metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

cis-Diammine[3-(3-chloro-7-meth­­oxy-9,10-di­hydro­acridin-9-yl­­idene­amino)­propan-1-amine-κ2N,N′]platinum(II) dinitrate

aDivision of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, USA
*Correspondence e-mail: seongminlee@austin.utexas.edu

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 17 March 2016; accepted 22 March 2016; online 5 April 2016)

The title complex salt, [Pt(C16H17N3)(NH3)2](NO3)2, is of inter­est with respect to anti­cancer activity. The secondary amine of 9-amino­acridine coordinates with the platinum(II) atom, leading to imine–platinum complex cation formation. The crystal structure displays extensive N—H⋯O and N—H⋯N hydrogen bonding and weak C—H⋯Cl and C—H⋯O hydrogen bonding.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Platinum has been widely used for chemotherapy since cisplatin was approved by the US Food and Drug Administration in 1978 (Galanski et al., 2005[Galanski, M., Jakupec, M. A. & Keppler, B. K. (2005). Curr. Med. Chem. 12, 2075-2094.]). Unfortunately, due to the widespread use of platinum drugs, patients began to develop drug resistance (Shen et al., 2012[Shen, D.-W., Pouliot, L. M., Hall, M. D. & Gottesman, M. M. (2012). Pharmacol. Rev. 64, 706-721.]). Non-classical platinum drugs, for example, platinum-inter­calator conjugates are thought to be an alternative solution to overcome cisplatin resistance (Johnstone et al., 2014[Johnstone, T. C., Park, G. Y. & Lippard, S. J. (2014). Anticancer Res. 34, 471-476.]; Baruah et al., 2004[Baruah, H., Barry, C. G. & Bierbach, U. (2004). Curr. Top. Med. Chem. 4, 1537-1549.]; Martins et al., 2001[Martins, E. T., Baruah, H., Kramarczyk, J., Saluta, G., Day, C. S., Kucera, G. L. & Bierbach, U. (2001). J. Med. Chem. 44, 4492-4496.]). We attempted to synthesize a 9-amino­acridine derivative linked with monofunctional platinum via a three-carbon alkyl chain. During the platination reaction between the primary amine and cis-[Pt(NH3)2(O-donor)Cl]+ (O-donor = O1-DMF and NO3), an unexpected product formed predominantly. We grew crystals of the compound to investigate the structure via X-ray diffraction of the crystal.

The secondary amine of 9-amino­acridine replaced the chloride to form a platinum–nitro­gen complex. The platinum complex (Fig. 1[link]) has a square-planar geometry and the three-carbon alkyl chain became part of a newly formed six-membered ring with Pt, N13 and N9. The longer bond lengths of N13—Pt [2.053 (9) Å] and N9—Pt [1.993 (8) Å] appears to compensate for the smaller bond angle of N13—Pt—N9 [87.3 (3)°], allowing the six-membered ring to adopt a conformation similar to a chair conformation. The bond length of N9—C9 [1.293 (13) Å], 120° bond angles around N9 and C9, and the protonation of N10 suggest the formation of an imine and proton rearrangement (Fig. 2[link]). The resulting acridin-imine is strained around C9. The C1—C9A—C9—N9 torsion angle is 33 (1)° and C8—C8A-–C9—N9 is −35 (2)°. The ring is bent approximately 15°, resembling a bow when viewed from the side.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids for the non-H atoms at the 50% probability level.
[Figure 2]
Figure 2
Potential mechanism of the formation of the title compound.

There are two nitrate ions present in the crystal. One nitrate can form hydrogen bonds (Table 1[link]) with H10 [H10—O19B = 2.20 (12) Å] and H13C (H13C–O19A = 2.059 Å), and the other can form a hydrogen bond with H13D (H13D—O18A = 2.03 Å). The packing is illustrated in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10⋯O19Bi 0.72 (12) 2.20 (12) 2.919 (12) 172 (14)
N13—H13C⋯O19Aii 0.91 2.06 2.910 (13) 155
N13—H13D⋯N18 0.91 2.63 3.428 (13) 147
N13—H13D⋯O18A 0.91 2.03 2.918 (13) 166
N14—H14A⋯O18Aiii 0.91 2.24 3.113 (14) 160
N14—H14B⋯O18C 0.91 2.43 3.218 (15) 146
N14—H14C⋯O18Biv 0.91 2.54 3.294 (15) 140
N14—H14C⋯Cl6v 0.91 2.82 3.497 (10) 132
N15—H15A⋯O18Civ 0.91 2.38 3.257 (15) 162
N15—H15B⋯O19A 0.91 2.52 3.120 (13) 124
N15—H15B⋯O19B 0.91 2.27 3.183 (13) 178
N15—H15C⋯O18Biii 0.91 2.48 3.223 (14) 139
N15—H15C⋯O18Aiii 0.91 2.40 3.192 (13) 146
C4—H4⋯O19Ci 0.95 2.46 3.354 (14) 157
C7—H7⋯O19Avi 0.95 2.64 3.576 (14) 170
C11—H11B⋯Cl6vi 0.99 2.95 3.649 (12) 128
C17—H17A⋯O18Aiii 0.98 2.54 3.250 (15) 129
C17—H17B⋯O18Bvii 0.98 2.45 3.356 (15) 154
C17—H17C⋯O19Aii 0.98 2.63 3.568 (14) 160
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x+1, y, z; (v) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) -x+2, -y+2, -z+1; (vii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
Packing plot of the title compound.

Synthesis and crystallization

cis-[Pt(NH3)2(Od)Cl]+ (Od = O1-DMF and NO3) was prepared from cisplatin (45 mg, 0.15 mmol) and silver nitrate (26 mg, 0.15 mmol) in N,N-di­methyl­formamide at 55°C in the dark for 1–3 days (Hollis et al., 1989[Hollis, L. S., Amundsen, A. R. & Stern, E. W. (1989). J. Med. Chem. 32, 128-136.]). The title compound was prepared by mixing N1-(6-chloro-2-meth­oxy­acridin-9-yl)propane-1,3-di­amine (32 mg, 0.1 mmol) and cis-[Pt(NH3)2(Od)Cl]+ in DMF at 55°C in the dark for 24 h. DMF was removed under high vacuum and the crude mixture was dissolved in methanol (4 ml). Any undissolved solids were removed via filtration. Cold diethyl ether (60 ml) was poured to the filtrate, resulting in precipitation of the desired product. The fine precipitates were collected with EMD Millipore HNWP grade 0.45 µm nylon membrane filter (37 mg, 0.042 mmol, 42% yield). Yellow, thin-needle crystals of the title compound were obtained from vapor diffusion between methanol and diethyl ether.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Pt(C16H18N3)(NH3)2](NO3)2
Mr 668.97
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.6398 (3), 10.8372 (11), 25.982 (4)
β (°) 92.478 (5)
V3) 2149.1 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 13.87
Crystal size (mm) 0.13 × 0.02 × 0.02
 
Data collection
Diffractometer Agilent SuperNova with AtlasS2 CCD
Absorption correction Gaussian (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Oxfordshire, England.])
Tmin, Tmax 0.503, 1.00
No. of measured, independent and observed [I > 2σ(I)] reflections 8178, 4158, 3105
Rint 0.066
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.155, 1.04
No. of reflections 4158
No. of parameters 304
No. of restraints 444
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 2.22, −3.37
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Oxfordshire, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Chemical context top

Platinum has been widely used for chemotherapy since cisplatin was approved by US Food and Drug Administration in 1978 (Galanski et al., 2005). Unfortunately due to the widespread use of platinum drugs, patients began to develop drug resistance (Shen et al., 2012). Non-classical platinum drugs, for example, platinum-inter­calator conjugates are thought to be an alternative solution to overcome cisplatin resistance (Johnstone et al., 2014; Baruah et al., 2004; Martins et al., 2001). We attempted to synthesize a 9-amino­acridine derivative linked with monofunctional platinum via 3-carbon alkyl chain. During the platination reaction between the primary amine and cis-[Pt(NH3)2(N-donor)Cl]+ (N-donor = O1-DMF and NO3-), an unexpected product formed predominantly. We grew crystals of the compound to investigate the structure via X-ray diffraction of the crystal.

Structural commentary top

The secondary amine of 9-amino­acridine replaced the chloride to form a platinum-nitro­gen complex. The platinum-nitro­gen complex has a square planar geometry and the 3-carbon alkyl chain became part of a newly formed 6-membered ring of Pt, N13 and N9. The longer bond lengths of N13–Pt [2.054 (9) Å] and N9–Pt [1.993 (8) Å] appears to compensate for the smaller bond angle of N13–Pt–N9 [87.3 (3)°], allowing the 6-membered ring to adopt a conformation similar to chair conformation. The bond length of N9–C9 [1.29 (1) Å], ~120° bond angles around N9 and C9, and the protonation of N10 suggest the formation of imine and proton rearrangement (Figure 3). The resulting acridin-imine is strained around C9. The torsion angle of C1–C9A–C9–N9 is 33 (1)° and C8–C8A–C9–N9 is -35 (2)°. The ring is bent approximately 15°, resembling a bow when viewed from the side.

Supra­molecular features top

There are two nitrate ions present in the crystal. One nitrate can form hydrogen bonds with H10 [H10–O19B 2.2 (1) Å] and H13C (H13C–O19A 2.059 Å), and the other can form a hydrogen bond with H13D (H13D–O18A 2.02 Å).

Synthesis and crystallization top

cis-[Pt(NH3)2(Od)Cl]+ (Od = O1-DMF and NO3-) was prepared from cisplatin (45 mg, 0.15 mmol) and silver nitrate (26 mg, 0.15 mmol) in N,N-di­methyl­formamide at 55 °C in the dark for 1–3 days (Hollis et al., 1989). The title compound was prepared by mixing N1-(6-chloro-2-meth­oxy­acridin-9-yl)propane-1,3-di­amine (32mg, 0.1 mmol) and cis-[Pt(NH3)2(Od)Cl]+ in DMF at 55 °C in the dark for 24 hours. DMF was removed under high vacuum and the crude mixture was dissolved in methanol (4 mL). Any undissolved solids were removed via filtration. Cold di­ethyl ether (60 mL) was poured to the filtrate, resulting in precipitations of the desired product. The fine precipitates were collected with EMD Millipore HNWP grade 0.45 µm nylon membrane filter (37 mg, 0.042 mmol, 42% yield). Yellow, thin needle crystals of the title compound were obtained from vapor diffusion between methanol and di­ethyl ether.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The hydrogen atoms were calculated in ideal positions with isotropic displacement parameters set to 1.2 times Ueq of the attached atom (1.5 times Ueq for methyl hydrogen atoms). The hydrogen atom bound to N10 was calculated in an idealized position but was allowed to refine with its isotropic displacement parameter set to 1.2 times Ueq of N10.

Experimental top

cis-[Pt(NH3)2(Od)Cl]+ (Od = O1-DMF and NO3-) was prepared from cisplatin (45 mg, 0.15 mmol) and silver nitrate (26 mg, 0.15 mmol) in N,N-dimethylformamide at 55°C in the dark for 1–3 days (Hollis et al., 1989). The title compound was prepared by mixing N1-(6-chloro-2-methoxyacridin-9-yl)propane-1,3-diamine (32 mg, 0.1 mmol) and cis-[Pt(NH3)2(Od)Cl]+ in DMF at 55°C in the dark for 24 h. DMF was removed under high vacuum and the crude mixture was dissolved in methanol (4 ml). Any undissolved solids were removed via filtration. Cold diethyl ether (60 ml) was poured to the filtrate, resulting in precipitation of the desired product. The fine precipitates were collected with EMD Millipore HNWP grade 0.45 µm nylon membrane filter (37 mg, 0.042 mmol, 42% yield). Yellow, thin-needle crystals of the title compound were obtained from vapor diffusion between methanol and diethyl ether.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Platinum has been widely used for chemotherapy since cisplatin was approved by the US Food and Drug Administration in 1978 (Galanski et al., 2005). Unfortunately, due to the widespread use of platinum drugs, patients began to develop drug resistance (Shen et al., 2012). Non-classical platinum drugs, for example, platinum-intercalator conjugates are thought to be an alternative solution to overcome cisplatin resistance (Johnstone et al., 2014; Baruah et al., 2004; Martins et al., 2001). We attempted to synthesize a 9-aminoacridine derivative linked with monofunctional platinum via a three-carbon alkyl chain. During the platination reaction between the primary amine and cis-[Pt(NH3)2(N-donor)Cl]+ (N-donor = O1-DMF and NO3-), an unexpected product formed predominantly. We grew crystals of the compound to investigate the structure via X-ray diffraction of the crystal.

The secondary amine of 9-aminoacridine replaced the chloride to form a platinum–nitrogen complex. The platinum–nitrogen complex (Fig. 1)has a square-planar geometry and the three-carbon alkyl chain became part of a newly formed six-membered ring of Pt, N13 and N9. The longer bond lengths of N13—Pt [2.053 (9) Å] and N9—Pt [1.993 (8) Å] appears to compensate for the smaller bond angle of N13—Pt—N9 [87.3 (3)°], allowing the six-membered ring to adopt a conformation similar to chair conformation. The bond length of N9—C9 [1.293 (13) Å], ~120° bond angles around N9 and C9, and the protonation of N10 suggest the formation of an imine and proton rearrangement (Fig. 2). The resulting acridin-imine is strained around C9. The C1—C9A—C9—N9 torsion angle is 33 (1)° and C8—C8A-–C9—N9 is -35 (2)°. The ring is bent approximately 15°, resembling a bow when viewed from the side.

There are two nitrate ions present in the crystal. One nitrate can form hydrogen bonds (Table 1) with H10 [H10—O19B = 2.20 (12) Å] and H13C (H13C–O19A = 2.059 Å), and the other can form a hydrogen bond with H13D (H13D—O18A = 2.03 Å). The packing is illustrated in Fig. 3.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids for the non-H atoms at the 50% probability level. Nitrate counter-ions have been omitted for clarity.
[Figure 2] Fig. 2. Potential mechanism of the formation of the title compound.
[Figure 3] Fig. 3. Packing plot of the title compound.
cis-Diammine[3-(3-chloro-7-methoxy-9,10-dihydroacridin-9-ylideneamino)propan-1-amine-κ2N,N']platinum(II) dinitrate top
Crystal data top
[Pt(C16H18N3)(NH3)2](NO3)2F(000) = 1304
Mr = 668.97Dx = 2.068 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 7.6398 (3) ÅCell parameters from 2416 reflections
b = 10.8372 (11) Åθ = 3.4–72.7°
c = 25.982 (4) ŵ = 13.87 mm1
β = 92.478 (5)°T = 100 K
V = 2149.1 (4) Å3Needle, yellow
Z = 40.13 × 0.02 × 0.02 mm
Data collection top
Agilent SuperNova with AtlasS2 CCD
diffractometer
3105 reflections with I > 2σ(I)
Radiation source: sealed microfocus tubeRint = 0.066
ω–scansθmax = 75.2°, θmin = 3.4°
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2013)
h = 95
Tmin = 0.503, Tmax = 1.00k = 137
8178 measured reflectionsl = 3031
4158 independent reflections
Refinement top
Refinement on F2444 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059Only H-atom coordinates refined
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0625P)2 + 7.5338P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4158 reflectionsΔρmax = 2.22 e Å3
304 parametersΔρmin = 3.37 e Å3
Crystal data top
[Pt(C16H18N3)(NH3)2](NO3)2V = 2149.1 (4) Å3
Mr = 668.97Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.6398 (3) ŵ = 13.87 mm1
b = 10.8372 (11) ÅT = 100 K
c = 25.982 (4) Å0.13 × 0.02 × 0.02 mm
β = 92.478 (5)°
Data collection top
Agilent SuperNova with AtlasS2 CCD
diffractometer
4158 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2013)
3105 reflections with I > 2σ(I)
Tmin = 0.503, Tmax = 1.00Rint = 0.066
8178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059444 restraints
wR(F2) = 0.155Only H-atom coordinates refined
S = 1.04Δρmax = 2.22 e Å3
4158 reflectionsΔρmin = 3.37 e Å3
304 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C130.5794 (15)1.0413 (10)0.6474 (4)0.024 (2)
H13A0.67101.07100.67250.028*
H13B0.48311.10250.64630.028*
C120.6562 (15)1.0332 (10)0.5942 (4)0.024 (2)
H12A0.56181.00930.56890.029*
H12B0.69781.11620.58450.029*
C110.8071 (15)0.9424 (10)0.5904 (5)0.025 (2)
H11A0.85780.94940.55610.029*
H11B0.90000.96210.61690.029*
C90.7168 (13)0.7372 (9)0.5604 (4)0.0181 (18)
C8A0.7632 (13)0.7546 (9)0.5058 (4)0.0187 (19)
C80.7575 (13)0.8684 (10)0.4799 (4)0.022 (2)
H80.71110.93860.49650.026*
C70.8178 (14)0.8798 (11)0.4312 (4)0.026 (2)
H70.80930.95630.41350.031*
C60.8915 (14)0.7780 (11)0.4084 (4)0.025 (2)
C50.8907 (13)0.6629 (11)0.4302 (4)0.024 (2)
H50.93770.59370.41310.029*
C4B0.8181 (13)0.6505 (10)0.4788 (4)0.022 (2)
C4A0.7001 (14)0.5117 (10)0.5402 (4)0.020 (2)
C40.6508 (14)0.3901 (10)0.5529 (4)0.023 (2)
H40.69400.32190.53430.027*
C30.5401 (15)0.3714 (11)0.5923 (4)0.025 (2)
H30.50320.29000.59980.030*
C20.4806 (14)0.4694 (10)0.6216 (4)0.024 (2)
C10.5295 (13)0.5870 (9)0.6094 (4)0.0181 (19)
H10.48280.65450.62770.022*
C9A0.6466 (13)0.6103 (9)0.5707 (4)0.0180 (19)
C170.3137 (15)0.5425 (11)0.6906 (4)0.028 (2)
H17A0.41630.57990.70830.042*
H17B0.23300.51240.71610.042*
H17C0.25420.60420.66850.042*
N130.5114 (12)0.9219 (8)0.6653 (4)0.0247 (19)
H13C0.42580.89520.64250.030*
H13D0.46250.93300.69630.030*
N90.7426 (10)0.8136 (7)0.5982 (3)0.0131 (15)
N100.8018 (12)0.5329 (9)0.4987 (4)0.0224 (19)
N150.9092 (13)0.6683 (9)0.6799 (4)0.028 (2)
H15A0.98690.69550.70490.042*
H15B0.96320.66360.64940.042*
H15C0.86930.59230.68850.042*
N140.6630 (14)0.7624 (9)0.7488 (3)0.030 (2)
H14A0.66140.68010.75570.045*
H14B0.55880.79650.75690.045*
H14C0.75120.79880.76800.045*
N180.1917 (13)0.8899 (10)0.7529 (4)0.031 (2)
N191.1839 (13)0.7603 (9)0.5780 (4)0.0285 (19)
O10.3694 (10)0.4397 (7)0.6591 (3)0.0281 (17)
O18C0.2424 (13)0.7816 (9)0.7465 (4)0.046 (2)
O18B0.0363 (12)0.9147 (10)0.7567 (4)0.052 (3)
O18A0.3072 (12)0.9761 (9)0.7549 (4)0.039 (2)
O19A1.1896 (10)0.8149 (7)0.6210 (3)0.0280 (17)
O19B1.1044 (11)0.6585 (7)0.5742 (3)0.0304 (18)
O19C1.2554 (14)0.8075 (8)0.5413 (4)0.047 (2)
Cl60.9803 (4)0.7921 (3)0.34724 (11)0.0360 (7)
Pt0.70226 (6)0.78889 (4)0.67275 (2)0.02123 (16)
H100.816 (17)0.483 (12)0.481 (5)0.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C130.025 (4)0.013 (4)0.034 (5)0.005 (3)0.009 (4)0.002 (3)
C120.027 (4)0.013 (4)0.033 (5)0.004 (4)0.008 (4)0.001 (3)
C110.025 (4)0.012 (4)0.037 (5)0.000 (3)0.012 (4)0.002 (3)
C90.017 (4)0.014 (3)0.024 (3)0.002 (3)0.005 (3)0.003 (3)
C8A0.018 (4)0.014 (3)0.024 (3)0.001 (3)0.005 (3)0.001 (3)
C80.019 (4)0.017 (4)0.029 (4)0.001 (3)0.002 (3)0.000 (3)
C70.025 (5)0.024 (4)0.028 (4)0.000 (4)0.005 (3)0.002 (3)
C60.020 (4)0.027 (4)0.029 (4)0.004 (3)0.007 (3)0.000 (3)
C50.018 (4)0.024 (4)0.030 (4)0.003 (3)0.007 (3)0.001 (3)
C4B0.019 (4)0.018 (4)0.029 (4)0.000 (3)0.007 (3)0.002 (3)
C4A0.022 (4)0.014 (3)0.026 (4)0.002 (3)0.002 (3)0.001 (3)
C40.024 (4)0.013 (4)0.031 (4)0.002 (3)0.002 (4)0.001 (3)
C30.029 (4)0.015 (4)0.032 (4)0.005 (3)0.004 (4)0.003 (3)
C20.025 (4)0.018 (4)0.029 (4)0.008 (3)0.004 (4)0.002 (3)
C10.015 (4)0.014 (4)0.024 (4)0.001 (3)0.001 (3)0.001 (3)
C9A0.019 (4)0.010 (3)0.025 (4)0.002 (3)0.004 (3)0.002 (3)
C170.028 (5)0.027 (5)0.031 (5)0.006 (4)0.011 (4)0.002 (4)
N130.027 (4)0.019 (4)0.029 (4)0.002 (3)0.005 (3)0.001 (3)
N90.016 (3)0.012 (3)0.011 (3)0.003 (3)0.004 (2)0.003 (2)
N100.022 (4)0.015 (3)0.031 (4)0.002 (3)0.008 (3)0.001 (3)
N150.034 (4)0.025 (5)0.025 (5)0.000 (4)0.000 (4)0.005 (4)
N140.045 (5)0.033 (5)0.012 (4)0.001 (4)0.002 (3)0.001 (3)
N180.029 (4)0.036 (4)0.028 (5)0.003 (3)0.011 (3)0.006 (3)
N190.029 (4)0.022 (4)0.035 (4)0.007 (3)0.005 (3)0.001 (3)
O10.030 (4)0.023 (4)0.033 (4)0.004 (3)0.012 (3)0.000 (3)
O18C0.051 (5)0.036 (4)0.051 (6)0.006 (4)0.013 (4)0.010 (4)
O18B0.031 (4)0.054 (6)0.072 (7)0.004 (4)0.017 (4)0.006 (5)
O18A0.037 (4)0.037 (4)0.046 (5)0.005 (3)0.012 (4)0.014 (4)
O19A0.023 (4)0.026 (4)0.035 (4)0.005 (3)0.007 (3)0.002 (3)
O19B0.029 (4)0.019 (3)0.044 (5)0.004 (3)0.006 (3)0.004 (3)
O19C0.065 (6)0.032 (5)0.044 (4)0.004 (4)0.025 (4)0.001 (4)
Cl60.0408 (15)0.0412 (17)0.0271 (14)0.0127 (15)0.0124 (12)0.0027 (13)
Pt0.0231 (2)0.0156 (2)0.0255 (3)0.0002 (2)0.00693 (17)0.0003 (2)
Geometric parameters (Å, º) top
C13—H13A0.9900C3—H30.9500
C13—H13B0.9900C3—C21.393 (16)
C13—C121.527 (14)C2—C11.370 (15)
C13—N131.477 (13)C2—O11.359 (13)
C12—H12A0.9900C1—H10.9500
C12—H12B0.9900C1—C9A1.398 (13)
C12—C111.522 (14)C17—H17A0.9800
C11—H11A0.9900C17—H17B0.9800
C11—H11B0.9900C17—H17C0.9800
C11—N91.497 (12)C17—O11.457 (13)
C9—C8A1.489 (14)N13—H13C0.9100
C9—C9A1.504 (14)N13—H13D0.9100
C9—N91.293 (13)N13—Pt2.053 (9)
C8A—C81.404 (15)N9—Pt1.993 (8)
C8A—C4B1.402 (14)N10—H100.72 (12)
C8—H80.9500N15—H15A0.9100
C8—C71.371 (14)N15—H15B0.9100
C7—H70.9500N15—H15C0.9100
C7—C61.384 (16)N15—Pt2.053 (10)
C6—C51.371 (16)N14—H14A0.9100
C6—Cl61.760 (11)N14—H14B0.9100
C5—H50.9500N14—H14C0.9100
C5—C4B1.407 (14)N14—Pt2.033 (9)
C4B—N101.383 (14)N18—O18C1.249 (13)
C4A—C41.414 (14)N18—O18B1.225 (13)
C4A—C9A1.402 (14)N18—O18A1.284 (13)
C4A—N101.374 (14)N19—O19A1.262 (12)
C4—H40.9500N19—O19B1.261 (13)
C4—C31.370 (15)N19—O19C1.231 (13)
H13A—C13—H13B107.8O1—C2—C1124.8 (10)
C12—C13—H13A109.0C2—C1—H1119.2
C12—C13—H13B109.0C2—C1—C9A121.6 (10)
N13—C13—H13A109.0C9A—C1—H1119.2
N13—C13—H13B109.0C4A—C9A—C9118.8 (9)
N13—C13—C12112.9 (9)C1—C9A—C9122.4 (9)
C13—C12—H12A108.6C1—C9A—C4A118.8 (9)
C13—C12—H12B108.6H17A—C17—H17B109.5
H12A—C12—H12B107.6H17A—C17—H17C109.5
C11—C12—C13114.7 (9)H17B—C17—H17C109.5
C11—C12—H12A108.6O1—C17—H17A109.5
C11—C12—H12B108.6O1—C17—H17B109.5
C12—C11—H11A109.7O1—C17—H17C109.5
C12—C11—H11B109.7C13—N13—H13C109.0
H11A—C11—H11B108.2C13—N13—H13D109.0
N9—C11—C12109.8 (9)C13—N13—Pt112.8 (7)
N9—C11—H11A109.7H13C—N13—H13D107.8
N9—C11—H11B109.7Pt—N13—H13C109.0
C8A—C9—C9A112.7 (9)Pt—N13—H13D109.0
N9—C9—C8A127.4 (9)C11—N9—Pt108.8 (6)
N9—C9—C9A119.7 (9)C9—N9—C11122.3 (8)
C8—C8A—C9124.3 (9)C9—N9—Pt128.8 (7)
C8—C8A—C4B118.1 (10)C4B—N10—H10115 (10)
C4B—C8A—C9117.6 (9)C4A—N10—C4B120.7 (9)
C8A—C8—H8119.5C4A—N10—H10119 (10)
C7—C8—C8A121.1 (10)H15A—N15—H15B109.5
C7—C8—H8119.5H15A—N15—H15C109.5
C8—C7—H7120.5H15B—N15—H15C109.5
C8—C7—C6118.9 (11)Pt—N15—H15A109.5
C6—C7—H7120.5Pt—N15—H15B109.5
C7—C6—Cl6119.9 (9)Pt—N15—H15C109.5
C5—C6—C7122.5 (10)H14A—N14—H14B109.5
C5—C6—Cl6117.5 (9)H14A—N14—H14C109.5
C6—C5—H5121.1H14B—N14—H14C109.5
C6—C5—C4B117.9 (10)Pt—N14—H14A109.5
C4B—C5—H5121.1Pt—N14—H14B109.5
C8A—C4B—C5120.7 (10)Pt—N14—H14C109.5
N10—C4B—C8A121.3 (10)O18C—N18—O18A118.2 (10)
N10—C4B—C5117.9 (10)O18B—N18—O18C121.6 (11)
C9A—C4A—C4119.3 (10)O18B—N18—O18A120.2 (11)
N10—C4A—C4120.3 (10)O19B—N19—O19A118.6 (10)
N10—C4A—C9A120.3 (9)O19C—N19—O19A119.3 (10)
C4A—C4—H4120.3O19C—N19—O19B122.0 (11)
C3—C4—C4A119.5 (10)C2—O1—C17115.4 (9)
C3—C4—H4120.3N9—Pt—N1387.3 (3)
C4—C3—H3119.3N9—Pt—N1591.3 (4)
C4—C3—C2121.5 (10)N9—Pt—N14179.5 (4)
C2—C3—H3119.3N15—Pt—N13174.9 (4)
C1—C2—C3119.0 (10)N14—Pt—N1393.3 (4)
O1—C2—C3116.1 (10)N14—Pt—N1588.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···O19Bi0.72 (12)2.20 (12)2.919 (12)172 (14)
N13—H13C···O19Aii0.912.062.910 (13)155
N13—H13D···N180.912.633.428 (13)147
N13—H13D···O18A0.912.032.918 (13)166
N14—H14A···O18Aiii0.912.243.113 (14)160
N14—H14B···O18C0.912.433.218 (15)146
N14—H14C···O18Biv0.912.543.294 (15)140
N14—H14C···Cl6v0.912.823.497 (10)132
N15—H15A···O18Civ0.912.383.257 (15)162
N15—H15B···O19A0.912.523.120 (13)124
N15—H15B···O19B0.912.273.183 (13)178
N15—H15C···O18Biii0.912.483.223 (14)139
N15—H15C···O18Aiii0.912.403.192 (13)146
C4—H4···O19Ci0.952.463.354 (14)157
C7—H7···O19Avi0.952.643.576 (14)170
C11—H11B···Cl6vi0.992.953.649 (12)128
C17—H17A···O18Aiii0.982.543.250 (15)129
C17—H17B···O18Bvii0.982.453.356 (15)154
C17—H17C···O19Aii0.982.633.568 (14)160
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z; (iii) x+1, y1/2, z+3/2; (iv) x+1, y, z; (v) x, y+3/2, z+1/2; (vi) x+2, y+2, z+1; (vii) x, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···O19Bi0.72 (12)2.20 (12)2.919 (12)172 (14)
N13—H13C···O19Aii0.912.062.910 (13)155.2
N13—H13D···N180.912.633.428 (13)146.6
N13—H13D···O18A0.912.032.918 (13)166.4
N14—H14A···O18Aiii0.912.243.113 (14)160.0
N14—H14B···O18C0.912.433.218 (15)145.6
N14—H14C···O18Biv0.912.543.294 (15)140.3
N14—H14C···Cl6v0.912.823.497 (10)132.0
N15—H15A···O18Civ0.912.383.257 (15)161.5
N15—H15B···O19A0.912.523.120 (13)124.2
N15—H15B···O19B0.912.273.183 (13)177.7
N15—H15C···O18Biii0.912.483.223 (14)138.7
N15—H15C···O18Aiii0.912.403.192 (13)146.2
C4—H4···O19Ci0.952.463.354 (14)157.0
C7—H7···O19Avi0.952.643.576 (14)170.1
C11—H11B···Cl6vi0.992.953.649 (12)128.1
C17—H17A···O18Aiii0.982.543.250 (15)128.9
C17—H17B···O18Bvii0.982.453.356 (15)154.3
C17—H17C···O19Aii0.982.633.568 (14)160.0
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z; (iii) x+1, y1/2, z+3/2; (iv) x+1, y, z; (v) x, y+3/2, z+1/2; (vi) x+2, y+2, z+1; (vii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Pt(C16H18N3)(NH3)2](NO3)2
Mr668.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.6398 (3), 10.8372 (11), 25.982 (4)
β (°) 92.478 (5)
V3)2149.1 (4)
Z4
Radiation typeCu Kα
µ (mm1)13.87
Crystal size (mm)0.13 × 0.02 × 0.02
Data collection
DiffractometerAgilent SuperNova with AtlasS2 CCD
Absorption correctionGaussian
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.503, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
8178, 4158, 3105
Rint0.066
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.155, 1.04
No. of reflections4158
No. of parameters304
No. of restraints444
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)2.22, 3.37

Computer programs: CrysAlis PRO (Agilent, 2013), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank Dr Vincent Lynch at University of Texas X-ray Diffraction Lab for the data acquisition and valuable advice. This work was supported by the Robert A. Welch Foundation (F-1741).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Oxfordshire, England.  Google Scholar
First citationBaruah, H., Barry, C. G. & Bierbach, U. (2004). Curr. Top. Med. Chem. 4, 1537–1549.  Web of Science PubMed CAS Google Scholar
First citationGalanski, M., Jakupec, M. A. & Keppler, B. K. (2005). Curr. Med. Chem. 12, 2075–2094.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHollis, L. S., Amundsen, A. R. & Stern, E. W. (1989). J. Med. Chem. 32, 128–136.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationJohnstone, T. C., Park, G. Y. & Lippard, S. J. (2014). Anticancer Res. 34, 471–476.  Web of Science CAS PubMed Google Scholar
First citationMartins, E. T., Baruah, H., Kramarczyk, J., Saluta, G., Day, C. S., Kucera, G. L. & Bierbach, U. (2001). J. Med. Chem. 44, 4492–4496.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, D.-W., Pouliot, L. M., Hall, M. D. & Gottesman, M. M. (2012). Pharmacol. Rev. 64, 706–721.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds