metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1323-m1324

Bis(μ2-pyridine-2-carboxamide oximato)bis­­[(pyridine-2-carboxamide oxime)zinc] dinitrate

aInstitute of Cash Crops, Hubei Academy of Agricultural Science, Wuhan 430064, People's Republic of China, and bKey Laboratory of Industrial Ecology and Environmental Engineering (MOE) and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
*Correspondence e-mail: xhdengyy@yahoo.com.cn

(Received 20 August 2011; accepted 25 August 2011; online 31 August 2011)

In the title dinuclear compound, [Zn2(C6H6N3O)2(C6H7N3O)2](NO3)2, the ZnII cation is N,N′-chelated by one pyridine-2-carboxamide oximate anion and one pyridine-2-carboxamide oxime mol­ecule, and is further bridged by an oxime O atom from the adjacent pyridine-2-carboxamide oximate anion, forming a distorted trigonal bipyramidal coordination. Two pyridine-2-carboxamide oximate anions bridge two ZnII cations to form the centrosymmetric dinuclear mol­ecule. Extensive O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds are present in the crystal structure.

Related literature

For similar metal complexes, see: Papatriantafyllopoulou et al. (2008[Papatriantafyllopoulou, C., Jones, L. F., Nguyen, T. D., Matamoros-Salvador, N., Cunha-Silva, L., Paz, F. A. A., Rocha, J., Evangelisti, M., Brechin, E. K. & Perlepes, S. P. (2008). Dalton Trans. pp. 3153-3155.]); Stamatatos et al. (2006a[Stamatatos, T. C., Diamantopoulou, E., Tasiopoulos, A., Psycharis, V., Vicente, R., Raptopoulou, C. P., Nastopoulos, V., Escuer, A. & Perlepes, S. P. (2006a). Inorg. Chim. Acta, 359, 4149-4157.],b[Stamatatos, T. C., Pringouri, K. V., Raptopoulou, C. P., Vicente, R., Psycharis, V., Escuer, A. & Perlepes, S. P. (2006b). Inorg. Chem. Commun. 9, 1178-1182.]). For the synthesis of the ligand, see: Bernasek (1957[Bernasek, E. (1957). J. Org. Chem. 22, 1263-1264.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C6H6N3O)2(C6H7N3O)2](NO3)2

  • Mr = 801.33

  • Monoclinic, P 21 /n

  • a = 7.4125 (14) Å

  • b = 22.201 (4) Å

  • c = 9.4225 (17) Å

  • β = 106.794 (2)°

  • V = 1484.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.70 mm−1

  • T = 293 K

  • 0.51 × 0.48 × 0.39 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.478, Tmax = 0.557

  • 8302 measured reflections

  • 2632 independent reflections

  • 2297 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.117

  • S = 1.03

  • 2632 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −0.97 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O2 1.981 (3)
Zn1—N1 2.148 (3)
Zn1—N3 2.064 (3)
Zn1—N4 2.128 (3)
Zn1—N6 2.099 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.98 2.767 (4) 162
O1—H1⋯N6 0.82 2.43 3.018 (4) 129
N2—H2A⋯O2ii 0.86 2.32 3.108 (5) 152
N2—H2B⋯O5iii 0.86 2.35 3.180 (5) 162
N5—H5A⋯O4 0.86 2.18 2.900 (5) 142
N5—H5B⋯O5iv 0.86 2.18 2.985 (5) 156
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x+1, y, z; (iii) -x+2, -y+1, -z+2; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal compounds have been of great interest for many years. They are very important in the development of coordination chemistry. As an extension of work on the structural characterization of Zn compounds, we report here the crystal structure of a new dinuclear zinc(II) compound(I) (Scheme). Compound (I) is a symmetric dinuclear ZnII complex (Fig. 1). The ZnII ion in the compound is five-coordinated by four N and an O atoms from ligands. Each of these ligands chelates one ZnII atom forming a five-membered ZnNCCN chelating ring, while its oximate oxygen atom is terminally bound to the other metal center. The Zn1—N1 and Zn1—N4 bond distances are longer than the Zn1—N3 and Zn1—N6 bond distances. The N3—Zn1—N6 angle is smaller than the N1—Zn1—N4 angle (Table 1). The molecules are stacked along the a axis and display N—H···O and O—H···O hydrogen-bonds interaction (Fig. 2).

Related literature top

For similar metal complexes, see: Papatriantafyllopoulou et al. (2008); Stamatatos et al. (2006a,b). For the synthesis of the ligand, see: Bernasek (1957).

Experimental top

The synthesis of pyridine-2-amidoxine was carried out according to literature (Bernasek, 1957). The title compound was synthesized by adding solid Zn(NO3)2.6H2O (297 mg, 1 mmol) to a solution of ligands (274 mg, 2 mmol) and NaOH (40 mg, 1 mmol) in ethanol/water (3:1, 20 ml), then the mixture was stirred for 2 h at room temperature. The solution was filtered and the filtrate was allowed to stand in air for 3 d, and yellow crystals were formed at the bottom of the vessel on slow evaporation of the solvent at room temperature. Yield: 48%. Anal. Calcd for C24H26N14Zn2O10: C 35.97, H 3.27, N 24.46. Found: C 35.94, H 3.29, N 23.93.

Refinement top

H atoms were included in calculated positions with C—H = 0.93 or 0.97, N—H = 086 and O—H = 0.82 Å, and refined using a riding-model with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packed diagram for the title compound, viewed down the a axis with hydrogen bonds drawn as dashed lines.
Bis(µ2-pyridine-2-carboxamide oximato)bis[(pyridine-2-carboxamide oxime)zinc] dinitrate top
Crystal data top
[Zn2(C6H6N3O)2(C6H7N3O)2](NO3)2F(000) = 816
Mr = 801.33Dx = 1.793 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2632 reflections
a = 7.4125 (14) Åθ = 1.8–25.1°
b = 22.201 (4) ŵ = 1.70 mm1
c = 9.4225 (17) ÅT = 293 K
β = 106.794 (2)°Block, yellow
V = 1484.5 (5) Å30.51 × 0.48 × 0.39 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2632 independent reflections
Radiation source: fine-focus sealed tube2297 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 86
Tmin = 0.478, Tmax = 0.557k = 2626
8302 measured reflectionsl = 911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0547P)2 + 4.2299P]
where P = (Fo2 + 2Fc2)/3
2632 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 1.43 e Å3
0 restraintsΔρmin = 0.97 e Å3
Crystal data top
[Zn2(C6H6N3O)2(C6H7N3O)2](NO3)2V = 1484.5 (5) Å3
Mr = 801.33Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.4125 (14) ŵ = 1.70 mm1
b = 22.201 (4) ÅT = 293 K
c = 9.4225 (17) Å0.51 × 0.48 × 0.39 mm
β = 106.794 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2632 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2297 reflections with I > 2σ(I)
Tmin = 0.478, Tmax = 0.557Rint = 0.023
8302 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.03Δρmax = 1.43 e Å3
2632 reflectionsΔρmin = 0.97 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.46944 (6)0.437379 (19)0.86499 (5)0.02829 (17)
O20.3307 (4)0.44030 (11)1.0158 (3)0.0305 (6)
N60.5478 (4)0.52822 (14)0.8642 (3)0.0279 (7)
O10.8933 (4)0.45773 (13)1.0281 (4)0.0412 (7)
H10.84980.49191.02080.062*
C120.4742 (5)0.55977 (16)0.7481 (4)0.0290 (8)
N30.7493 (5)0.41671 (15)0.9631 (4)0.0326 (7)
C110.3546 (5)0.52544 (17)0.6194 (4)0.0302 (8)
N10.4877 (5)0.34274 (15)0.8238 (4)0.0321 (7)
N40.3239 (5)0.46677 (15)0.6470 (4)0.0311 (7)
N50.5021 (6)0.61900 (15)0.7361 (4)0.0465 (10)
H5A0.57390.63850.80990.056*
H5B0.44820.63750.65470.056*
N70.6922 (6)0.77875 (19)0.9401 (5)0.0590 (5)
N20.9964 (5)0.35112 (17)0.9759 (4)0.0429 (9)
H2A1.07970.37781.01610.051*
H2B1.03090.31560.95830.051*
C50.6647 (5)0.32001 (17)0.8733 (4)0.0298 (8)
C80.1400 (7)0.4564 (2)0.3942 (5)0.0431 (11)
H80.06650.43210.31940.052*
C100.2807 (6)0.55061 (19)0.4812 (5)0.0383 (10)
H100.30380.59080.46470.046*
C60.8138 (5)0.36488 (17)0.9409 (4)0.0298 (8)
O50.8612 (5)0.78443 (16)1.0109 (4)0.0590 (5)
O30.5941 (5)0.82406 (15)0.9079 (4)0.0590 (5)
O40.6244 (5)0.72889 (15)0.9025 (4)0.0590 (5)
C70.2194 (7)0.43374 (19)0.5347 (5)0.0406 (10)
H70.19920.39340.55200.049*
C40.7013 (7)0.25955 (19)0.8636 (5)0.0402 (10)
H40.82370.24490.89870.048*
C30.5540 (7)0.22116 (19)0.8011 (5)0.0462 (11)
H30.57620.18030.79220.055*
C90.1715 (6)0.5154 (2)0.3668 (5)0.0431 (11)
H90.12030.53170.27290.052*
C10.3466 (6)0.30447 (19)0.7682 (5)0.0380 (10)
H1A0.22420.31940.73890.046*
C20.3739 (7)0.2436 (2)0.7522 (5)0.0428 (11)
H20.27270.21840.70920.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0276 (3)0.0250 (3)0.0300 (3)0.00004 (17)0.00468 (19)0.00044 (17)
O20.0287 (14)0.0296 (14)0.0315 (14)0.0055 (11)0.0062 (12)0.0041 (11)
N60.0281 (16)0.0260 (16)0.0276 (17)0.0017 (13)0.0049 (13)0.0021 (13)
O10.0293 (15)0.0309 (15)0.0560 (19)0.0054 (12)0.0003 (14)0.0053 (14)
C120.030 (2)0.0242 (18)0.033 (2)0.0029 (15)0.0079 (17)0.0004 (15)
N30.0253 (17)0.0295 (17)0.0394 (19)0.0038 (14)0.0039 (14)0.0009 (14)
C110.029 (2)0.0298 (19)0.032 (2)0.0051 (16)0.0094 (16)0.0001 (16)
N10.0302 (17)0.0287 (17)0.0348 (18)0.0006 (14)0.0053 (14)0.0003 (14)
N40.0341 (18)0.0279 (16)0.0286 (17)0.0006 (14)0.0048 (14)0.0003 (13)
N50.061 (3)0.0255 (18)0.042 (2)0.0020 (17)0.0027 (19)0.0038 (15)
N70.0512 (11)0.0453 (9)0.0727 (13)0.0021 (8)0.0056 (9)0.0090 (9)
N20.0279 (18)0.0374 (19)0.059 (2)0.0032 (15)0.0050 (17)0.0044 (17)
C50.033 (2)0.0289 (19)0.029 (2)0.0016 (16)0.0098 (16)0.0010 (16)
C80.045 (3)0.046 (3)0.033 (2)0.002 (2)0.0034 (19)0.0070 (19)
C100.043 (2)0.035 (2)0.037 (2)0.0052 (18)0.0099 (19)0.0056 (18)
C60.029 (2)0.030 (2)0.029 (2)0.0030 (16)0.0057 (16)0.0052 (16)
O50.0512 (11)0.0453 (9)0.0727 (13)0.0021 (8)0.0056 (9)0.0090 (9)
O30.0512 (11)0.0453 (9)0.0727 (13)0.0021 (8)0.0056 (9)0.0090 (9)
O40.0512 (11)0.0453 (9)0.0727 (13)0.0021 (8)0.0056 (9)0.0090 (9)
C70.046 (3)0.032 (2)0.037 (2)0.0053 (18)0.002 (2)0.0044 (18)
C40.044 (2)0.033 (2)0.043 (3)0.0053 (18)0.011 (2)0.0009 (18)
C30.061 (3)0.028 (2)0.048 (3)0.000 (2)0.013 (2)0.0053 (19)
C90.043 (3)0.051 (3)0.032 (2)0.006 (2)0.0056 (19)0.0050 (19)
C10.035 (2)0.038 (2)0.038 (2)0.0052 (18)0.0059 (18)0.0014 (18)
C20.050 (3)0.039 (2)0.038 (2)0.015 (2)0.010 (2)0.0048 (19)
Geometric parameters (Å, º) top
Zn1—O21.981 (3)N7—O41.225 (5)
Zn1—N12.148 (3)N7—O51.244 (5)
Zn1—N32.064 (3)N2—C61.333 (5)
Zn1—N42.128 (3)N2—H2A0.8600
Zn1—N62.099 (3)N2—H2B0.8600
O2—N6i1.411 (4)C5—C41.378 (6)
N6—C121.281 (5)C5—C61.487 (5)
N6—O2i1.411 (4)C8—C91.368 (7)
O1—N31.402 (4)C8—C71.379 (6)
O1—H10.8200C8—H80.9300
C12—N51.341 (5)C10—C91.386 (6)
C12—C111.489 (5)C10—H100.9300
N3—C61.286 (5)C7—H70.9300
C11—N41.361 (5)C4—C31.376 (6)
C11—C101.377 (6)C4—H40.9300
N1—C11.332 (5)C3—C21.374 (7)
N1—C51.357 (5)C3—H30.9300
N4—C71.336 (5)C9—H90.9300
N5—H5A0.8600C1—C21.381 (6)
N5—H5B0.8600C1—H1A0.9300
N7—O31.227 (5)C2—H20.9300
O2—Zn1—N3110.42 (13)O4—N7—O5120.8 (4)
O2—Zn1—N699.93 (12)C6—N2—H2A120.0
N3—Zn1—N688.39 (13)C6—N2—H2B120.0
O2—Zn1—N4117.30 (12)H2A—N2—H2B120.0
N3—Zn1—N4131.62 (14)N1—C5—C4121.9 (4)
N6—Zn1—N476.45 (12)N1—C5—C6115.0 (3)
O2—Zn1—N1103.55 (12)C4—C5—C6123.0 (4)
N3—Zn1—N175.87 (13)C9—C8—C7118.8 (4)
N6—Zn1—N1155.12 (13)C9—C8—H8120.6
N4—Zn1—N199.58 (13)C7—C8—H8120.6
N6i—O2—Zn1104.3 (2)C9—C10—C11119.3 (4)
C12—N6—O2i115.4 (3)C9—C10—H10120.3
C12—N6—Zn1118.6 (3)C11—C10—H10120.3
O2i—N6—Zn1125.9 (2)N3—C6—N2124.3 (4)
N3—O1—H1109.5N3—C6—C5113.8 (3)
N6—C12—N5124.8 (4)N2—C6—C5121.9 (4)
N6—C12—C11115.0 (3)N4—C7—C8123.3 (4)
N5—C12—C11120.2 (4)N4—C7—H7118.3
C6—N3—O1112.4 (3)C8—C7—H7118.3
C6—N3—Zn1119.9 (3)C5—C4—C3119.0 (4)
O1—N3—Zn1126.2 (2)C5—C4—H4120.5
N4—C11—C10121.8 (4)C3—C4—H4120.5
N4—C11—C12115.3 (3)C2—C3—C4119.5 (4)
C10—C11—C12122.9 (4)C2—C3—H3120.2
C1—N1—C5118.0 (3)C4—C3—H3120.2
C1—N1—Zn1127.7 (3)C8—C9—C10119.1 (4)
C5—N1—Zn1114.0 (2)C8—C9—H9120.4
C7—N4—C11117.7 (3)C10—C9—H9120.4
C7—N4—Zn1127.8 (3)N1—C1—C2123.0 (4)
C11—N4—Zn1114.3 (2)N1—C1—H1A118.5
C12—N5—H5A120.0C2—C1—H1A118.5
C12—N5—H5B120.0C3—C2—C1118.5 (4)
H5A—N5—H5B120.0C3—C2—H2120.8
O3—N7—O4120.3 (4)C1—C2—H2120.8
O3—N7—O5118.9 (4)
N3—Zn1—O2—N6i43.2 (2)C12—C11—N4—C7179.2 (4)
N6—Zn1—O2—N6i48.8 (2)C10—C11—N4—Zn1175.9 (3)
N4—Zn1—O2—N6i128.6 (2)C12—C11—N4—Zn13.6 (4)
N1—Zn1—O2—N6i123.0 (2)O2—Zn1—N4—C790.2 (4)
O2—Zn1—N6—C12112.5 (3)N3—Zn1—N4—C7100.1 (4)
N3—Zn1—N6—C12137.0 (3)N6—Zn1—N4—C7175.4 (4)
N4—Zn1—N6—C123.4 (3)N1—Zn1—N4—C720.5 (4)
N1—Zn1—N6—C1286.9 (4)O2—Zn1—N4—C1194.8 (3)
O2—Zn1—N6—O2i64.1 (3)N3—Zn1—N4—C1174.9 (3)
N3—Zn1—N6—O2i46.3 (3)N6—Zn1—N4—C110.4 (3)
N4—Zn1—N6—O2i180.0 (3)N1—Zn1—N4—C11154.5 (3)
N1—Zn1—N6—O2i96.5 (4)C1—N1—C5—C41.8 (6)
O2i—N6—C12—N51.5 (6)Zn1—N1—C5—C4176.4 (3)
Zn1—N6—C12—N5175.5 (3)C1—N1—C5—C6177.0 (4)
O2i—N6—C12—C11176.8 (3)Zn1—N1—C5—C62.4 (4)
Zn1—N6—C12—C116.3 (5)N4—C11—C10—C90.2 (7)
O2—Zn1—N3—C6109.2 (3)C12—C11—C10—C9179.6 (4)
N6—Zn1—N3—C6150.8 (3)O1—N3—C6—N20.3 (6)
N4—Zn1—N3—C680.6 (3)Zn1—N3—C6—N2167.2 (3)
N1—Zn1—N3—C69.7 (3)O1—N3—C6—C5179.5 (3)
O2—Zn1—N3—O186.0 (3)Zn1—N3—C6—C513.7 (5)
N6—Zn1—N3—O114.0 (3)N1—C5—C6—N310.2 (5)
N4—Zn1—N3—O184.3 (3)C4—C5—C6—N3168.6 (4)
N1—Zn1—N3—O1174.6 (3)N1—C5—C6—N2170.7 (4)
N6—C12—C11—N46.5 (5)C4—C5—C6—N210.6 (6)
N5—C12—C11—N4175.1 (4)C11—N4—C7—C81.0 (7)
N6—C12—C11—C10173.0 (4)Zn1—N4—C7—C8175.8 (4)
N5—C12—C11—C105.4 (6)C9—C8—C7—N41.1 (8)
O2—Zn1—N1—C162.8 (4)N1—C5—C4—C30.4 (7)
N3—Zn1—N1—C1170.8 (4)C6—C5—C4—C3179.0 (4)
N6—Zn1—N1—C1136.9 (4)C5—C4—C3—C21.1 (7)
N4—Zn1—N1—C158.5 (4)C7—C8—C9—C100.5 (7)
O2—Zn1—N1—C5111.2 (3)C11—C10—C9—C80.1 (7)
N3—Zn1—N1—C53.2 (3)C5—N1—C1—C23.3 (6)
N6—Zn1—N1—C549.1 (5)Zn1—N1—C1—C2177.1 (3)
N4—Zn1—N1—C5127.5 (3)C4—C3—C2—C10.4 (7)
C10—C11—N4—C70.3 (6)N1—C1—C2—C32.6 (7)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.982.767 (4)162
O1—H1···N60.822.433.018 (4)129
N2—H2A···O2ii0.862.323.108 (5)152
N2—H2B···O5iii0.862.353.180 (5)162
N5—H5A···O40.862.182.900 (5)142
N5—H5B···O5iv0.862.182.985 (5)156
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z; (iii) x+2, y+1, z+2; (iv) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn2(C6H6N3O)2(C6H7N3O)2](NO3)2
Mr801.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.4125 (14), 22.201 (4), 9.4225 (17)
β (°) 106.794 (2)
V3)1484.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.70
Crystal size (mm)0.51 × 0.48 × 0.39
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.478, 0.557
No. of measured, independent and
observed [I > 2σ(I)] reflections
8302, 2632, 2297
Rint0.023
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.117, 1.03
No. of reflections2632
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.43, 0.97

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O21.981 (3)Zn1—N42.128 (3)
Zn1—N12.148 (3)Zn1—N62.099 (3)
Zn1—N32.064 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.982.767 (4)161.7
O1—H1···N60.822.433.018 (4)128.9
N2—H2A···O2ii0.862.323.108 (5)152.1
N2—H2B···O5iii0.862.353.180 (5)162.3
N5—H5A···O40.862.182.900 (5)141.5
N5—H5B···O5iv0.862.182.985 (5)155.7
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z; (iii) x+2, y+1, z+2; (iv) x1/2, y+3/2, z1/2.
 

Acknowledgements

The research was supported by the Natural Science Fund of Hubei Province (project ZRZ0140) and the National Natural Science Foundation of China (Nos. 20877013 and No.20837001). The authors thank Professor S.-M. Qiu of Hubei Academy of Agricultural Science for his valuable suggestions.

References

First citationBernasek, E. (1957). J. Org. Chem. 22, 1263–1264.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPapatriantafyllopoulou, C., Jones, L. F., Nguyen, T. D., Matamoros-Salvador, N., Cunha-Silva, L., Paz, F. A. A., Rocha, J., Evangelisti, M., Brechin, E. K. & Perlepes, S. P. (2008). Dalton Trans. pp. 3153–3155.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStamatatos, T. C., Diamantopoulou, E., Tasiopoulos, A., Psycharis, V., Vicente, R., Raptopoulou, C. P., Nastopoulos, V., Escuer, A. & Perlepes, S. P. (2006a). Inorg. Chim. Acta, 359, 4149–4157.  Google Scholar
First citationStamatatos, T. C., Pringouri, K. V., Raptopoulou, C. P., Vicente, R., Psycharis, V., Escuer, A. & Perlepes, S. P. (2006b). Inorg. Chem. Commun. 9, 1178–1182.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1323-m1324
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds