metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ-4,4′-di­bromo-2,2′-[o-phenyl­enebis(nitrilo­methyl­­idyne)]diphenolato}bis­­[chloridomanganese(III)] N,N-di­methyl­formamide disolvate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 26 January 2010; accepted 26 January 2010; online 30 January 2010)

The asymmetric unit of the title compound, [Mn2(C20H12Br2N2O2)2Cl2]·2C3H7NO, contains one half of a centrosymmetric dinuclear MnIII complex and an N,N-dimethyl­formamide solvent mol­ecule. In the complex, the two MnIII ions are bridged by two O atoms from two symmetry-related N,N′-bis­(5-bromo­salicyl­idene)-1,2-diimino­benzene dianionic ligands with the longer Mn—O distance of 2.703 (3) Å, thus each Mn ion is six-coordinated by two N and three O atoms from the two dianionic ligands and one capping Cl atom in a distorted octa­hedral environment. The crystal structure displays inter­molecular ππ inter­actions between adjacent benzene rings, with a shortest centroid–centroid distance of 3.673 (2) Å, and inter­molecular C—H⋯O, C—H⋯ Cl and C—H⋯ Br hydrogen bonds.

Related literature

For the crystal structure of dinuclear [Mn(salen)(H2O)]2(ClO4)2 (H2salen = N,N′-bis­(salicyl­idene)ethyl­enediimine), see: Shyu et al. (1999[Shyu, H.-L., Wei, H.-H. & Wang, Y. (1999). Inorg. Chim. Acta, 290, 8-13.]). For the crystal structures of 5-bromo­salicylideneimine–Mn(III) complexes, see: Dang et al. (2005[Dang, L.-L., Huo, Y.-Q., Wang, W. & Li, J. (2005). Acta Cryst. E61, m332-m334.]); Hwang & Ha (2007[Hwang, I.-C. & Ha, K. (2007). Acta Cryst. E63, m2365.]); Mitra et al. (2006[Mitra, K., Biswas, S., Lucas, C. R. & Adhikary, B. (2006). Inorg. Chim. Acta, 359, 1997-2003.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C20H12Br2N2O2)2Cl2]·2C3H7NO

  • Mr = 1271.24

  • Monoclinic, P 21 /c

  • a = 9.7804 (6) Å

  • b = 20.1342 (12) Å

  • c = 11.8593 (6) Å

  • β = 90.938 (1)°

  • V = 2335.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.13 mm−1

  • T = 200 K

  • 0.26 × 0.10 × 0.07 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.742, Tmax = 1.000

  • 17204 measured reflections

  • 5763 independent reflections

  • 3286 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.111

  • S = 1.01

  • 5763 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 1.869 (3)
Mn1—O2 1.884 (3)
Mn1—O2i 2.703 (3)
Mn1—N1 1.991 (3)
Mn1—N2 1.994 (3)
Mn1—Cl1 2.4268 (13)
Symmetry code: (i) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cl1ii 0.95 2.71 3.603 (4) 156
C12—H12⋯O3iii 0.95 2.54 3.468 (6) 165
C14—H14⋯O3iii 0.95 2.25 3.173 (5) 165
C19—H19⋯Br2iv 0.95 2.88 3.678 (4) 143
Symmetry codes: (ii) -x, -y, -z+1; (iii) x, y, z+1; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, [Mn(C20H12Br2N2O2)Cl]2.2(C3H7NO), consists of a structurally centrosymmetric dinuclear MnIII complex and two N,N-dimethylformamide solvent molecules, and the asymmetric unit contains one half of the formula unit (Fig. 1). In the complex, two MnIII ions are bridged by two phenolic O atoms from two symmetry-related N,N'-bis(5-bromosalicylidene)-1,2-diiminobenzene dianionic ligands, and the distance between the Mn atoms is 3.5277 (10) Å. Each Mn ion is six-coordinated by two N and three O atoms from the two dianionic ligands and one capping Cl atom in a distorted octahedral environment (Table 1). While the two Mn—N bond distances are nearly equal [1.991 (3) Å and 1.994 (3) Å], the three Mn—O bond lengths are somewhat different. The equatorial Mn1—O1/O2 bonds [1.869 (3) Å and 1.884 (3) Å] are considerably shorter than the axial Mn1—O2a bond [Symmetry code: (a) 1 - x, -y, 1 - z; 2.703 (3) Å]. Within the equatorial plane, the chelating angles lie in the range of 82.42 (14)°–92.38 (14)° and the <O1—Mn1—O2 bond angle is 90.84 (12)°. The apical <Cl1—Mn1—O2a bond angle is 173.85 (7)°. The crystal structure displays intermolecular π-π interactions between adjacent benzene rings, with a shortest centroid-centroid distance of 3.673 (2) Å, and intermolecular C—H···O/Cl/Br hydrogen bonds (Fig. 2 and Table 2).

Related literature top

For the crystal structure of dinuclear [Mn(salen)(H2O)]2(ClO4)2 (H2salen = N,N'-bis(salicylidene)ethylenediimine), see: Shyu et al. (1999). For the crystal structures of 5-bromosalicylideneimine–Mn(III) complexes, see: Dang et al. (2005); Hwang & Ha (2007); Mitra et al. (2006).

Experimental top

Mn(CH3CO2)3.2H2O (0.50 g, 1.86 mmol), NaCl (0.11 g, 1.88 mmol) and N,N'-bis(5-bromosalicylidene)-1,2-diiminobenzene (0.89 g, 1.88 mmol) in EtOH (50 ml) and acetone (20 ml) were stirred for 2 h at room temperature. The formed precipitate was separated by filtration and washed with acetone and ether and dried under vacuum, to give a dark brown powder (1.02 g). Crystals suitable for X-ray analysis were obtained by slow evaporation under vacuum from an N,N-dimethylformamide solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å (CH) or 0.98 Å (CH3) and Uiso(H) = 1.2Ueq(CH) or 1.5Ueq(CH3)].

Structure description top

The title compound, [Mn(C20H12Br2N2O2)Cl]2.2(C3H7NO), consists of a structurally centrosymmetric dinuclear MnIII complex and two N,N-dimethylformamide solvent molecules, and the asymmetric unit contains one half of the formula unit (Fig. 1). In the complex, two MnIII ions are bridged by two phenolic O atoms from two symmetry-related N,N'-bis(5-bromosalicylidene)-1,2-diiminobenzene dianionic ligands, and the distance between the Mn atoms is 3.5277 (10) Å. Each Mn ion is six-coordinated by two N and three O atoms from the two dianionic ligands and one capping Cl atom in a distorted octahedral environment (Table 1). While the two Mn—N bond distances are nearly equal [1.991 (3) Å and 1.994 (3) Å], the three Mn—O bond lengths are somewhat different. The equatorial Mn1—O1/O2 bonds [1.869 (3) Å and 1.884 (3) Å] are considerably shorter than the axial Mn1—O2a bond [Symmetry code: (a) 1 - x, -y, 1 - z; 2.703 (3) Å]. Within the equatorial plane, the chelating angles lie in the range of 82.42 (14)°–92.38 (14)° and the <O1—Mn1—O2 bond angle is 90.84 (12)°. The apical <Cl1—Mn1—O2a bond angle is 173.85 (7)°. The crystal structure displays intermolecular π-π interactions between adjacent benzene rings, with a shortest centroid-centroid distance of 3.673 (2) Å, and intermolecular C—H···O/Cl/Br hydrogen bonds (Fig. 2 and Table 2).

For the crystal structure of dinuclear [Mn(salen)(H2O)]2(ClO4)2 (H2salen = N,N'-bis(salicylidene)ethylenediimine), see: Shyu et al. (1999). For the crystal structures of 5-bromosalicylideneimine–Mn(III) complexes, see: Dang et al. (2005); Hwang & Ha (2007); Mitra et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms. Unlabelled atoms and Mn1a are related to labelled atoms by the symmetry operation [symmetry code: (a) 1 - x, -y, 1 - z].
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
Bis{µ-4,4'-dibromo-2,2'-[o- phenylenebis(nitrilomethylidyne)]diphenolato}bis[chloridomanganese(III)] N,N-dimethylformamide disolvate top
Crystal data top
[Mn2(C20H12Br2N2O2)2Cl2]·2C3H7NOF(000) = 1256
Mr = 1271.24Dx = 1.808 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3984 reflections
a = 9.7804 (6) Åθ = 2.3–27.8°
b = 20.1342 (12) ŵ = 4.13 mm1
c = 11.8593 (6) ÅT = 200 K
β = 90.938 (1)°Block, brown
V = 2335.0 (2) Å30.26 × 0.10 × 0.07 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
5763 independent reflections
Radiation source: fine-focus sealed tube3286 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
φ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1313
Tmin = 0.742, Tmax = 1.000k = 2625
17204 measured reflectionsl = 915
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0372P)2]
where P = (Fo2 + 2Fc2)/3
5763 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.87 e Å3
Crystal data top
[Mn2(C20H12Br2N2O2)2Cl2]·2C3H7NOV = 2335.0 (2) Å3
Mr = 1271.24Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.7804 (6) ŵ = 4.13 mm1
b = 20.1342 (12) ÅT = 200 K
c = 11.8593 (6) Å0.26 × 0.10 × 0.07 mm
β = 90.938 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5763 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3286 reflections with I > 2σ(I)
Tmin = 0.742, Tmax = 1.000Rint = 0.067
17204 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.01Δρmax = 0.73 e Å3
5763 reflectionsΔρmin = 0.87 e Å3
300 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.33723 (7)0.03642 (3)0.48099 (5)0.02156 (17)
Br10.07312 (5)0.20087 (3)0.13904 (4)0.04294 (17)
Br20.80307 (6)0.30297 (3)0.65558 (4)0.04307 (17)
Cl10.20464 (11)0.13541 (6)0.43825 (9)0.0301 (3)
O10.3251 (3)0.00461 (15)0.3398 (2)0.0252 (7)
O20.5128 (3)0.06888 (14)0.4485 (2)0.0225 (7)
N10.1887 (3)0.01986 (17)0.5427 (3)0.0200 (8)
N20.3604 (3)0.06227 (17)0.6425 (3)0.0200 (8)
C10.2337 (4)0.0470 (2)0.3001 (3)0.0212 (10)
C20.2434 (5)0.0675 (2)0.1874 (3)0.0259 (11)
H20.31430.04980.14250.031*
C30.1542 (5)0.1118 (2)0.1405 (4)0.0276 (11)
H30.16310.12500.06410.033*
C40.0485 (4)0.1379 (2)0.2063 (4)0.0253 (10)
C50.0369 (4)0.1213 (2)0.3164 (4)0.0262 (11)
H50.03310.14070.36020.031*
C60.1289 (4)0.0750 (2)0.3666 (4)0.0227 (10)
C70.1164 (4)0.0620 (2)0.4843 (3)0.0221 (10)
H70.04890.08630.52350.027*
C80.1754 (4)0.0142 (2)0.6626 (3)0.0203 (10)
C90.0778 (4)0.0469 (2)0.7259 (4)0.0243 (10)
H90.01260.07510.69020.029*
C100.0767 (5)0.0378 (2)0.8416 (4)0.0294 (11)
H100.01010.06000.88540.035*
C110.1716 (5)0.0031 (2)0.8938 (4)0.0294 (11)
H110.16990.00850.97330.035*
C120.2684 (5)0.0360 (2)0.8326 (4)0.0267 (11)
H120.33390.06360.86940.032*
C130.2693 (4)0.0283 (2)0.7156 (3)0.0211 (10)
C140.4430 (4)0.1081 (2)0.6771 (3)0.0241 (10)
H140.44220.11910.75500.029*
C150.5364 (4)0.1440 (2)0.6067 (3)0.0223 (10)
C160.6084 (4)0.1977 (2)0.6544 (4)0.0253 (10)
H160.59260.21040.73020.030*
C170.7015 (5)0.2317 (2)0.5916 (4)0.0246 (10)
C180.7236 (5)0.2148 (2)0.4793 (4)0.0272 (11)
H180.78520.24010.43540.033*
C190.6564 (4)0.1618 (2)0.4328 (4)0.0250 (10)
H190.67240.15040.35640.030*
C200.5642 (4)0.1237 (2)0.4949 (3)0.0218 (10)
O30.4905 (4)0.1586 (2)0.0718 (3)0.0526 (11)
N30.3774 (5)0.1726 (2)0.0910 (3)0.0434 (11)
C210.4185 (5)0.1909 (3)0.0094 (4)0.0394 (13)
H210.38930.23320.03580.047*
C220.2859 (6)0.2150 (3)0.1564 (5)0.0637 (19)
H22A0.26760.25610.11480.096*
H22B0.32940.22550.22930.096*
H22C0.19970.19150.16890.096*
C230.4163 (8)0.1103 (3)0.1379 (5)0.078 (2)
H23A0.48580.08970.09060.117*
H23B0.33610.08130.14130.117*
H23C0.45390.11700.21420.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0221 (4)0.0250 (4)0.0177 (4)0.0037 (3)0.0021 (3)0.0023 (3)
Br10.0400 (3)0.0505 (4)0.0382 (3)0.0164 (3)0.0034 (2)0.0141 (3)
Br20.0603 (4)0.0382 (3)0.0309 (3)0.0249 (3)0.0080 (2)0.0088 (2)
Cl10.0297 (6)0.0288 (7)0.0318 (7)0.0011 (5)0.0009 (5)0.0034 (5)
O10.0263 (17)0.0306 (19)0.0187 (17)0.0060 (14)0.0014 (13)0.0034 (13)
O20.0200 (16)0.0275 (18)0.0201 (16)0.0051 (13)0.0049 (12)0.0089 (13)
N10.0218 (19)0.020 (2)0.0180 (19)0.0009 (16)0.0016 (15)0.0020 (15)
N20.0219 (19)0.018 (2)0.020 (2)0.0006 (16)0.0005 (15)0.0017 (15)
C10.023 (2)0.023 (3)0.017 (2)0.0026 (19)0.0062 (18)0.0007 (18)
C20.027 (3)0.032 (3)0.019 (2)0.000 (2)0.0018 (19)0.0005 (19)
C30.034 (3)0.034 (3)0.015 (2)0.003 (2)0.003 (2)0.0078 (19)
C40.029 (3)0.022 (3)0.025 (3)0.001 (2)0.007 (2)0.0041 (19)
C50.023 (2)0.029 (3)0.026 (3)0.004 (2)0.0028 (19)0.000 (2)
C60.023 (2)0.019 (3)0.026 (3)0.0016 (19)0.0013 (19)0.0022 (18)
C70.020 (2)0.022 (3)0.024 (3)0.0032 (19)0.0052 (18)0.0011 (18)
C80.025 (2)0.019 (2)0.017 (2)0.0045 (19)0.0041 (18)0.0002 (17)
C90.021 (2)0.024 (3)0.029 (3)0.0021 (19)0.0034 (19)0.0030 (19)
C100.034 (3)0.033 (3)0.021 (3)0.000 (2)0.010 (2)0.006 (2)
C110.039 (3)0.029 (3)0.019 (2)0.001 (2)0.005 (2)0.000 (2)
C120.029 (3)0.031 (3)0.020 (2)0.002 (2)0.0002 (19)0.002 (2)
C130.026 (2)0.020 (3)0.018 (2)0.0038 (19)0.0045 (18)0.0005 (18)
C140.031 (3)0.030 (3)0.012 (2)0.000 (2)0.0021 (18)0.0038 (18)
C150.025 (2)0.021 (3)0.021 (2)0.0032 (19)0.0020 (18)0.0026 (18)
C160.031 (3)0.025 (3)0.020 (2)0.001 (2)0.0001 (19)0.0046 (19)
C170.032 (3)0.018 (2)0.024 (3)0.000 (2)0.001 (2)0.0014 (19)
C180.037 (3)0.021 (3)0.023 (3)0.004 (2)0.006 (2)0.0027 (19)
C190.031 (3)0.028 (3)0.017 (2)0.003 (2)0.0021 (19)0.0000 (19)
C200.022 (2)0.024 (3)0.020 (2)0.002 (2)0.0001 (18)0.0000 (18)
O30.059 (3)0.065 (3)0.033 (2)0.010 (2)0.0096 (19)0.0239 (19)
N30.057 (3)0.046 (3)0.027 (2)0.011 (2)0.010 (2)0.001 (2)
C210.043 (3)0.047 (4)0.028 (3)0.014 (3)0.005 (2)0.004 (2)
C220.073 (5)0.069 (5)0.050 (4)0.009 (4)0.026 (3)0.006 (3)
C230.117 (7)0.058 (5)0.059 (5)0.005 (4)0.006 (4)0.014 (4)
Geometric parameters (Å, º) top
Mn1—O11.869 (3)C10—C111.380 (6)
Mn1—O21.884 (3)C10—H100.9500
Mn1—O2i2.703 (3)C11—C121.373 (6)
Mn1—N11.991 (3)C11—H110.9500
Mn1—N21.994 (3)C12—C131.397 (6)
Mn1—Cl12.4268 (13)C12—H120.9500
Br1—C41.904 (4)C14—C151.441 (6)
Br2—C171.896 (4)C14—H140.9500
O1—C11.318 (5)C15—C161.406 (6)
O2—C201.328 (5)C15—C201.418 (6)
N1—C71.297 (5)C16—C171.369 (6)
N1—C81.435 (5)C16—H160.9500
N2—C141.290 (5)C17—C181.395 (6)
N2—C131.429 (5)C18—C191.366 (6)
C1—C21.403 (5)C18—H180.9500
C1—C61.420 (6)C19—C201.402 (6)
C2—C31.361 (6)C19—H190.9500
C2—H20.9500O3—C211.217 (6)
C3—C41.406 (6)N3—C211.316 (6)
C3—H30.9500N3—C231.422 (7)
C4—C51.355 (6)N3—C221.466 (7)
C5—C61.419 (6)C21—H210.9500
C5—H50.9500C22—H22A0.9800
C6—C71.428 (5)C22—H22B0.9800
C7—H70.9500C22—H22C0.9800
C8—C91.389 (6)C23—H23A0.9800
C8—C131.397 (6)C23—H23B0.9800
C9—C101.384 (6)C23—H23C0.9800
C9—H90.9500
O1—Mn1—O290.84 (12)C11—C10—H10119.8
O1—Mn1—N192.38 (14)C9—C10—H10119.8
O2—Mn1—N1161.07 (14)C12—C11—C10121.0 (4)
O1—Mn1—N2168.61 (14)C12—C11—H11119.5
O2—Mn1—N290.93 (13)C10—C11—H11119.5
N1—Mn1—N282.42 (14)C11—C12—C13119.2 (4)
O1—Mn1—Cl198.63 (10)C11—C12—H12120.4
O2—Mn1—Cl199.10 (10)C13—C12—H12120.4
N1—Mn1—Cl198.84 (10)C12—C13—C8120.0 (4)
N2—Mn1—Cl192.20 (10)C12—C13—N2124.3 (4)
O1—Mn1—O2i87.52 (11)C8—C13—N2115.6 (4)
O2—Mn1—O2i81.01 (12)N2—C14—C15125.0 (4)
N1—Mn1—O2i80.51 (11)N2—C14—H14117.5
N2—Mn1—O2i81.65 (11)C15—C14—H14117.5
Cl1—Mn1—O2i173.85 (7)C16—C15—C20119.7 (4)
C1—O1—Mn1129.7 (3)C16—C15—C14118.1 (4)
C20—O2—Mn1122.9 (3)C20—C15—C14122.1 (4)
C7—N1—C8121.5 (3)C17—C16—C15120.0 (4)
C7—N1—Mn1124.8 (3)C17—C16—H16120.0
C8—N1—Mn1113.5 (3)C15—C16—H16120.0
C14—N2—C13122.9 (4)C16—C17—C18120.8 (4)
C14—N2—Mn1123.6 (3)C16—C17—Br2120.6 (3)
C13—N2—Mn1113.3 (3)C18—C17—Br2118.6 (3)
O1—C1—C2118.3 (4)C19—C18—C17119.7 (4)
O1—C1—C6123.4 (4)C19—C18—H18120.2
C2—C1—C6118.2 (4)C17—C18—H18120.2
C3—C2—C1121.9 (4)C18—C19—C20121.7 (4)
C3—C2—H2119.0C18—C19—H19119.1
C1—C2—H2119.0C20—C19—H19119.1
C2—C3—C4119.4 (4)O2—C20—C19118.6 (4)
C2—C3—H3120.3O2—C20—C15123.4 (4)
C4—C3—H3120.3C19—C20—C15117.9 (4)
C5—C4—C3121.1 (4)C21—N3—C23121.1 (5)
C5—C4—Br1120.4 (3)C21—N3—C22121.0 (5)
C3—C4—Br1118.4 (3)C23—N3—C22117.9 (5)
C4—C5—C6120.3 (4)O3—C21—N3126.1 (6)
C4—C5—H5119.9O3—C21—H21116.9
C6—C5—H5119.9N3—C21—H21116.9
C5—C6—C1119.1 (4)N3—C22—H22A109.5
C5—C6—C7117.9 (4)N3—C22—H22B109.5
C1—C6—C7122.9 (4)H22A—C22—H22B109.5
N1—C7—C6126.0 (4)N3—C22—H22C109.5
N1—C7—H7117.0H22A—C22—H22C109.5
C6—C7—H7117.0H22B—C22—H22C109.5
C9—C8—C13119.9 (4)N3—C23—H23A109.5
C9—C8—N1125.0 (4)N3—C23—H23B109.5
C13—C8—N1115.1 (4)H23A—C23—H23B109.5
C10—C9—C8119.4 (4)N3—C23—H23C109.5
C10—C9—H9120.3H23A—C23—H23C109.5
C8—C9—H9120.3H23B—C23—H23C109.5
C11—C10—C9120.4 (4)
O2—Mn1—O1—C1170.3 (4)C8—N1—C7—C6175.0 (4)
N1—Mn1—O1—C18.9 (4)Mn1—N1—C7—C60.6 (6)
N2—Mn1—O1—C171.4 (8)C5—C6—C7—N1177.7 (4)
Cl1—Mn1—O1—C190.4 (3)C1—C6—C7—N16.2 (7)
O2i—Mn1—O1—C189.3 (4)C7—N1—C8—C96.7 (6)
O1—Mn1—O2—C20153.2 (3)Mn1—N1—C8—C9178.3 (3)
N1—Mn1—O2—C20107.0 (5)C7—N1—C8—C13173.8 (4)
N2—Mn1—O2—C2038.1 (3)Mn1—N1—C8—C131.1 (4)
Cl1—Mn1—O2—C2054.3 (3)C13—C8—C9—C101.3 (6)
O2i—Mn1—O2—C20119.5 (3)N1—C8—C9—C10179.3 (4)
O1—Mn1—N1—C75.4 (4)C8—C9—C10—C110.1 (7)
O2—Mn1—N1—C7105.0 (5)C9—C10—C11—C120.4 (7)
N2—Mn1—N1—C7175.2 (4)C10—C11—C12—C130.7 (7)
Cl1—Mn1—N1—C793.7 (3)C11—C12—C13—C82.1 (6)
O2i—Mn1—N1—C792.5 (4)C11—C12—C13—N2176.9 (4)
O1—Mn1—N1—C8169.4 (3)C9—C8—C13—C122.4 (6)
O2—Mn1—N1—C869.8 (5)N1—C8—C13—C12178.1 (4)
N2—Mn1—N1—C80.5 (3)C9—C8—C13—N2176.7 (4)
Cl1—Mn1—N1—C891.5 (3)N1—C8—C13—N22.8 (5)
O2i—Mn1—N1—C882.3 (3)C14—N2—C13—C126.5 (7)
O1—Mn1—N2—C14122.9 (7)Mn1—N2—C13—C12177.8 (3)
O2—Mn1—N2—C1424.0 (4)C14—N2—C13—C8172.6 (4)
N1—Mn1—N2—C14173.8 (4)Mn1—N2—C13—C83.2 (5)
Cl1—Mn1—N2—C1475.2 (4)C13—N2—C14—C15179.8 (4)
O2i—Mn1—N2—C14104.8 (4)Mn1—N2—C14—C154.4 (6)
O1—Mn1—N2—C1361.4 (8)N2—C14—C15—C16172.8 (4)
O2—Mn1—N2—C13160.3 (3)N2—C14—C15—C2011.8 (7)
N1—Mn1—N2—C131.9 (3)C20—C15—C16—C172.4 (7)
Cl1—Mn1—N2—C13100.6 (3)C14—C15—C16—C17177.8 (4)
O2i—Mn1—N2—C1379.5 (3)C15—C16—C17—C181.6 (7)
Mn1—O1—C1—C2176.1 (3)C15—C16—C17—Br2178.4 (3)
Mn1—O1—C1—C66.3 (6)C16—C17—C18—C193.0 (7)
O1—C1—C2—C3179.1 (4)Br2—C17—C18—C19177.0 (4)
C6—C1—C2—C31.4 (7)C17—C18—C19—C200.4 (7)
C1—C2—C3—C40.3 (7)Mn1—O2—C20—C19149.3 (3)
C2—C3—C4—C52.2 (7)Mn1—O2—C20—C1534.1 (5)
C2—C3—C4—Br1179.1 (3)C18—C19—C20—O2173.3 (4)
C3—C4—C5—C62.3 (7)C18—C19—C20—C153.5 (7)
Br1—C4—C5—C6179.2 (3)C16—C15—C20—O2171.8 (4)
C4—C5—C6—C10.6 (6)C14—C15—C20—O23.5 (7)
C4—C5—C6—C7176.8 (4)C16—C15—C20—C194.8 (6)
O1—C1—C6—C5178.8 (4)C14—C15—C20—C19179.9 (4)
C2—C1—C6—C51.2 (6)C23—N3—C21—O30.3 (9)
O1—C1—C6—C72.8 (7)C22—N3—C21—O3177.5 (5)
C2—C1—C6—C7174.8 (4)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl1ii0.952.713.603 (4)156
C12—H12···O3iii0.952.543.468 (6)165
C14—H14···O3iii0.952.253.173 (5)165
C19—H19···Br2iv0.952.883.678 (4)143
Symmetry codes: (ii) x, y, z+1; (iii) x, y, z+1; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn2(C20H12Br2N2O2)2Cl2]·2C3H7NO
Mr1271.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)9.7804 (6), 20.1342 (12), 11.8593 (6)
β (°) 90.938 (1)
V3)2335.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)4.13
Crystal size (mm)0.26 × 0.10 × 0.07
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.742, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17204, 5763, 3286
Rint0.067
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.111, 1.01
No. of reflections5763
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.87

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Mn1—O11.869 (3)Mn1—N11.991 (3)
Mn1—O21.884 (3)Mn1—N21.994 (3)
Mn1—O2i2.703 (3)Mn1—Cl12.4268 (13)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl1ii0.952.713.603 (4)156.0
C12—H12···O3iii0.952.543.468 (6)165.2
C14—H14···O3iii0.952.253.173 (5)165.2
C19—H19···Br2iv0.952.883.678 (4)142.5
Symmetry codes: (ii) x, y, z+1; (iii) x, y, z+1; (iv) x, y+1/2, z1/2.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0074570).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDang, L.-L., Huo, Y.-Q., Wang, W. & Li, J. (2005). Acta Cryst. E61, m332–m334.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHwang, I.-C. & Ha, K. (2007). Acta Cryst. E63, m2365.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitra, K., Biswas, S., Lucas, C. R. & Adhikary, B. (2006). Inorg. Chim. Acta, 359, 1997–2003.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShyu, H.-L., Wei, H.-H. & Wang, Y. (1999). Inorg. Chim. Acta, 290, 8–13.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds