organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,6-[Ethyl­enebis(sulfanediyl)]-2-(2-meth­oxy­ethyl)-1,2,3,4,5,6-hexa­hydro-1,5-methano-1H-azocino[4,3-b]indol-3-one

aDepartment of Physics, Karabük University, 78050 Karabük, Turkey, bDepartment of Chemistry, Gebze High Technology Institute, 41400 Gebze, Kocaeli, Turkey, cDepartment of Chemistry Education, Faculty of Education, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 29 April 2010; accepted 30 April 2010; online 8 May 2010)

The title compound, C19H22N2O2S2, consists of a tetra­cyclic ring system containing an azocine skeleton with methoxy­ethyl and dithiol­ane groups as substituents. The benzene and five-membered N-heterocyclic rings are nearly coplanar, making a dihedral angle of 0.81 (12)°. The dithiol­ane ring adopts an envelope conformation. Inter­molecular N—H⋯O hydrogen-bonding and weak C—H⋯π inter­actions are present in the crystal structure.

Related literature

For general background to the hexa­hydro-1,5-methano-azocino[4,3-b]indole core structure, a synthetic precursor for most of the penta­cyclic and tetra­cyclic indole alkaloids of biological inter­est, see: Hesse (2002[Hesse, M. (2002). Alkaloids, edited by P. M. Wallimann & M. V. Kisakürek. Zürich/New York: Verlag Helvetica Chimica Acta and Wiley.]); Bosch & Bonjoch (1988[Bosch, J. & Bonjoch, J. (1988). Studies in Natural Product Chemistry, edited by A. Rahman. Amsterdam: Elsevier.]); Saxton (1983[Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.]). For related structures, see: Hökelek et al. (2004[Hökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, o25-o27.], 2006[Hökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, o791-o793.], 2007[Hökelek, T., Şahin, E., Uludağ, N. & Erdoğan, Ü. I. (2007). Acta Cryst. E63, o3268.]); Tercan et al. (2010[Tercan, B., Şahin, E., Patır, S. & Hökelek, T. (2010). Acta Cryst. E66, o328.]); Uludağ et al. (2006[Uludağ, N., Hökelek, T. & Patır, S. (2006). J. Heterocycl. Chem. 43, 585-591.]).

[Scheme 1]

Experimental

Crystal data
  • C19H22N2O2S2

  • Mr = 374.53

  • Monoclinic, P 21 /c

  • a = 11.2233 (3) Å

  • b = 15.4228 (5) Å

  • c = 12.3027 (4) Å

  • β = 121.267 (2)°

  • V = 1820.23 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 294 K

  • 0.11 × 0.11 × 0.09 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.85, Tmax = 0.97

  • 13979 measured reflections

  • 3203 independent reflections

  • 2765 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.159

  • S = 1.04

  • 3203 reflections

  • 279 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.10 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7a/C8/C9/C10/C11/C11a ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O1i 0.82 (4) 2.06 (4) 2.832 (4) 157 (3)
C17—H17ACg1ii 0.96 2.89 3.545 (9) 127
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The hexahydro-1,5-methano-azocino[4,3-b]indole core structure can be considered to be synthetic precursor for most of the pentacyclic and tetracyclic indole alkaloids of biological interests (Hesse, 2002; Bosch & Bonjoch, 1988; Saxton, 1983), such as akuminicine and uleine. Most of them have the pentacyclic ring system as a common element and include a large group of naturally occuring compounds such as strychnine, a consulvant poison, and uleine alkaloids.

The structures of tricyclic, tetracyclic and pentacyclic ring systems with different substituents of azocino[4,3-b]indole core have been determined, previously. These include N-(2-benzyloxyethyl)-4,7-dimethyl-6-(1,3-dithiolan- 2yl)-1,2,3,4,5,6-hexahydro-1,5-methano-2-azocino[4,3-b]indole-2-one, (II) (Hökelek et al., 2004), 12-ethyl-2-methyl-6,6-ethylenedithio-1,2,3,4,5,6 -hexahydro-1,5-methano-2-azocino[4,3-b]indole-3-one, (III) (Uludağ et al., 2006), 4-ethyl-6,6-ethylenedithio-2-(2-methoxymethyl)-7-methoxymethylene-2, 3,4,5,6,7-hexahydro-1,5-methano-1H-azocino[4,3-b]indole-3-one, (IV) (Hökelek et al., 2006), 2-(2,2-dimethoxyethyl)-3-oxo-1,2,3,4,5,6 -hexahydro-1,5-methano-7H-azocino[4,3-b]indole, (V) (Hökelek et al., 2007) and 2-ethyl-6,6-ethylenedisulfanediyl-7-methoxymethyl-1,2,3,4,5,6-hexahydro -1,5-methanoazocino[4,3-b]indol-3-one, (VI) (Tercan et al., 2010). The present study was undertaken to ascertain the crystal structure of the title compound, (I).

The molecule of the title compound, (I), (Fig. 1) consists of a tetracyclic ring system containing an azocino skeleton with methoxyethyl and dithiolane groups as substituents at positions N2 and 6, respectively. The bonds N7—C6a [1.368 (4) Å] and N7—C7a [1.374 (4) Å] agree well with those in compounds (II) [1.392 (8) and 1.370 (8) Å], (IV) [1.393 (4) and 1.386 (5) Å], (V) [1.377 (3) and 1.376 (3) Å] and (VI) [1.398 (3) and 1.387 (3) Å]. The absolute configurations of C1 and C5 are S and S (Fig. 1). The S atoms of the dithiolane ring have electron-releasing properties, but the N atom at position 7 and the O atom attached to C3 have electron-withdrawing properties, leading to some changes in the bond lengths and angles of the carbazole skeleton.

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C7a/C8/C9/C10/C11/C11a) and B (N7/C7a/C11a/C11b/C6a) are planar. They are also coplanar with a dihedral angle of A/B = 0.81 (12)°. Rings C (C1/C11b/C6a/C6/C5/C14), D (C1/N2/C3/C4/C5/C14) and E (C6/S1/S2/C12/C13) are, of course, not planar. Atom C14 deviates from the planes of F(C1/C5/C6/C6a/C11b) and G (C1/N2/C3/C4/C5) by 0.705 (4) Å and 0.737 (4) Å, respectively where the dihedral angle between planes of F and G is F/G = 69.64 (12)°. On the other hand, the dihedral angles between the plane of H (C1/C5/C14) and the planes of F and G are 54.18 (24)° and 56.47 (21)°, respectively. The conformation of ring E is an envelope, with atom C13 at the flap position, 0.583 (6) Å from the mean plane through the other four atoms.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains nearly parallel to b-axis (Fig. 2), in which they may be effective in the stabilization of the structure. A weak C—H···π interaction also occurs (Table 1).

Related literature top

For general background to the hexahydro-1,5-methano-azocino[4,3-b]indole core structure, a synthetic precursor for most of the pentacyclic and tetracyclic indole

alkaloids of biological interest, see: Hesse (2002); Bosch & Bonjoch (1988); Saxton (1983). For related structures, see: Hökelek et al. (2004, 2006, 2007); Tercan et al. (2010); Uludağ et al. (2006).

Experimental top

The title compound, (I), was prepared from 2,3-dichloro-5,6-dicyano-p -benzoquinone (0.68 g, 3.00 mmol) and N-(methoxyethyl)-(2,3,4,9-tetra -hydrospiro-[1H-carbazole-1,2'-(1,3)dithiolane]-2-yl)-2-acetamide (1.00 g, 2.68 mmol) in THF (35 ml). The mixture was stirred at room temperature for 4 h under nitrogen atmosphere, and then poured into sodium hydroxide solution (100 ml, 10%). After extraction with dichloromethane (50 ml), the organic layer was dried with Na2SO4 and the solvent was evaporated. The residue was purified by silicagel chromatography using triethylamine, acetone and ethyl acetate (7:25:75) and crystallized from ethyl acetate/diethyl ether (2:1) (yield; 0.87 g, 88%), m.p. 445 K.

Structure description top

The hexahydro-1,5-methano-azocino[4,3-b]indole core structure can be considered to be synthetic precursor for most of the pentacyclic and tetracyclic indole alkaloids of biological interests (Hesse, 2002; Bosch & Bonjoch, 1988; Saxton, 1983), such as akuminicine and uleine. Most of them have the pentacyclic ring system as a common element and include a large group of naturally occuring compounds such as strychnine, a consulvant poison, and uleine alkaloids.

The structures of tricyclic, tetracyclic and pentacyclic ring systems with different substituents of azocino[4,3-b]indole core have been determined, previously. These include N-(2-benzyloxyethyl)-4,7-dimethyl-6-(1,3-dithiolan- 2yl)-1,2,3,4,5,6-hexahydro-1,5-methano-2-azocino[4,3-b]indole-2-one, (II) (Hökelek et al., 2004), 12-ethyl-2-methyl-6,6-ethylenedithio-1,2,3,4,5,6 -hexahydro-1,5-methano-2-azocino[4,3-b]indole-3-one, (III) (Uludağ et al., 2006), 4-ethyl-6,6-ethylenedithio-2-(2-methoxymethyl)-7-methoxymethylene-2, 3,4,5,6,7-hexahydro-1,5-methano-1H-azocino[4,3-b]indole-3-one, (IV) (Hökelek et al., 2006), 2-(2,2-dimethoxyethyl)-3-oxo-1,2,3,4,5,6 -hexahydro-1,5-methano-7H-azocino[4,3-b]indole, (V) (Hökelek et al., 2007) and 2-ethyl-6,6-ethylenedisulfanediyl-7-methoxymethyl-1,2,3,4,5,6-hexahydro -1,5-methanoazocino[4,3-b]indol-3-one, (VI) (Tercan et al., 2010). The present study was undertaken to ascertain the crystal structure of the title compound, (I).

The molecule of the title compound, (I), (Fig. 1) consists of a tetracyclic ring system containing an azocino skeleton with methoxyethyl and dithiolane groups as substituents at positions N2 and 6, respectively. The bonds N7—C6a [1.368 (4) Å] and N7—C7a [1.374 (4) Å] agree well with those in compounds (II) [1.392 (8) and 1.370 (8) Å], (IV) [1.393 (4) and 1.386 (5) Å], (V) [1.377 (3) and 1.376 (3) Å] and (VI) [1.398 (3) and 1.387 (3) Å]. The absolute configurations of C1 and C5 are S and S (Fig. 1). The S atoms of the dithiolane ring have electron-releasing properties, but the N atom at position 7 and the O atom attached to C3 have electron-withdrawing properties, leading to some changes in the bond lengths and angles of the carbazole skeleton.

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C7a/C8/C9/C10/C11/C11a) and B (N7/C7a/C11a/C11b/C6a) are planar. They are also coplanar with a dihedral angle of A/B = 0.81 (12)°. Rings C (C1/C11b/C6a/C6/C5/C14), D (C1/N2/C3/C4/C5/C14) and E (C6/S1/S2/C12/C13) are, of course, not planar. Atom C14 deviates from the planes of F(C1/C5/C6/C6a/C11b) and G (C1/N2/C3/C4/C5) by 0.705 (4) Å and 0.737 (4) Å, respectively where the dihedral angle between planes of F and G is F/G = 69.64 (12)°. On the other hand, the dihedral angles between the plane of H (C1/C5/C14) and the planes of F and G are 54.18 (24)° and 56.47 (21)°, respectively. The conformation of ring E is an envelope, with atom C13 at the flap position, 0.583 (6) Å from the mean plane through the other four atoms.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains nearly parallel to b-axis (Fig. 2), in which they may be effective in the stabilization of the structure. A weak C—H···π interaction also occurs (Table 1).

For general background to the hexahydro-1,5-methano-azocino[4,3-b]indole core structure, a synthetic precursor for most of the pentacyclic and tetracyclic indole

alkaloids of biological interest, see: Hesse (2002); Bosch & Bonjoch (1988); Saxton (1983). For related structures, see: Hökelek et al. (2004, 2006, 2007); Tercan et al. (2010); Uludağ et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
6,6-[Ethylenebis(sulfanediyl)]-2-(2-methoxyethyl)-1,2,3,4,5,6-hexahydro- 1,5-methano-1H-azocino[4,3-b]indol-3-one top
Crystal data top
C19H22N2O2S2F(000) = 792
Mr = 374.53Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6662 reflections
a = 11.2233 (3) Åθ = 2.5–25.0°
b = 15.4228 (5) ŵ = 0.31 mm1
c = 12.3027 (4) ÅT = 294 K
β = 121.267 (2)°Block, colourless
V = 1820.23 (10) Å30.11 × 0.11 × 0.09 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3203 independent reflections
Radiation source: fine-focus sealed tube2765 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.85, Tmax = 0.97k = 1518
13979 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.073P)2 + 2.6218P]
where P = (Fo2 + 2Fc2)/3
3203 reflections(Δ/σ)max < 0.001
279 parametersΔρmax = 1.10 e Å3
1 restraintΔρmin = 0.56 e Å3
Crystal data top
C19H22N2O2S2V = 1820.23 (10) Å3
Mr = 374.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2233 (3) ŵ = 0.31 mm1
b = 15.4228 (5) ÅT = 294 K
c = 12.3027 (4) Å0.11 × 0.11 × 0.09 mm
β = 121.267 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3203 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2765 reflections with I > 2σ(I)
Tmin = 0.85, Tmax = 0.97Rint = 0.029
13979 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.10 e Å3
3203 reflectionsΔρmin = 0.56 e Å3
279 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00713 (10)0.85797 (6)0.42981 (9)0.0531 (3)
S20.17536 (8)0.82283 (6)0.54739 (8)0.0505 (3)
O10.0128 (3)0.51573 (16)0.7174 (3)0.0610 (7)
O20.4150 (5)0.4833 (2)0.7731 (4)0.1090 (14)
C10.2094 (3)0.6542 (2)0.6617 (3)0.0415 (7)
H10.304 (4)0.639 (2)0.679 (3)0.043 (9)*
N20.1631 (3)0.58379 (16)0.7142 (3)0.0431 (6)
C30.0280 (4)0.57123 (19)0.6714 (3)0.0443 (7)
C40.0805 (4)0.6256 (3)0.5630 (4)0.0564 (9)
H410.142 (4)0.587 (3)0.502 (4)0.068 (12)*
H420.141 (5)0.653 (3)0.592 (4)0.077 (13)*
C50.0340 (3)0.6908 (2)0.4983 (3)0.0430 (7)
H50.104 (3)0.691 (2)0.408 (3)0.044 (9)*
C60.0220 (3)0.7862 (2)0.5439 (3)0.0380 (7)
C6A0.1071 (3)0.79611 (18)0.6714 (3)0.0339 (6)
N70.1383 (3)0.86796 (17)0.7466 (2)0.0366 (6)
H70.087 (4)0.909 (2)0.735 (3)0.042 (9)*
C7A0.2701 (3)0.85823 (19)0.8510 (3)0.0356 (6)
C80.3469 (3)0.9135 (2)0.9544 (3)0.0447 (7)
H80.307 (4)0.965 (3)0.963 (4)0.065 (11)*
C90.4779 (4)0.8870 (3)1.0455 (3)0.0527 (9)
H90.531 (4)0.923 (2)1.112 (4)0.058 (11)*
C100.5337 (4)0.8091 (3)1.0358 (4)0.0577 (10)
H100.617 (5)0.798 (3)1.094 (4)0.070 (13)*
C110.4588 (3)0.7542 (2)0.9344 (4)0.0500 (8)
H110.493 (4)0.699 (3)0.925 (3)0.053 (10)*
C11A0.3232 (3)0.77788 (19)0.8398 (3)0.0371 (7)
C11B0.2155 (3)0.73953 (18)0.7235 (3)0.0362 (6)
C120.1673 (5)0.9159 (3)0.3688 (5)0.0906 (17)
H12A0.14750.97410.40360.109*
H12B0.21210.92050.27710.109*
C130.2624 (5)0.8740 (4)0.3995 (6)0.106 (2)
H13A0.31780.83140.33440.127*
H13B0.32560.91710.39910.127*
C140.1063 (4)0.6613 (2)0.5194 (3)0.0470 (8)
H1410.096 (3)0.608 (2)0.482 (3)0.046 (9)*
H1420.145 (4)0.704 (2)0.483 (3)0.056 (10)*
C150.2666 (4)0.5408 (2)0.8317 (4)0.0575 (9)
H1510.216 (6)0.523 (4)0.884 (5)0.114 (18)*
H1520.346 (5)0.582 (3)0.883 (4)0.076 (13)*
C160.3309 (5)0.4618 (3)0.8156 (5)0.0704 (11)
H16A0.38400.43190.89640.084*
H16B0.25860.42300.75560.084*
C170.4859 (8)0.4086 (4)0.7611 (8)0.126 (2)
H17A0.54440.42690.72980.189*
H17B0.41820.36790.70270.189*
H17C0.54190.38170.84270.189*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0634 (6)0.0513 (5)0.0516 (5)0.0028 (4)0.0346 (5)0.0135 (4)
S20.0386 (4)0.0590 (6)0.0533 (5)0.0041 (4)0.0234 (4)0.0035 (4)
O10.0779 (17)0.0414 (13)0.0728 (17)0.0145 (12)0.0456 (15)0.0025 (12)
O20.152 (3)0.066 (2)0.175 (4)0.025 (2)0.131 (3)0.019 (2)
C10.0471 (18)0.0336 (16)0.0529 (19)0.0004 (13)0.0324 (16)0.0034 (13)
N20.0523 (16)0.0296 (13)0.0498 (15)0.0011 (11)0.0281 (13)0.0007 (11)
C30.059 (2)0.0292 (15)0.0503 (18)0.0081 (14)0.0327 (16)0.0075 (13)
C40.049 (2)0.047 (2)0.067 (2)0.0100 (17)0.0265 (19)0.0050 (18)
C50.0479 (18)0.0403 (17)0.0371 (17)0.0057 (14)0.0196 (15)0.0025 (13)
C60.0407 (16)0.0380 (16)0.0379 (16)0.0017 (13)0.0222 (14)0.0014 (13)
C6A0.0361 (14)0.0338 (15)0.0364 (15)0.0018 (12)0.0220 (13)0.0006 (12)
N70.0375 (13)0.0321 (13)0.0402 (14)0.0028 (11)0.0200 (12)0.0024 (11)
C7A0.0358 (15)0.0349 (15)0.0410 (16)0.0031 (12)0.0234 (13)0.0005 (12)
C80.0470 (18)0.0393 (17)0.0503 (19)0.0047 (14)0.0270 (16)0.0069 (14)
C90.0441 (18)0.060 (2)0.0455 (19)0.0104 (17)0.0168 (16)0.0123 (17)
C100.0369 (18)0.065 (2)0.054 (2)0.0004 (17)0.0109 (17)0.0014 (18)
C110.0393 (17)0.0452 (19)0.061 (2)0.0052 (15)0.0234 (16)0.0017 (16)
C11A0.0349 (14)0.0364 (15)0.0432 (16)0.0015 (12)0.0225 (13)0.0001 (13)
C11B0.0383 (15)0.0312 (14)0.0436 (16)0.0016 (12)0.0245 (13)0.0015 (12)
C120.056 (2)0.091 (3)0.100 (4)0.008 (2)0.023 (2)0.050 (3)
C130.076 (3)0.148 (5)0.099 (4)0.050 (3)0.049 (3)0.062 (4)
C140.065 (2)0.0384 (18)0.0494 (19)0.0033 (16)0.0383 (18)0.0078 (15)
C150.063 (2)0.0424 (19)0.054 (2)0.0027 (17)0.0210 (19)0.0035 (16)
C160.071 (3)0.053 (2)0.085 (3)0.007 (2)0.039 (2)0.007 (2)
C170.165 (6)0.097 (4)0.188 (7)0.030 (4)0.141 (6)0.002 (4)
Geometric parameters (Å, º) top
S1—C61.862 (3)C9—C101.388 (5)
S1—C121.787 (5)C9—H90.91 (4)
S2—C61.833 (3)C10—C111.374 (5)
S2—C131.744 (5)C10—H100.85 (4)
O1—C31.238 (4)C11—C11A1.401 (4)
O2—C161.337 (5)C11—H110.96 (4)
O2—C171.450 (6)C11A—C11B1.437 (4)
C1—H10.99 (3)C11B—C6A1.358 (4)
N2—C11.487 (4)C11B—C11.503 (4)
N2—C31.337 (4)C12—C131.456 (7)
N2—C151.462 (5)C12—H12A0.9700
C4—C31.510 (5)C12—H12B0.9700
C4—H410.92 (4)C13—H13A0.9700
C4—H421.01 (5)C13—H13B0.9700
C5—C41.531 (5)C14—C11.521 (5)
C5—C141.525 (5)C14—H1410.92 (4)
C5—H50.97 (3)C14—H1421.01 (4)
C6—C51.556 (4)C15—C161.480 (6)
C6A—C61.492 (4)C15—H1521.00 (5)
N7—C6A1.368 (4)C15—H1511.09 (6)
N7—C7A1.374 (4)C16—H16A0.9700
N7—H70.81 (4)C16—H16B0.9700
C7A—C81.397 (4)C17—H17A0.9600
C7A—C11A1.412 (4)C17—H17B0.9600
C8—C91.369 (5)C17—H17C0.9600
C8—H80.95 (4)
C12—S1—C698.61 (18)C9—C10—H10117 (3)
C13—S2—C698.0 (2)C11—C10—C9121.4 (3)
C16—O2—C17112.3 (4)C11—C10—H10121 (3)
N2—C1—C11B110.8 (2)C10—C11—C11A118.8 (3)
N2—C1—C14108.9 (3)C10—C11—H11124 (2)
N2—C1—H1108.1 (19)C11A—C11—H11117 (2)
C11B—C1—C14109.1 (3)C7A—C11A—C11B106.2 (2)
C11B—C1—H1109.3 (19)C11—C11A—C7A118.6 (3)
C14—C1—H1110.7 (19)C11—C11A—C11B135.2 (3)
C3—N2—C15118.7 (3)C6A—C11B—C1122.0 (3)
C3—N2—C1121.0 (3)C6A—C11B—C11A106.9 (3)
C15—N2—C1118.9 (3)C11A—C11B—C1131.2 (3)
O1—C3—N2122.3 (3)S1—C12—H12A109.1
O1—C3—C4117.9 (3)S1—C12—H12B109.1
N2—C3—C4119.8 (3)C13—C12—S1112.5 (3)
C3—C4—C5119.2 (3)C13—C12—H12A109.1
C3—C4—H41106 (3)C13—C12—H12B109.1
C3—C4—H42107 (3)H12A—C12—H12B107.8
C5—C4—H41108 (3)C12—C13—S2112.5 (4)
C5—C4—H42113 (3)C12—C13—H13A109.1
H41—C4—H42101 (4)C12—C13—H13B109.1
C4—C5—C6114.9 (3)S2—C13—H13A109.1
C4—C5—H5108 (2)S2—C13—H13B109.1
C6—C5—H5106 (2)H13A—C13—H13B107.8
C14—C5—C4108.4 (3)C1—C14—C5108.6 (3)
C14—C5—C6109.4 (3)C1—C14—H141109 (2)
C14—C5—H5110.6 (19)C1—C14—H142108 (2)
C5—C6—S1108.4 (2)C5—C14—H141110 (2)
C5—C6—S2113.2 (2)C5—C14—H142112 (2)
C6A—C6—C5109.3 (3)H141—C14—H142109 (3)
C6A—C6—S1108.3 (2)N2—C15—C16115.7 (3)
C6A—C6—S2110.8 (2)N2—C15—H151108 (3)
S2—C6—S1106.67 (16)N2—C15—H152109 (2)
N7—C6A—C6124.2 (3)C16—C15—H151108 (3)
C11B—C6A—N7110.5 (3)C16—C15—H152105 (2)
C11B—C6A—C6125.0 (3)H152—C15—H151111 (4)
C6A—N7—C7A108.5 (3)O2—C16—C15109.9 (4)
C6A—N7—H7127 (2)O2—C16—H16A109.7
C7A—N7—H7124 (2)O2—C16—H16B109.7
N7—C7A—C8129.8 (3)C15—C16—H16A109.7
N7—C7A—C11A108.0 (3)C15—C16—H16B109.7
C8—C7A—C11A122.1 (3)H16A—C16—H16B108.2
C7A—C8—H8121 (2)O2—C17—H17A109.5
C9—C8—C7A117.1 (3)O2—C17—H17B109.5
C9—C8—H8122 (2)O2—C17—H17C109.5
C8—C9—C10121.9 (3)H17A—C17—H17B109.5
C8—C9—H9118 (2)H17A—C17—H17C109.5
C10—C9—H9120 (2)H17B—C17—H17C109.5
C12—S1—C6—S27.3 (3)C11B—C6A—C6—S1101.0 (3)
C12—S1—C6—C5114.9 (3)C11B—C6A—C6—S2142.3 (3)
C12—S1—C6—C6A126.6 (3)C11B—C6A—C6—C516.8 (4)
C6—S1—C12—C1315.1 (5)C7A—N7—C6A—C6174.4 (3)
C13—S2—C6—C6A140.4 (3)C7A—N7—C6A—C11B0.3 (3)
C13—S2—C6—C596.3 (3)C6A—N7—C7A—C8179.4 (3)
C13—S2—C6—S122.8 (3)C6A—N7—C7A—C11A0.4 (3)
C6—S2—C13—C1235.3 (5)N7—C7A—C8—C9179.6 (3)
C17—O2—C16—C15177.4 (5)C11A—C7A—C8—C90.6 (5)
C3—N2—C1—C11B82.0 (4)N7—C7A—C11A—C11178.5 (3)
C3—N2—C1—C1438.0 (4)N7—C7A—C11A—C11B0.4 (3)
C15—N2—C1—C11B84.5 (3)C8—C7A—C11A—C111.7 (4)
C15—N2—C1—C14155.6 (3)C8—C7A—C11A—C11B179.4 (3)
C1—N2—C3—O1176.6 (3)C7A—C8—C9—C100.7 (5)
C1—N2—C3—C43.6 (5)C8—C9—C10—C110.8 (6)
C15—N2—C3—O110.1 (5)C9—C10—C11—C11A0.4 (6)
C15—N2—C3—C4170.1 (3)C10—C11—C11A—C7A1.6 (5)
C1—N2—C15—C1692.1 (4)C10—C11—C11A—C11B179.9 (3)
C3—N2—C15—C16101.1 (4)C7A—C11A—C11B—C1178.8 (3)
C5—C4—C3—O1176.1 (3)C7A—C11A—C11B—C6A0.3 (3)
C5—C4—C3—N23.7 (5)C11—C11A—C11B—C12.5 (6)
C6—C5—C4—C398.9 (4)C11—C11A—C11B—C6A178.4 (4)
C14—C5—C4—C323.9 (5)C6A—C11B—C1—N294.1 (3)
C4—C5—C14—C157.4 (4)C6A—C11B—C1—C1425.7 (4)
C6—C5—C14—C168.7 (3)C11A—C11B—C1—N284.9 (4)
S1—C6—C5—C4166.5 (2)C11A—C11B—C1—C14155.3 (3)
S1—C6—C5—C1471.2 (3)C1—C11B—C6A—N7179.2 (3)
S2—C6—C5—C448.4 (3)C11A—C11B—C6A—N70.0 (3)
S2—C6—C5—C14170.6 (2)C1—C11B—C6A—C66.7 (4)
C6A—C6—C5—C475.7 (3)C11A—C11B—C6A—C6174.1 (3)
C6A—C6—C5—C1446.6 (3)S1—C12—C13—S234.0 (7)
N7—C6A—C6—S172.2 (3)C5—C14—C1—N265.4 (3)
N7—C6A—C6—S244.4 (3)C5—C14—C1—C11B55.6 (3)
N7—C6A—C6—C5169.9 (3)N2—C15—C16—O270.2 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7a/C8/C9/C10/C11/C11a ring.
D—H···AD—HH···AD···AD—H···A
N7—H7···O1i0.82 (4)2.06 (4)2.832 (4)157 (3)
C17—H17A···Cg1ii0.962.893.545 (9)127
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC19H22N2O2S2
Mr374.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)11.2233 (3), 15.4228 (5), 12.3027 (4)
β (°) 121.267 (2)
V3)1820.23 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.11 × 0.11 × 0.09
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.85, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
13979, 3203, 2765
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.159, 1.04
No. of reflections3203
No. of parameters279
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.10, 0.56

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7a/C8/C9/C10/C11/C11a ring.
D—H···AD—HH···AD···AD—H···A
N7—H7···O1i0.82 (4)2.06 (4)2.832 (4)157 (3)
C17—H17A···Cg1ii0.962.893.545 (9)127
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2.
 

References

First citationBosch, J. & Bonjoch, J. (1988). Studies in Natural Product Chemistry, edited by A. Rahman. Amsterdam: Elsevier.  Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHesse, M. (2002). Alkaloids, edited by P. M. Wallimann & M. V. Kisakürek. Zürich/New York: Verlag Helvetica Chimica Acta and Wiley.  Google Scholar
First citationHökelek, T., Şahin, E., Uludağ, N. & Erdoğan, Ü. I. (2007). Acta Cryst. E63, o3268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, o25–o27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, o791–o793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTercan, B., Şahin, E., Patır, S. & Hökelek, T. (2010). Acta Cryst. E66, o328.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUludağ, N., Hökelek, T. & Patır, S. (2006). J. Heterocycl. Chem. 43, 585–591.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds