organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

tert-Butyl (2S,3R,4R)-7′-bromo-4-methyl-2′,5-dioxo-4,5-di­hydro-3H-spiro­[furan-2,3′-indoline]-3-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: xiaaibao@zjut.edu.cn

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 7 March 2017; accepted 14 March 2017; online 24 March 2017)

In the title compound, C17H18BrNO5, the furan ring has an envelope conformation with the carboxylate substituted C atom as the flap. The planar indoline ring is inclined to the mean plane of the furan ring by 87.5 (2)°. In the crystal, molecules are linked by N—H⋯O and C—H⋯O hydrogen bonds forming chains propagating along the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Spiro­cyclic oxindoles are important structures in many biologically active mol­ecules and natural products (Cui et al., 1996[Cui, C. B., Kakeya, H. & Osada, H. J. (1996). Tetrahedron, 52, 12651-12666.]). The key structural characteristic of these compounds is the spiro ring fused at the 3-position of the oxindole core (Cerisoli et al., 2016[Cerisoli, L., Lombardo, M., Trombini, C. & Quintavalla, A. (2016). Chem. Eur. J. 22, 3865-3872.]) with varying degrees of substitution around it (Trost & Brennan, 2009[Trost, B. M. & Brennan, M. K. (2009). Synthesis, pp. 3003-3025.]; Wang et al., 2013[Wang, Q.-L., Peng, L., Wang, F.-Y., Zhang, M.-L., Jia, L.-N., Tian, F., Xu, X.-Y. & Wang, L.-X. (2013). Chem. Commun. 49, 9422-9424.]; Monari et al., 2015[Monari, M., Montroni, E., Nitti, A., Lombardo, M., Trombini, C. & Quintavalla, A. (2015). Chem. Eur. J. 21, 11038-11049.]). However, it is a challenge to synthesize chiral spiro­cyclic oxindoles with spiro quaternary centers and multiple chiral centers. Therefore, the development of simply and highly stereoselective methods to synthesize spiro­oxindoles remains an important research direction for chemists. The title compound was readily synthesized through organocatalytic Michael reaction of propionaldehyde and methyl­eneindolinones, with subsequent H2O2/K2CO3 system-mediated α-hy­droxy­lation/hemiacetalization cascade reaction under oil/water two-phase conditions, and final oxidative γ-lacton­ization.

In the title compound, Fig. 1[link], the furan ring (O2/C7/C9–C11) has an envelope conformation with atom C9 as the flap. The indoline ring (N1/C1–C8) is inclined to the mean plane of the furan ring by 87.5 (2)°. In the crystal, molecules are linked by N—H⋯O and C—H⋯O hydrogen bonds forming chains propagating along the a-axis direction (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.86 2.15 2.944 (4) 154
C12—H12A⋯O1ii 0.96 2.59 3.415 (6) 144
Symmetry code: (i) x-1, y, z; (ii) x+1, y, z.
[Figure 1]
Figure 1
The structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The crystal packing of the title compound showing the chain structure. Hydrogen bonds are drawn as dashed lines.

Synthesis and crystallization

To a solution of the chiral catalyst, (S)-2-{diphen­yl[(tri­methyl­sil­yl)­oxy]meth­yl}pyrrolidine (1.62 mg), carb­oxy­benzene (1.22 mg) and tert-butyl (E)-2-(7-bromo-2-oxoindolin-3-yl­idene)acetate (64.8 mg) in 0.5 ml aceto­nitrile and propionaldehyde (20.0 µl) were introduced via syringe. The mixture was stirred at room temperature. After com­pletion of the reaction (monitored by TLC), the solvent was removed under vacuum and K2CO3 (1 equiv.), [EtOAc (1 ml) and H2O (0.1 ml)], H2O2 (4 equiv.) were added, and the reaction ran at room temperature for 4 h. After completion of the reaction, the mixture was extracted with EtOAc (3 × 5 ml), washed with water, dried and concentrated. The residue and PCC (pyridinium chloro­chromate, 2.0 equiv.) in dry DCM (2 ml) was stirred at room temperature for 16 h, then diluted with EtOAc (10 ml). The mixture was filtered and the filtrate concentrated under vacuum and the residue purified by flash chromatography on silica gel eluting with petroleum ether/ethyl acetate 4:1 (v/v) to give a white solid. Single crystals were obtained by slow evaporation of a solution in petroleum ether/diethyl ether 5:1 (v/v).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H18BrNO5
Mr 396.23
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 7.7040 (18), 9.325 (2), 25.540 (6)
V3) 1834.8 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.27
Crystal size (mm) 0.2 × 0.18 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.623, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 15033, 4233, 2395
Rint 0.053
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.098, 1.00
No. of reflections 4233
No. of parameters 221
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.41
Absolute structure Flack x determined using 776 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.045 (8)
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

tert-Butyl (2S,3R,4R)-7'-bromo-4-methyl-2',5-dioxo-4,5-dihydro-3H-spiro[furan-2,3'-indoline]-3-carboxylate top
Crystal data top
C17H18BrNO5Dx = 1.434 Mg m3
Mr = 396.23Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2454 reflections
a = 7.7040 (18) Åθ = 2.7–21.2°
b = 9.325 (2) ŵ = 2.27 mm1
c = 25.540 (6) ÅT = 296 K
V = 1834.8 (7) Å3Block, colourless
Z = 40.2 × 0.18 × 0.15 mm
F(000) = 808
Data collection top
Bruker APEXII CCD
diffractometer
2395 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scansθmax = 27.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 810
Tmin = 0.623, Tmax = 0.746k = 1212
15033 measured reflectionsl = 3033
4233 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0197P)2 + 0.3907P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max = 0.005
S = 1.00Δρmax = 0.31 e Å3
4233 reflectionsΔρmin = 0.41 e Å3
221 parametersAbsolute structure: Flack x determined using 776 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al. (2013)
0 restraintsAbsolute structure parameter: 0.045 (8)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were placed in calculated positions and refined in riding mode with C—H distances 0.93, 0.97 and 0.98 Å, for aryl, methylene and methine H atoms; Uiso(H) = 1.2Ueq of the carrier atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.15873 (10)0.22044 (8)0.38775 (3)0.1040 (3)
O10.3158 (4)0.7880 (4)0.37124 (14)0.0668 (10)
O20.5385 (4)0.7426 (3)0.46266 (11)0.0491 (8)
O30.6907 (5)0.9121 (4)0.50236 (13)0.0632 (9)
O40.9313 (4)0.5704 (4)0.35412 (15)0.0710 (11)
O50.6721 (4)0.5706 (4)0.31393 (12)0.0589 (9)
N10.2987 (4)0.5445 (4)0.38441 (15)0.0456 (9)
H10.2003540.5277000.3697010.055*
C10.3996 (5)0.4405 (5)0.40811 (16)0.0403 (11)
C20.3682 (7)0.2968 (5)0.41343 (19)0.0555 (13)
C30.4891 (8)0.2103 (6)0.4385 (2)0.0669 (15)
H30.4679950.1127170.4425480.080*
C40.6398 (8)0.2692 (6)0.4573 (2)0.0665 (14)
H40.7217800.2105570.4733090.080*
C50.6716 (7)0.4152 (5)0.45275 (18)0.0541 (12)
H50.7731230.4548720.4661100.065*
C60.5513 (5)0.4998 (5)0.42830 (17)0.0393 (10)
C70.5467 (5)0.6563 (5)0.41609 (17)0.0390 (10)
C80.3726 (5)0.6752 (5)0.38708 (19)0.0438 (10)
C90.7002 (5)0.7210 (4)0.38479 (17)0.0404 (9)
H90.6547550.7983530.3627110.049*
C100.8135 (5)0.7878 (5)0.42684 (17)0.0445 (10)
H100.8915960.7141530.4407590.053*
C110.6835 (6)0.8254 (5)0.46789 (18)0.0448 (11)
C120.9204 (7)0.9154 (6)0.4098 (2)0.0705 (16)
H12A1.0039190.8854780.3841450.106*
H12B0.9795830.9549260.4395600.106*
H12C0.8455090.9868240.3948790.106*
C130.7859 (6)0.6122 (5)0.34975 (19)0.0468 (12)
C140.7091 (8)0.4580 (7)0.2748 (2)0.0746 (17)
C150.5424 (9)0.4487 (10)0.2447 (3)0.148 (4)
H15A0.4476120.4357860.2686900.223*
H15B0.5472880.3687610.2211000.223*
H15C0.5254430.5355270.2252120.223*
C160.7422 (9)0.3181 (8)0.3026 (3)0.101 (2)
H16A0.8446400.3266570.3238330.151*
H16B0.7584730.2432140.2773160.151*
H16C0.6447200.2953650.3245140.151*
C170.8646 (12)0.5021 (10)0.2419 (3)0.150 (4)
H17A0.8385990.5894840.2236050.225*
H17B0.8902770.4278930.2169850.225*
H17C0.9632180.5167520.2642170.225*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0990 (5)0.0819 (4)0.1311 (6)0.0540 (4)0.0142 (5)0.0005 (5)
O10.0514 (19)0.056 (2)0.093 (3)0.0064 (18)0.0066 (19)0.011 (2)
O20.0485 (17)0.052 (2)0.0472 (18)0.0080 (16)0.0063 (15)0.0150 (16)
O30.067 (2)0.060 (2)0.063 (2)0.0021 (19)0.0095 (19)0.0219 (19)
O40.037 (2)0.086 (3)0.090 (3)0.0005 (19)0.0036 (18)0.031 (2)
O50.0500 (18)0.081 (2)0.0455 (19)0.004 (2)0.0080 (17)0.0234 (17)
N10.0298 (18)0.051 (2)0.056 (2)0.0074 (16)0.0081 (19)0.005 (2)
C10.040 (2)0.040 (2)0.041 (3)0.004 (2)0.008 (2)0.000 (2)
C20.062 (3)0.045 (3)0.060 (3)0.017 (3)0.012 (3)0.001 (2)
C30.088 (4)0.046 (3)0.067 (4)0.001 (3)0.017 (3)0.011 (3)
C40.072 (4)0.063 (4)0.065 (3)0.016 (3)0.006 (3)0.015 (3)
C50.052 (3)0.055 (3)0.055 (3)0.005 (3)0.000 (3)0.002 (2)
C60.033 (2)0.044 (3)0.040 (3)0.002 (2)0.003 (2)0.002 (2)
C70.034 (2)0.044 (3)0.039 (3)0.0039 (19)0.002 (2)0.010 (2)
C80.033 (2)0.049 (2)0.050 (3)0.0010 (19)0.000 (2)0.000 (3)
C90.035 (2)0.045 (2)0.041 (2)0.0041 (19)0.001 (2)0.002 (2)
C100.036 (2)0.043 (2)0.055 (3)0.007 (2)0.005 (2)0.005 (2)
C110.046 (3)0.045 (3)0.043 (3)0.003 (2)0.010 (2)0.001 (2)
C120.058 (3)0.068 (4)0.085 (4)0.024 (3)0.003 (3)0.007 (3)
C130.037 (3)0.059 (3)0.044 (3)0.012 (2)0.004 (2)0.001 (2)
C140.082 (4)0.091 (5)0.051 (3)0.000 (4)0.006 (3)0.029 (3)
C150.127 (6)0.192 (9)0.125 (7)0.047 (7)0.081 (6)0.092 (7)
C160.090 (5)0.096 (6)0.116 (5)0.007 (4)0.003 (4)0.046 (5)
C170.182 (8)0.187 (9)0.081 (5)0.037 (8)0.068 (6)0.049 (6)
Geometric parameters (Å, º) top
Br1—C21.882 (5)C7—C91.550 (6)
O1—C81.209 (5)C9—H90.9800
O2—C71.438 (5)C9—C101.518 (6)
O2—C111.364 (5)C9—C131.506 (6)
O3—C111.196 (5)C10—H100.9800
O4—C131.191 (5)C10—C111.492 (7)
O5—C131.325 (5)C10—C121.511 (6)
O5—C141.478 (6)C12—H12A0.9600
N1—H10.8600C12—H12B0.9600
N1—C11.382 (5)C12—H12C0.9600
N1—C81.347 (5)C14—C151.498 (8)
C1—C21.369 (6)C14—C161.508 (10)
C1—C61.392 (6)C14—C171.520 (9)
C2—C31.389 (7)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C3—C41.371 (7)C15—H15C0.9600
C4—H40.9300C16—H16A0.9600
C4—C51.388 (7)C16—H16B0.9600
C5—H50.9300C16—H16C0.9600
C5—C61.368 (6)C17—H17A0.9600
C6—C71.493 (6)C17—H17B0.9600
C7—C81.543 (6)C17—H17C0.9600
C11—O2—C7111.2 (3)C11—C10—H10108.8
C13—O5—C14123.2 (4)C11—C10—C12112.6 (4)
C1—N1—H1124.0C12—C10—C9115.6 (4)
C8—N1—H1124.0C12—C10—H10108.8
C8—N1—C1112.0 (3)O2—C11—C10110.4 (4)
N1—C1—C6110.9 (4)O3—C11—O2119.5 (4)
C2—C1—N1129.1 (4)O3—C11—C10130.2 (4)
C2—C1—C6120.0 (4)C10—C12—H12A109.5
C1—C2—Br1119.2 (4)C10—C12—H12B109.5
C1—C2—C3119.7 (5)C10—C12—H12C109.5
C3—C2—Br1121.1 (4)H12A—C12—H12B109.5
C2—C3—H3120.1H12A—C12—H12C109.5
C4—C3—C2119.8 (5)H12B—C12—H12C109.5
C4—C3—H3120.1O4—C13—O5126.2 (5)
C3—C4—H4119.6O4—C13—C9125.2 (4)
C3—C4—C5120.9 (5)O5—C13—C9108.5 (4)
C5—C4—H4119.6O5—C14—C15102.9 (5)
C4—C5—H5120.5O5—C14—C16109.1 (5)
C6—C5—C4119.0 (5)O5—C14—C17109.5 (5)
C6—C5—H5120.5C15—C14—C16109.6 (7)
C1—C6—C7106.9 (4)C15—C14—C17114.1 (6)
C5—C6—C1120.6 (4)C16—C14—C17111.2 (6)
C5—C6—C7132.5 (4)C14—C15—H15A109.5
O2—C7—C6112.1 (4)C14—C15—H15B109.5
O2—C7—C8107.2 (3)C14—C15—H15C109.5
O2—C7—C9104.0 (3)H15A—C15—H15B109.5
C6—C7—C8103.5 (3)H15A—C15—H15C109.5
C6—C7—C9118.1 (4)H15B—C15—H15C109.5
C8—C7—C9111.8 (3)C14—C16—H16A109.5
O1—C8—N1128.2 (4)C14—C16—H16B109.5
O1—C8—C7125.1 (4)C14—C16—H16C109.5
N1—C8—C7106.8 (4)H16A—C16—H16B109.5
C7—C9—H9108.1H16A—C16—H16C109.5
C10—C9—C7103.5 (3)H16B—C16—H16C109.5
C10—C9—H9108.1C14—C17—H17A109.5
C13—C9—C7112.2 (3)C14—C17—H17B109.5
C13—C9—H9108.1C14—C17—H17C109.5
C13—C9—C10116.4 (4)H17A—C17—H17B109.5
C9—C10—H10108.8H17A—C17—H17C109.5
C11—C10—C9102.0 (3)H17B—C17—H17C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.862.152.944 (4)154
Symmetry code: (i) x1, y, z.
 

Funding information

Funding for this research was provided by: Zhejiang Key Course of Chemical Engineering and Technology, Zhejiang University of Technology.

References

First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCerisoli, L., Lombardo, M., Trombini, C. & Quintavalla, A. (2016). Chem. Eur. J. 22, 3865–3872.  CrossRef CAS PubMed Google Scholar
First citationCui, C. B., Kakeya, H. & Osada, H. J. (1996). Tetrahedron, 52, 12651–12666.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMonari, M., Montroni, E., Nitti, A., Lombardo, M., Trombini, C. & Quintavalla, A. (2015). Chem. Eur. J. 21, 11038–11049.  CSD CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrost, B. M. & Brennan, M. K. (2009). Synthesis, pp. 3003–3025.  CrossRef Google Scholar
First citationWang, Q.-L., Peng, L., Wang, F.-Y., Zhang, M.-L., Jia, L.-N., Tian, F., Xu, X.-Y. & Wang, L.-X. (2013). Chem. Commun. 49, 9422–9424.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds