metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methoxo[N′-(3-meth­­oxy-2-oxido­benzyl­­idene)benzohydrazidato]oxidovanadium(V)

aCollege of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China, and bCollege of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: xiaohuachen03@163.com

(Received 1 March 2010; accepted 14 March 2010; online 27 March 2010)

In the title complex, [V(C15H12N2O4)(CH3O)O], the VV ion exhibits a distorted square-pyramidal coordination geometry; three donor atoms from a hydrazone ligand and one O atom of the deprotonated methanol define the coordination basal plane. The VV ion is displaced by 0.464 (1) Å from the basal plane towards the axial oxide O atom. Intra­molecular O—H⋯N hydrogen bonding occurs. Inter­molecular C—H⋯O hydrogen bonding is also observed in the crystal structure.

Related literature

For general background to hydrazones and their chelation ability, see: Liu & Gao (1998[Liu, S.-X. & Gao, S. (1998). Polyhedron, 17, 81-84.]); Ma et al. (1989[Ma, Y.-X., Ma, Z.-Q., Zhao, G., Ma, Y. & Yang, M. (1989). Polyhedron, 8, 2105-2108.]); Sur et al. (1993[Sur, H., Roychowdhuri, S. & Seth, S. (1993). Acta Cryst. C49, 870-873.]); Sun et al. (2005[Sun, M.-M., Li, W.-P. & Liu, S.-X. (2005). Acta Cryst. E61, m1818-m1820.]). For related structures, see: Chen et al. (2004[Chen, L.-J., Yang, M.-X. & Lin, S. (2004). Acta Cryst. E60, m1881-m1882.]); Liu et al. (2006[Liu, J.-H., Wu, X.-Y., Zhang, Q.-Z., He, X., Yang, W.-B. & Lu, C.-Z. (2006). Chin. J. Inorg. Chem. 22, 1028-1032.]); Ghosh et al. (2007[Ghosh, T., Mondal, B., Ghosh, T., Sutradhar, M., Mukherjee, G. & Drew, M. G. B. (2007). Inorg. Chim. Acta, 360, 1753-1761.]); Seena et al. (2008[Seena, E. B., Mathew, N., Kuriakose, M. & Kurup, M. P. R. (2008). Polyhedron, 27, 1455-1462.]). For the synthesis, see: Gao et al. (1998[Gao, S., Weng, Z.-Q. & Liu, S.-X. (1998). Polyhedron, 17, 3595-3606.]); Chen (2008[Chen, X.-H. (2008). Acta Cryst. E64, m1253.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C15H12N2O4)(CH3O)O]

  • Mr = 382.24

  • Monoclinic, P 21 /c

  • a = 16.194 (3) Å

  • b = 6.6746 (13) Å

  • c = 15.359 (3) Å

  • β = 96.89 (3)°

  • V = 1648.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 293 K

  • 0.39 × 0.22 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). TEXRAY and TEXSAN. MSC, The Woodlands, Texas, USA.]) Tmin = 0.845, Tmax = 0.909

  • 14918 measured reflections

  • 3686 independent reflections

  • 2776 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.118

  • S = 1.08

  • 3686 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

V1—O1 1.8277 (17)
V1—O3 1.9436 (16)
V1—O5 1.5736 (18)
V1—O6 1.7351 (16)
V1—N1 2.0963 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯N2 0.82 1.84 2.568 (2) 147
C8—H8A⋯O4i 0.93 2.32 3.243 (3) 169
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: TEXRAY (Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). TEXRAY and TEXSAN. MSC, The Woodlands, Texas, USA.]); cell refinement: TEXRAY; data reduction: TEXSAN (Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). TEXRAY and TEXSAN. MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEX (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazones are of interest owing to their capacity for chelating to transition (Sur et al., 1993; Sun, et al., 2005), lanthanide (Ma et al., 1989) and main group (Liu & Gao 1998) metals.

The VV ion exists in a distorted square-pyramidal coordination geometry. Three donor atoms (O1, O3 and N1) of the hydrozone ligand and O6 atom from the methanol group define the coordination basal plane, with a maximum mean plane deviation of 0.0215 (9) Å. The V atom is displaced towards the axial oxo O atom by 0.464 (1)Å from the basal plane. Bond distances (Table 1) and bond angles around V1 atom are compared with those in reported oxovanadium complexes (Chen et al., 2004; Seena et al., 2008; Liu et al.,2006; Ghosh et al., 2007). In the crystal structure there are the intramolecular O—H···N hydrogen bonding and intermolecular C—H···O hydrogen bonding (Table 2).

Related literature top

For general background to hydrazones and their chelation ability, see: Liu & Gao (1998); Ma et al. (1989); Sur et al. (1993); Sun et al. (2005). For related structures, see: Chen et al. (2004); Liu et al. (2006); Ghosh et al. (2007); Seena et al. (2008). For the synthesis, see: Gao et al. (1998); Chen (2008).

Experimental top

VO(acac)2 (acac = acetylacetonate) was synthesized according to the reported method (Gao et al., 1998). The hydrazone ligand (L) was prepared by following a similar procedure reported by Chen (2008).

The title compound was prepared by reacting H2L (0.1 mmol) with VO(acac)2 (0.1 mmol) in methnol/water solution (10 ml) with stirring. The solution was filtered and allowed to stand at room temperature for one week, dark-red crystals of complex (I) were obtained.

Refinement top

All H atoms were placed in idealized positions and treated as riding with O—H = 0.82 Å, C—H = 0.93-0.96 Å; Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C,O).

Computing details top

Data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY (Molecular Structure Corporation, 1999); data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms. A dashed line indicates the intramoleculat hydrogen bonding.
Methoxo[N'-(3-methoxy-2- oxidobenzylidene)benzohydrazidato]oxidovanadium(V) top
Crystal data top
[V(C15H12N2O4)(CH3O)O]F(000) = 784
Mr = 382.24Dx = 1.541 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2776 reflections
a = 16.194 (3) Åθ = 3.1–27.5°
b = 6.6746 (13) ŵ = 0.64 mm1
c = 15.359 (3) ÅT = 293 K
β = 96.89 (3)°Prism, dark-red
V = 1648.1 (6) Å30.39 × 0.22 × 0.15 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3686 independent reflections
Radiation source: fine-focus sealed tube2776 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
h = 2121
Tmin = 0.845, Tmax = 0.909k = 88
14918 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.062P)2 + 0.2985P]
where P = (Fo2 + 2Fc2)/3
3686 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[V(C15H12N2O4)(CH3O)O]V = 1648.1 (6) Å3
Mr = 382.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.194 (3) ŵ = 0.64 mm1
b = 6.6746 (13) ÅT = 293 K
c = 15.359 (3) Å0.39 × 0.22 × 0.15 mm
β = 96.89 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3686 independent reflections
Absorption correction: multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
2776 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.909Rint = 0.051
14918 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
3686 reflectionsΔρmin = 0.39 e Å3
228 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.16311 (2)0.04276 (6)0.66648 (3)0.04096 (14)
O10.16555 (9)0.2270 (2)0.57877 (11)0.0533 (4)
O20.09673 (11)0.5226 (3)0.48044 (13)0.0624 (5)
O30.21107 (9)0.1967 (2)0.72412 (10)0.0464 (4)
O40.46575 (11)0.2270 (3)0.81503 (15)0.0860 (7)
H4B0.44000.13790.78670.129*
O50.13675 (10)0.1611 (3)0.74736 (12)0.0599 (5)
O60.07767 (10)0.0955 (3)0.62167 (11)0.0561 (4)
N10.29210 (10)0.0886 (3)0.68123 (11)0.0377 (4)
N20.33889 (10)0.0525 (3)0.73138 (12)0.0411 (4)
C10.21307 (13)0.3854 (3)0.56461 (14)0.0432 (5)
C20.29647 (12)0.3942 (3)0.59948 (13)0.0390 (5)
C30.34579 (14)0.5570 (3)0.57913 (16)0.0487 (6)
H3A0.40170.56170.60150.058*
C40.31173 (16)0.7083 (4)0.52658 (16)0.0562 (6)
H4A0.34450.81550.51290.067*
C50.22816 (16)0.7015 (4)0.49361 (16)0.0554 (6)
H5A0.20520.80630.45880.066*
C60.17849 (14)0.5428 (4)0.51131 (15)0.0488 (5)
C70.05967 (18)0.6762 (5)0.4246 (2)0.0739 (8)
H7A0.00160.64780.40950.111*
H7B0.08650.68180.37220.111*
H7C0.06590.80270.45440.111*
C80.33318 (12)0.2369 (3)0.65380 (14)0.0406 (5)
H8A0.39030.24140.67050.049*
C90.29058 (12)0.1970 (3)0.75157 (14)0.0397 (5)
C100.32708 (14)0.3646 (3)0.80484 (14)0.0431 (5)
C110.41233 (15)0.3729 (4)0.83309 (17)0.0577 (6)
C120.44452 (19)0.5360 (5)0.8821 (2)0.0744 (9)
H12A0.50140.54320.90010.089*
C130.3936 (2)0.6854 (5)0.90395 (19)0.0723 (8)
H13A0.41620.79320.93700.087*
C140.3096 (2)0.6792 (4)0.87791 (17)0.0642 (7)
H14A0.27530.78150.89370.077*
C150.27640 (16)0.5201 (4)0.82817 (16)0.0508 (6)
H15A0.21950.51640.80990.061*
C160.00782 (18)0.1796 (5)0.6540 (2)0.0879 (10)
H16A0.03710.18970.60730.132*
H16B0.00880.09580.69970.132*
H16C0.02160.31060.67710.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.02696 (19)0.0439 (2)0.0521 (2)0.00458 (14)0.00533 (14)0.00005 (17)
O10.0359 (8)0.0547 (10)0.0670 (10)0.0086 (7)0.0028 (7)0.0155 (9)
O20.0453 (9)0.0705 (11)0.0685 (11)0.0006 (8)0.0056 (8)0.0233 (10)
O30.0364 (8)0.0468 (9)0.0555 (9)0.0077 (6)0.0038 (6)0.0039 (8)
O40.0380 (9)0.0995 (15)0.1183 (17)0.0049 (10)0.0011 (10)0.0564 (14)
O50.0471 (9)0.0652 (11)0.0693 (11)0.0029 (8)0.0147 (8)0.0103 (9)
O60.0390 (8)0.0612 (10)0.0664 (11)0.0148 (7)0.0006 (7)0.0052 (9)
N10.0290 (8)0.0415 (9)0.0428 (9)0.0003 (7)0.0047 (7)0.0014 (8)
N20.0316 (8)0.0416 (10)0.0498 (10)0.0015 (7)0.0034 (7)0.0016 (8)
C10.0384 (11)0.0482 (12)0.0440 (12)0.0035 (9)0.0093 (9)0.0036 (10)
C20.0353 (10)0.0434 (11)0.0395 (11)0.0033 (8)0.0093 (8)0.0034 (10)
C30.0429 (12)0.0551 (14)0.0493 (13)0.0115 (10)0.0105 (10)0.0000 (11)
C40.0586 (15)0.0576 (15)0.0542 (14)0.0149 (12)0.0146 (11)0.0099 (13)
C50.0616 (15)0.0556 (15)0.0497 (13)0.0044 (12)0.0096 (11)0.0153 (12)
C60.0451 (12)0.0575 (14)0.0440 (12)0.0000 (10)0.0063 (10)0.0059 (11)
C70.0635 (17)0.083 (2)0.0713 (18)0.0100 (15)0.0089 (14)0.0247 (17)
C80.0290 (9)0.0464 (12)0.0469 (12)0.0031 (8)0.0069 (8)0.0045 (10)
C90.0355 (10)0.0433 (11)0.0407 (11)0.0005 (9)0.0067 (8)0.0054 (10)
C100.0500 (12)0.0418 (12)0.0392 (11)0.0033 (9)0.0115 (9)0.0041 (10)
C110.0471 (13)0.0680 (16)0.0588 (15)0.0118 (12)0.0101 (11)0.0116 (14)
C120.0619 (17)0.085 (2)0.077 (2)0.0244 (16)0.0101 (15)0.0246 (17)
C130.095 (2)0.0673 (19)0.0561 (16)0.0218 (17)0.0154 (15)0.0142 (15)
C140.098 (2)0.0459 (14)0.0519 (15)0.0048 (14)0.0225 (14)0.0012 (13)
C150.0631 (15)0.0473 (13)0.0436 (12)0.0025 (11)0.0127 (11)0.0072 (11)
C160.0597 (17)0.101 (2)0.103 (2)0.0432 (17)0.0113 (16)0.004 (2)
Geometric parameters (Å, º) top
V1—O11.8277 (17)C4—H4A0.9300
V1—O31.9436 (16)C5—C61.377 (3)
V1—O51.5736 (18)C5—H5A0.9300
V1—O61.7351 (16)C7—H7A0.9600
V1—N12.0963 (17)C7—H7B0.9600
O1—C11.341 (3)C7—H7C0.9600
O2—C61.358 (3)C8—H8A0.9300
O2—C71.423 (3)C9—C101.467 (3)
O3—C91.306 (2)C10—C151.397 (3)
O4—C111.353 (3)C10—C111.398 (3)
O4—H4B0.8200C11—C121.389 (4)
O6—C161.406 (3)C12—C131.361 (4)
N1—C81.292 (3)C12—H12A0.9300
N1—N21.384 (2)C13—C141.372 (4)
N2—C91.303 (3)C13—H13A0.9300
C1—C21.393 (3)C14—C151.379 (4)
C1—C61.406 (3)C14—H14A0.9300
C2—C31.405 (3)C15—H15A0.9300
C2—C81.426 (3)C16—H16A0.9600
C3—C41.367 (3)C16—H16B0.9600
C3—H3A0.9300C16—H16C0.9600
C4—C51.388 (3)
O5—V1—O6107.53 (9)O2—C7—H7A109.5
O5—V1—O1106.03 (9)O2—C7—H7B109.5
O6—V1—O198.75 (8)H7A—C7—H7B109.5
O5—V1—O3100.64 (8)O2—C7—H7C109.5
O6—V1—O389.96 (7)H7A—C7—H7C109.5
O1—V1—O3147.80 (7)H7B—C7—H7C109.5
O5—V1—N1101.68 (8)N1—C8—C2124.10 (18)
O6—V1—N1149.00 (8)N1—C8—H8A118.0
O1—V1—N182.66 (7)C2—C8—H8A118.0
O3—V1—N174.46 (6)N2—C9—O3121.3 (2)
C1—O1—V1135.54 (14)N2—C9—C10118.93 (19)
C6—O2—C7117.5 (2)O3—C9—C10119.78 (19)
C9—O3—V1118.22 (14)C15—C10—C11118.7 (2)
C11—O4—H4B109.5C15—C10—C9120.0 (2)
C16—O6—V1135.18 (19)C11—C10—C9121.3 (2)
C8—N1—N2115.74 (16)O4—C11—C12117.9 (2)
C8—N1—V1128.47 (14)O4—C11—C10122.7 (2)
N2—N1—V1115.67 (12)C12—C11—C10119.5 (3)
C9—N2—N1109.38 (16)C13—C12—C11120.6 (3)
O1—C1—C2121.3 (2)C13—C12—H12A119.7
O1—C1—C6119.17 (19)C11—C12—H12A119.7
C2—C1—C6119.5 (2)C12—C13—C14121.0 (3)
C1—C2—C3119.8 (2)C12—C13—H13A119.5
C1—C2—C8120.72 (19)C14—C13—H13A119.5
C3—C2—C8119.42 (19)C13—C14—C15119.4 (3)
C4—C3—C2120.2 (2)C13—C14—H14A120.3
C4—C3—H3A119.9C15—C14—H14A120.3
C2—C3—H3A119.9C14—C15—C10120.8 (3)
C3—C4—C5119.9 (2)C14—C15—H15A119.6
C3—C4—H4A120.1C10—C15—H15A119.6
C5—C4—H4A120.1O6—C16—H16A109.5
C6—C5—C4121.4 (2)O6—C16—H16B109.5
C6—C5—H5A119.3H16A—C16—H16B109.5
C4—C5—H5A119.3O6—C16—H16C109.5
O2—C6—C5125.1 (2)H16A—C16—H16C109.5
O2—C6—C1115.6 (2)H16B—C16—H16C109.5
C5—C6—C1119.2 (2)
O5—V1—O1—C168.2 (2)C7—O2—C6—C50.8 (4)
O6—V1—O1—C1179.4 (2)C7—O2—C6—C1178.6 (2)
O3—V1—O1—C176.5 (3)C4—C5—C6—O2178.7 (2)
N1—V1—O1—C131.9 (2)C4—C5—C6—C10.6 (4)
O5—V1—O3—C990.59 (16)O1—C1—C6—O22.2 (3)
O6—V1—O3—C9161.58 (15)C2—C1—C6—O2179.7 (2)
O1—V1—O3—C955.0 (2)O1—C1—C6—C5177.2 (2)
N1—V1—O3—C98.72 (14)C2—C1—C6—C50.9 (3)
O5—V1—O6—C1627.1 (3)N2—N1—C8—C2178.26 (18)
O1—V1—O6—C16137.1 (3)V1—N1—C8—C26.0 (3)
O3—V1—O6—C1674.0 (3)C1—C2—C8—N16.8 (3)
N1—V1—O6—C16132.6 (3)C3—C2—C8—N1174.9 (2)
O5—V1—N1—C885.9 (2)N1—N2—C9—O31.1 (3)
O6—V1—N1—C8113.8 (2)N1—N2—C9—C10179.94 (17)
O1—V1—N1—C818.99 (19)V1—O3—C9—N28.7 (3)
O3—V1—N1—C8176.1 (2)V1—O3—C9—C10172.45 (14)
O5—V1—N1—N289.78 (15)N2—C9—C10—C15179.3 (2)
O6—V1—N1—N270.5 (2)O3—C9—C10—C151.9 (3)
O1—V1—N1—N2165.29 (15)N2—C9—C10—C110.8 (3)
O3—V1—N1—N28.15 (13)O3—C9—C10—C11178.0 (2)
C8—N1—N2—C9177.45 (19)C15—C10—C11—O4178.7 (3)
V1—N1—N2—C96.3 (2)C9—C10—C11—O41.5 (4)
V1—O1—C1—C229.7 (3)C15—C10—C11—C121.0 (4)
V1—O1—C1—C6152.29 (18)C9—C10—C11—C12178.9 (2)
O1—C1—C2—C3176.2 (2)O4—C11—C12—C13178.6 (3)
C6—C1—C2—C31.8 (3)C10—C11—C12—C131.1 (5)
O1—C1—C2—C82.0 (3)C11—C12—C13—C140.3 (5)
C6—C1—C2—C8180.0 (2)C12—C13—C14—C150.6 (4)
C1—C2—C3—C41.2 (3)C13—C14—C15—C100.7 (4)
C8—C2—C3—C4179.5 (2)C11—C10—C15—C140.1 (3)
C2—C3—C4—C50.3 (4)C9—C10—C15—C14179.7 (2)
C3—C4—C5—C61.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···N20.821.842.568 (2)147
C8—H8A···O4i0.932.323.243 (3)169
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[V(C15H12N2O4)(CH3O)O]
Mr382.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.194 (3), 6.6746 (13), 15.359 (3)
β (°) 96.89 (3)
V3)1648.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.39 × 0.22 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(TEXRAY; Molecular Structure Corporation, 1999)
Tmin, Tmax0.845, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
14918, 3686, 2776
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.08
No. of reflections3686
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.39

Computer programs: TEXRAY (Molecular Structure Corporation, 1999), TEXSAN (Molecular Structure Corporation, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEX (McArdle, 1995).

Selected bond lengths (Å) top
V1—O11.8277 (17)V1—O61.7351 (16)
V1—O31.9436 (16)V1—N12.0963 (17)
V1—O51.5736 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···N20.821.842.568 (2)146.7
C8—H8A···O4i0.932.323.243 (3)169.0
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors acknowledge financial support from the Undergraduate Students' Extracurricular Technology Project of Fujian Normal University, China (grant No. BKL2009–045).

References

First citationChen, X.-H. (2008). Acta Cryst. E64, m1253.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, L.-J., Yang, M.-X. & Lin, S. (2004). Acta Cryst. E60, m1881–m1882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGao, S., Weng, Z.-Q. & Liu, S.-X. (1998). Polyhedron, 17, 3595–3606.  Web of Science CSD CrossRef CAS Google Scholar
First citationGhosh, T., Mondal, B., Ghosh, T., Sutradhar, M., Mukherjee, G. & Drew, M. G. B. (2007). Inorg. Chim. Acta, 360, 1753–1761.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, S.-X. & Gao, S. (1998). Polyhedron, 17, 81–84.  CSD CrossRef Web of Science Google Scholar
First citationLiu, J.-H., Wu, X.-Y., Zhang, Q.-Z., He, X., Yang, W.-B. & Lu, C.-Z. (2006). Chin. J. Inorg. Chem. 22, 1028–1032.  CAS Google Scholar
First citationMa, Y.-X., Ma, Z.-Q., Zhao, G., Ma, Y. & Yang, M. (1989). Polyhedron, 8, 2105–2108.  CAS Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationMolecular Structure Corporation (1999). TEXRAY and TEXSAN. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSeena, E. B., Mathew, N., Kuriakose, M. & Kurup, M. P. R. (2008). Polyhedron, 27, 1455–1462.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, M.-M., Li, W.-P. & Liu, S.-X. (2005). Acta Cryst. E61, m1818–m1820.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSur, H., Roychowdhuri, S. & Seth, S. (1993). Acta Cryst. C49, 870–873.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds