organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Octyl-4-oxo-1,3-thia­zolidin-2-yl­­idene)benzamide

aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
*Correspondence e-mail: zhr0103@zju.edu.cn

(Received 1 November 2010; accepted 17 November 2010; online 24 November 2010)

In the title compound, C18H24N2O2S, the thia­zolidinone ring is almost coplanar [maximum atomic deviation = 0.017 (3) Å], and is coplanar with the phenyl ring [dihedral angle = 0.62 (13)°]. The octyl group displays an extended conformation. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into supra­molecular chains along [210].

Related literature

For pharmaceutical applications of thia­zolidinones, see: Dwivedi et al. (1972[Dwivedi, C., Gupta, T. K. & Parmar, S. S. (1972). J. Med. Chem. 15, 553-554.]); Chandrakant et al. (2004[Chandrakant, G. & Gaikwad, N. G. (2004). Bioorg. Med. Chem. 12, 2151-2161.]). For the synthesis, see: Peng et al. (2004[Peng, Y.-Q., Song, G.-H. & Huang, F.-F. (2004). J. Chem. Res. 10, 676-678.]).

[Scheme 1]

Experimental

Crystal data
  • C18H24N2O2S

  • Mr = 332.45

  • Triclinic, [P \overline 1]

  • a = 5.3342 (3) Å

  • b = 8.6196 (5) Å

  • c = 20.0775 (12) Å

  • α = 97.008 (5)°

  • β = 92.870 (4)°

  • γ = 99.477 (4)°

  • V = 901.41 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.26 × 0.18 × 0.16 mm

Data collection
  • Oxford Diffraction Nova A diffractometer

  • 8685 measured reflections

  • 3205 independent reflections

  • 2371 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.145

  • S = 1.03

  • 3205 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.45 3.365 (4) 168
Symmetry code: (i) x-2, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Thiazolidinones have broad applications as anticonvulsant (Dwivedi et al., 1972) and anti-microbial drugs (Chandrakant et al., 2004). We report here the structure of a new thiazolidinone derivative, I, Fig. 2.

The thiazolidinyl ring and phenyl ring are almost co-planar with the dihedral angle of 0.67 (0.18)°. In the crystal structure, weak intermolecular C—H···O hydrogen bonds, Table 1, link the molecules to form one-dimensional supra-molecular chains, Fig. 1.

Related literature top

For pharmaceutical applications of thiazolidinones, see: Dwivedi et al. (1972); Chandrakant et al. (2004). For the synthesis, see: Peng et al. (2004).

Experimental top

The title compound was prepared followed to the procedure reported by Peng et al. (2004). NH4SCN (0.152 g, 2 mmol) and [bmim][PF4] (2 ml) was mixed in a 50 ml flask equipped with a dropping funnel and then was cooled in an ice-water bath. Next benzoyl chloride(0.284 g, 2 mmol) was added drop by drop and stirred for a further 20 min (disappearance of the raw material was monitored by TLC). n-Octylamine (2 mmol) was then added to the same reaction vessel at room temperature and the mixture was stirred for 20 min more. N-benzoyl-N'-octylthiourea was formed. After that, ethyl chloroacetate (2.4 mmol) and anhydrous sodium acetate (0.196 g, 2.4 mmol) was added to the flask, and the mixture was heated at 80°C for 2 h. The salts were firstly leached with water (10 ml×2), and the crude product was collected by filtration. Recrystallization from ethanol gave pure product as a yellow crystalline solid.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93-0.97 Å and refined in riding mode with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Structure description top

Thiazolidinones have broad applications as anticonvulsant (Dwivedi et al., 1972) and anti-microbial drugs (Chandrakant et al., 2004). We report here the structure of a new thiazolidinone derivative, I, Fig. 2.

The thiazolidinyl ring and phenyl ring are almost co-planar with the dihedral angle of 0.67 (0.18)°. In the crystal structure, weak intermolecular C—H···O hydrogen bonds, Table 1, link the molecules to form one-dimensional supra-molecular chains, Fig. 1.

For pharmaceutical applications of thiazolidinones, see: Dwivedi et al. (1972); Chandrakant et al. (2004). For the synthesis, see: Peng et al. (2004).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing for I viewed down the a axis.
N-(3-Octyl-4-oxo-1,3-thiazolidin-2-ylidene)benzamide top
Crystal data top
C18H24N2O2SZ = 2
Mr = 332.45F(000) = 356
Triclinic, P1Dx = 1.225 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3342 (3) ÅCell parameters from 2856 reflections
b = 8.6196 (5) Åθ = 4.5–67.0°
c = 20.0775 (12) ŵ = 0.19 mm1
α = 97.008 (5)°T = 293 K
β = 92.870 (4)°Prism, yellow
γ = 99.477 (4)°0.26 × 0.18 × 0.16 mm
V = 901.41 (9) Å3
Data collection top
Oxford Diffraction Nova A
diffractometer
2371 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 25.1°, θmin = 2.1°
ω scansh = 65
8685 measured reflectionsk = 910
3205 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.4272P]
where P = (Fo2 + 2Fc2)/3
3205 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C18H24N2O2Sγ = 99.477 (4)°
Mr = 332.45V = 901.41 (9) Å3
Triclinic, P1Z = 2
a = 5.3342 (3) ÅMo Kα radiation
b = 8.6196 (5) ŵ = 0.19 mm1
c = 20.0775 (12) ÅT = 293 K
α = 97.008 (5)°0.26 × 0.18 × 0.16 mm
β = 92.870 (4)°
Data collection top
Oxford Diffraction Nova A
diffractometer
2371 reflections with I > 2σ(I)
8685 measured reflectionsRint = 0.039
3205 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
3205 reflectionsΔρmin = 0.17 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.2339 (4)0.3596 (2)0.30556 (10)0.0496 (5)
N10.1304 (4)0.2176 (2)0.34097 (10)0.0492 (5)
C90.4393 (5)0.4805 (3)0.32305 (14)0.0533 (6)
C80.0680 (5)0.3283 (3)0.35492 (12)0.0464 (6)
C100.4427 (5)0.5499 (3)0.39502 (14)0.0585 (7)
H10A0.44220.66300.39820.070*
H10B0.59520.53370.41970.070*
O10.2580 (4)0.2654 (2)0.44909 (9)0.0680 (6)
O20.5957 (4)0.5200 (2)0.28388 (11)0.0733 (6)
S10.16338 (13)0.45285 (8)0.42998 (3)0.0534 (2)
C70.2882 (5)0.1901 (3)0.39283 (13)0.0508 (6)
C10.5089 (5)0.0581 (3)0.37455 (13)0.0495 (6)
C110.1963 (5)0.2715 (3)0.23775 (13)0.0569 (7)
H11A0.11250.16380.24020.068*
H11B0.36130.26630.22020.068*
C20.5494 (5)0.0279 (3)0.31152 (14)0.0598 (7)
H20.43410.00640.27920.072*
C60.6820 (5)0.0229 (3)0.42264 (15)0.0606 (7)
H60.65550.07950.46560.073*
C50.8909 (6)0.0944 (4)0.40707 (18)0.0712 (8)
H51.00490.11720.43950.085*
C40.9324 (6)0.1783 (4)0.34373 (19)0.0735 (9)
H41.07590.25650.33310.088*
C130.0006 (7)0.2535 (5)0.12043 (15)0.0816 (10)
H13A0.16340.25760.10130.098*
H13B0.06580.14320.12410.098*
C120.0397 (6)0.3448 (4)0.18997 (14)0.0730 (9)
H12A0.12410.45230.18720.088*
H12B0.12490.35080.20770.088*
C30.7605 (6)0.1462 (4)0.29574 (17)0.0721 (9)
H30.78670.20410.25300.086*
C150.2276 (8)0.2222 (6)0.00389 (18)0.1053 (13)
H15A0.28380.11090.00760.126*
H15B0.06790.23070.01760.126*
C140.1781 (8)0.3108 (5)0.07302 (17)0.0976 (12)
H14A0.34010.30900.09300.117*
H14B0.11060.42070.06910.117*
C170.4809 (10)0.1911 (7)0.1089 (2)0.1358 (19)
H17A0.53180.07920.10550.163*
H17B0.32620.20220.13260.163*
C160.4209 (9)0.2749 (6)0.04136 (19)0.1114 (14)
H16A0.57840.26900.01890.134*
H16B0.36210.38590.04520.134*
C180.6818 (9)0.2415 (7)0.1504 (2)0.1289 (18)
H18A0.70810.17650.19330.193*
H18B0.63040.35050.15670.193*
H18C0.83750.23020.12800.193*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0480 (11)0.0528 (12)0.0450 (11)0.0005 (10)0.0052 (9)0.0055 (9)
N10.0485 (11)0.0499 (12)0.0463 (12)0.0009 (10)0.0016 (9)0.0058 (9)
C90.0484 (14)0.0498 (15)0.0606 (16)0.0042 (12)0.0051 (12)0.0080 (12)
C80.0474 (13)0.0485 (14)0.0435 (13)0.0085 (11)0.0025 (10)0.0074 (11)
C100.0509 (15)0.0552 (16)0.0643 (17)0.0023 (12)0.0024 (13)0.0066 (13)
O10.0687 (12)0.0731 (13)0.0520 (11)0.0099 (10)0.0110 (9)0.0052 (10)
O20.0613 (12)0.0734 (14)0.0804 (14)0.0074 (10)0.0208 (11)0.0104 (11)
S10.0525 (4)0.0583 (4)0.0445 (4)0.0010 (3)0.0008 (3)0.0002 (3)
C70.0477 (14)0.0528 (15)0.0519 (15)0.0065 (12)0.0025 (11)0.0100 (12)
C10.0447 (13)0.0500 (14)0.0537 (15)0.0063 (11)0.0025 (11)0.0099 (12)
C110.0572 (15)0.0606 (16)0.0497 (15)0.0037 (13)0.0105 (12)0.0012 (13)
C20.0558 (16)0.0597 (17)0.0600 (17)0.0015 (13)0.0014 (13)0.0091 (14)
C60.0517 (15)0.0645 (18)0.0671 (18)0.0083 (13)0.0082 (13)0.0153 (14)
C50.0541 (17)0.073 (2)0.089 (2)0.0048 (15)0.0147 (16)0.0263 (18)
C40.0518 (16)0.0626 (19)0.102 (3)0.0080 (14)0.0050 (17)0.0241 (18)
C130.088 (2)0.097 (3)0.0558 (18)0.011 (2)0.0007 (16)0.0037 (17)
C120.077 (2)0.086 (2)0.0543 (17)0.0132 (17)0.0032 (15)0.0036 (16)
C30.0703 (19)0.0631 (19)0.073 (2)0.0051 (15)0.0111 (16)0.0013 (15)
C150.116 (3)0.130 (4)0.063 (2)0.014 (3)0.010 (2)0.004 (2)
C140.105 (3)0.122 (3)0.063 (2)0.018 (2)0.0113 (19)0.009 (2)
C170.153 (4)0.185 (5)0.068 (3)0.049 (4)0.022 (3)0.004 (3)
C160.120 (3)0.137 (4)0.073 (2)0.021 (3)0.012 (2)0.006 (2)
C180.129 (4)0.182 (5)0.076 (3)0.042 (4)0.017 (3)0.003 (3)
Geometric parameters (Å, º) top
N2—C91.380 (3)C4—C31.384 (5)
N2—C81.383 (3)C4—H40.9300
N2—C111.463 (3)C13—C141.492 (5)
N1—C81.297 (3)C13—C121.504 (4)
N1—C71.390 (3)C13—H13A0.9700
C9—O21.212 (3)C13—H13B0.9700
C9—C101.493 (4)C12—H12A0.9700
C8—S11.741 (2)C12—H12B0.9700
C10—S11.802 (3)C3—H30.9300
C10—H10A0.9700C15—C141.489 (5)
C10—H10B0.9700C15—C161.502 (5)
O1—C71.221 (3)C15—H15A0.9700
C7—C11.493 (4)C15—H15B0.9700
C1—C21.374 (4)C14—H14A0.9700
C1—C61.395 (4)C14—H14B0.9700
C11—C121.503 (4)C17—C161.451 (5)
C11—H11A0.9700C17—C181.477 (6)
C11—H11B0.9700C17—H17A0.9700
C2—C31.384 (4)C17—H17B0.9700
C2—H20.9300C16—H16A0.9700
C6—C51.371 (4)C16—H16B0.9700
C6—H60.9300C18—H18A0.9600
C5—C41.373 (5)C18—H18B0.9600
C5—H50.9300C18—H18C0.9600
C9—N2—C8116.6 (2)C12—C13—H13A108.5
C9—N2—C11120.8 (2)C14—C13—H13B108.5
C8—N2—C11122.6 (2)C12—C13—H13B108.5
C8—N1—C7116.6 (2)H13A—C13—H13B107.5
O2—C9—N2122.6 (3)C11—C12—C13113.0 (3)
O2—C9—C10126.0 (2)C11—C12—H12A109.0
N2—C9—C10111.4 (2)C13—C12—H12A109.0
N1—C8—N2119.3 (2)C11—C12—H12B109.0
N1—C8—S1128.94 (19)C13—C12—H12B109.0
N2—C8—S1111.79 (18)H12A—C12—H12B107.8
C9—C10—S1108.19 (18)C2—C3—C4119.8 (3)
C9—C10—H10A110.1C2—C3—H3120.1
S1—C10—H10A110.1C4—C3—H3120.1
C9—C10—H10B110.1C14—C15—C16116.1 (4)
S1—C10—H10B110.1C14—C15—H15A108.3
H10A—C10—H10B108.4C16—C15—H15A108.3
C8—S1—C1091.98 (12)C14—C15—H15B108.3
O1—C7—N1125.0 (2)C16—C15—H15B108.3
O1—C7—C1120.7 (2)H15A—C15—H15B107.4
N1—C7—C1114.3 (2)C15—C14—C13117.1 (4)
C2—C1—C6119.0 (2)C15—C14—H14A108.0
C2—C1—C7122.1 (2)C13—C14—H14A108.0
C6—C1—C7118.9 (2)C15—C14—H14B108.0
N2—C11—C12113.0 (2)C13—C14—H14B108.0
N2—C11—H11A109.0H14A—C14—H14B107.3
C12—C11—H11A109.0C16—C17—C18116.8 (4)
N2—C11—H11B109.0C16—C17—H17A108.1
C12—C11—H11B109.0C18—C17—H17A108.1
H11A—C11—H11B107.8C16—C17—H17B108.1
C1—C2—C3120.5 (3)C18—C17—H17B108.1
C1—C2—H2119.7H17A—C17—H17B107.3
C3—C2—H2119.7C17—C16—C15118.6 (4)
C5—C6—C1120.5 (3)C17—C16—H16A107.7
C5—C6—H6119.7C15—C16—H16A107.7
C1—C6—H6119.7C17—C16—H16B107.7
C6—C5—C4120.2 (3)C15—C16—H16B107.7
C6—C5—H5119.9H16A—C16—H16B107.1
C4—C5—H5119.9C17—C18—H18A109.5
C5—C4—C3119.9 (3)C17—C18—H18B109.5
C5—C4—H4120.0H18A—C18—H18B109.5
C3—C4—H4120.0C17—C18—H18C109.5
C14—C13—C12115.2 (3)H18A—C18—H18C109.5
C14—C13—H13A108.5H18B—C18—H18C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.453.365 (4)168
Symmetry code: (i) x2, y1, z.

Experimental details

Crystal data
Chemical formulaC18H24N2O2S
Mr332.45
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.3342 (3), 8.6196 (5), 20.0775 (12)
α, β, γ (°)97.008 (5), 92.870 (4), 99.477 (4)
V3)901.41 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.26 × 0.18 × 0.16
Data collection
DiffractometerOxford Diffraction Nova A
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8685, 3205, 2371
Rint0.039
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.145, 1.03
No. of reflections3205
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: CrysAlis PRO (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.453.365 (4)168
Symmetry code: (i) x2, y1, z.
 

Acknowledgements

The authors thank the Natural Science Foundation of Zhejiang Province, China, for financial support (grant No. Y4080234).

References

First citationChandrakant, G. & Gaikwad, N. G. (2004). Bioorg. Med. Chem. 12, 2151–2161.  Web of Science PubMed Google Scholar
First citationDwivedi, C., Gupta, T. K. & Parmar, S. S. (1972). J. Med. Chem. 15, 553–554.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPeng, Y.-Q., Song, G.-H. & Huang, F.-F. (2004). J. Chem. Res. 10, 676–678.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds