C24—C23—N3—C15171.2 (3)
N1—C9—C10—C14152.7 (4)C16—C15—N3—C23123.6 (4)
C11—C10—C14—C130.4 (7)C20—C15—N3—C2360.1 (5)
C9—C10—C14—C13176.8 (5)C25—C26—N4—C271.1 (7)
C10—C14—C13—N20.3 (8)C28—C27—N4—C260.5 (8)
N2—C12—C11—C100.3 (8)O2—C7—O1—Ce1i7.2 (6)
C14—C10—C11—C120.2 (7)C3—C7—O1—Ce1i169.5 (2)
C9—C10—C11—C12176.3 (5)O1—C7—O2—Ce14.2 (8)
C6—C5—C8—O418.6 (7)C3—C7—O2—Ce1179.1 (3)
C4—C5—C8—O4158.9 (4)O6—Ce1—O2—C7134.9 (5)
C6—C5—C8—O3162.3 (4)O1i—Ce1—O2—C712.8 (5)
C4—C5—C8—O320.1 (6)O8iii—Ce1—O2—C754.9 (5)
O6—C21—C17—C16166.5 (3)O7ii—Ce1—O2—C7156.5 (5)
O7—C21—C17—C1611.6 (5)O9iv—Ce1—O2—C762.2 (5)
O6—C21—C17—C1815.4 (5)O1W—Ce1—O2—C7127.6 (5)
O7—C21—C17—C18166.6 (3)O2W—Ce1—O2—C7114.0 (5)
C18—C17—C16—C152.2 (5)O7—C21—O6—Ce17.3 (6)
C21—C17—C16—C15179.6 (3)C17—C21—O6—Ce1174.9 (2)
C17—C16—C15—C202.8 (5)O1i—Ce1—O6—C21112.6 (4)
C17—C16—C15—N3179.1 (3)O8iii—Ce1—O6—C2170.1 (4)
C16—C15—C20—C190.5 (5)O7ii—Ce1—O6—C2125.2 (3)
N3—C15—C20—C19176.6 (3)O2—Ce1—O6—C2190.9 (4)
C15—C20—C19—C182.4 (5)O9iv—Ce1—O6—C21174.5 (4)
C15—C20—C19—C22172.8 (3)O1W—Ce1—O6—C2198.3 (4)
C20—C19—C18—C173.0 (5)O2W—Ce1—O6—C2142.3 (3)
C22—C19—C18—C17172.2 (3)O6—C21—O7—Ce1ii112.8 (4)
C16—C17—C18—C190.7 (5)C17—C21—O7—Ce1ii69.4 (5)
C21—C17—C18—C19177.5 (3)O9—C22—O8—Ce1v85.9 (8)
O10—C23—C24—C2512.8 (7)C19—C22—O8—Ce1v92.0 (8)
N3—C23—C24—C25164.2 (4)O8—C22—O9—Ce1iv20.5 (5)
O10—C23—C24—C28170.6 (5)C19—C22—O9—Ce1iv161.5 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+1; (iii) x1, y+1, z; (iv) x+2, y+1, z+1; (v) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N2vi0.852.212.756 (5)122
O2W—H2WB···O1Wii0.852.533.297 (5)150
O2W—H2WA···O3Wvii0.852.072.728 (6)133
O3W—H3WA···O10viii0.852.062.856 (8)157
O3W—H3WB···O5ix0.851.922.742 (6)161
O3—H3···N4x0.821.812.583 (5)156
Symmetry codes: (ii) x+2, y+2, z+1; (vi) x+1, y+2, z; (vii) x, y+1, z; (viii) x1, y, z; (ix) x+1, y+1, z+1; (x) x+3, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ce(C14H9N2O5)(C14H8N2O5)(H2O)2]·H2O
Mr763.62
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.6742 (8), 10.6187 (8), 15.8542 (12)
α, β, γ (°)81.443 (1), 78.753 (2), 64.166 (2)
V3)1433.98 (19)
Z2
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.18 × 0.14 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.754, 0.878
No. of measured, independent and
observed [I > 2σ(I)] reflections
7189, 4972, 4669
Rint0.071
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.04
No. of reflections4972
No. of parameters416
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.26, 1.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N2i0.852.212.756 (5)122.1
O2W—H2WB···O1Wii0.852.533.297 (5)150.4
O2W—H2WA···O3Wiii0.852.072.728 (6)133.3
O3W—H3WA···O10iv0.852.062.856 (8)156.8
O3W—H3WB···O5v0.851.922.742 (6)161.0
O3—H3···N4vi0.821.812.583 (5)155.6
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+2, z+1; (iii) x, y+1, z; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x+3, y+2, z+1.
 

Acknowledgements

This work was supported by the Hengyang Bureau of Science & Technology, China (grant No. 2009 K J28).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, M.-S., Fan, J., Okamura, T., Lv, G.-C. & Sun, W.-Y. (2011). Inorg. Chim. Acta, 366, 268–274.  Web of Science CSD CrossRef CAS Google Scholar
First citationChin, K. O. A., Morrow, J. R., Lake, C. H. & Churchill, M. L. (1994). Inorg. Chem. 33, 656–664.  CSD CrossRef CAS Web of Science Google Scholar
First citationDeng, Y.-F. (2011). Acta Cryst. E67, m1298.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGubina, K. E., Shatrava, J. A., Ocvchynnikov, V. A. & Amirkhanov, V. M. (2000). Polyhedron, 19, 2203–2209.  Web of Science CSD CrossRef CAS Google Scholar
First citationQiu, Y., Liu, H., Ling, Y., Deng, H., Zeng, R., Zhou, G. & Zeller, M. (2007). Inorg. Chem. Commun. 10, 1399–1403.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, U. P., Tyagi, S., Sharma, C. L., Gorner, H. & Weyhermuller, T. (2002). J. Chem. Soc. Dalton Trans. pp. 4464–4470.  Web of Science CSD CrossRef Google Scholar
First citationWang, R.-F., Wang, S.-P. & Zhang, J.-J. (2003). J. Mol. Struct. 648, 151–158.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds