organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(4-hy­droxy­pyridinium) hydrogen sulfate–sulfate monohydrate

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 14 November 2009; accepted 15 November 2009; online 21 November 2009)

In the crystal structure of the title salt, 3C5H6NO+·HSO4·SO42−·H2O, the hydrogen sulfate ion is linked to the sulfate ion by an O—H⋯O hydrogen bond. The hydrogen sulfate–sulfate anion is a hydrogen-bond acceptor for the three independent cations and the uncoordinated water mol­ecule, the hydrogen-bonding inter­actions giving rise to a three-dimensional hydrogen-bonded network. In the hydrogen sulfate–sulfate species, one of the sulfate groups is disordered in respect of its O atoms in a 2:1 ratio.

Related literature

For the crystal structure of bis­(4-hydroxy­pyridinium) sulfate monohydrate, see: Xu et al. (2009[Xu, Y.-M., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, o3146.]).

[Scheme 1]

Experimental

Crystal data
  • 3C5H6NO+·HSO4·SO42−·H2O

  • Mr = 499.47

  • Orthorhombic, P b c a

  • a = 10.5622 (3) Å

  • b = 19.6760 (7) Å

  • c = 20.2980 (7) Å

  • V = 4218.4 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.23 × 0.17 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.930, Tmax = 0.956

  • 38906 measured reflections

  • 4816 independent reflections

  • 3031 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.133

  • S = 1.08

  • 4816 reflections

  • 359 parameters

  • 151 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2o⋯O6 0.85 1.68 2.473 (3) 154
O6—H6o⋯O2 0.85 1.76 2.473 (3) 139
O9—H9o⋯O4i 0.86 (1) 1.76 (1) 2.612 (6) 174 (4)
O9—H9o⋯O4′i 0.86 (1) 1.72 (2) 2.569 (9) 172 (4)
O10—H10o⋯O1wii 0.86 (1) 1.70 (1) 2.554 (3) 172 (3)
O11—H11o⋯O8ii 0.86 (1) 1.73 (1) 2.591 (3) 173 (4)
O1w—H1w⋯O7 0.85 (1) 1.91 (1) 2.754 (3) 173 (4)
O1w—H2w⋯O3iii 0.84 (1) 1.93 (2) 2.749 (4) 162 (4)
N1—H1n⋯O1 0.85 (1) 1.99 (2) 2.798 (3) 159 (3)
N1—H1n⋯O1′ 0.85 (1) 2.23 (3) 2.907 (6) 138 (3)
N2—H2n⋯O5 0.85 (1) 1.96 (1) 2.795 (3) 169 (3)
N3—H3n⋯O7 0.85 (1) 1.94 (1) 2.768 (3) 167 (3)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structure of bis(4-hydroxypyridinium) sulfate monohydrate, see: Xu et al. (2009).

Experimental top

Calcium chloride dihydrate (0.29 g, 2 mmol) and 4-hydroxypyridine-3-sulfonic acid (0.35 g, 2 mmol) were dissolved in hot water. The pH value was adjusted to 6 with 0.1 M sodium hydroxide. The solution was allowed to evaporate slowly at room temperature; colorless prismatic crystals were isolated from the clear solution after a few days.

Refinement top

One of the two independent sulfate ions is disordered over two positions. For the disorder ion, all sulfur–oxygen distances were restrained to within 0.01 Å of each other, as were the oxygen···oxygen distances. The aniosotropic temperature factors of the disordered oxygen atoms were restrained to be nearly isotropic. As the disordered refined to a 2:1 ratio, the ratio was then fixed as exactly 2:1.

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino and water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H = O–H = 0.85±0.01 Å; their temperature factors were refined. Additionally, for the water molecule, an H···H = 1.39 Å restrained was applied.

In the latter stages of the refinement, a hydrogen atom was located midway between one oxygen atom of the major-component sulfate ion and one oxygen atom of the ordered sulfate ion at a distance of 1.25 Å. This atom was then regarded as being 33% bonded to the first oxygen atoms and 67% bonded to the second oxygen atom. Although the two components could be refined, they were instead constrained to ride instead (O–H 0.85 Å).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of 3[C5H6NO] [HSO4] [SO4].H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the sulfate is not shown.
Tris(4-hydroxypyridinium) hydrogen sulfate–sulfate monohydrate top
Crystal data top
3C5H6NO+·HSO4·SO42·H2OF(000) = 2080
Mr = 499.47Dx = 1.573 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 21088 reflections
a = 10.5622 (3) Åθ = 3.0–27.5°
b = 19.6760 (7) ŵ = 0.32 mm1
c = 20.2980 (7) ÅT = 293 K
V = 4218.4 (2) Å3Prism, colorless
Z = 80.23 × 0.17 × 0.14 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4816 independent reflections
Radiation source: fine-focus sealed tube3031 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1313
Tmin = 0.930, Tmax = 0.956k = 2525
38906 measured reflectionsl = 2625
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0687P)2]
where P = (Fo2 + 2Fc2)/3
4816 reflections(Δ/σ)max = 0.001
359 parametersΔρmax = 0.36 e Å3
151 restraintsΔρmin = 0.31 e Å3
Crystal data top
3C5H6NO+·HSO4·SO42·H2OV = 4218.4 (2) Å3
Mr = 499.47Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.5622 (3) ŵ = 0.32 mm1
b = 19.6760 (7) ÅT = 293 K
c = 20.2980 (7) Å0.23 × 0.17 × 0.14 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4816 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3031 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.956Rint = 0.064
38906 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045151 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.36 e Å3
4816 reflectionsΔρmin = 0.31 e Å3
359 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.47437 (6)0.72762 (4)0.42526 (3)0.0411 (2)
S20.70661 (6)0.53636 (3)0.42933 (3)0.03703 (19)
O10.3908 (3)0.77692 (16)0.45160 (13)0.0526 (8)0.67
O20.4603 (3)0.66376 (14)0.46657 (13)0.0534 (7)0.67
H2O0.48990.63000.44550.080*0.33
O30.6093 (2)0.74804 (17)0.43084 (14)0.0526 (7)0.67
O40.4463 (6)0.7087 (3)0.35765 (17)0.057 (2)0.67
O1'0.4860 (6)0.7986 (2)0.4441 (3)0.0619 (17)0.33
O2'0.3670 (5)0.6974 (3)0.4642 (3)0.0687 (18)0.33
O3'0.5908 (4)0.6914 (3)0.4441 (3)0.0594 (16)0.33
O4'0.4480 (10)0.7201 (6)0.3559 (3)0.050 (4)0.33
O50.79101 (16)0.57990 (11)0.46790 (8)0.0564 (5)
O60.57405 (16)0.55782 (10)0.43845 (10)0.0520 (5)
H6O0.57160.60020.44640.078*0.67
O70.71622 (18)0.46548 (9)0.45195 (9)0.0516 (5)
O80.73894 (17)0.53979 (11)0.35927 (8)0.0557 (5)
O90.61528 (17)0.78290 (11)0.76401 (9)0.0525 (5)
O100.5361 (2)0.61193 (12)0.77445 (10)0.0622 (6)
O110.92913 (18)0.45490 (11)0.76645 (9)0.0516 (5)
O1W0.8138 (3)0.36629 (14)0.37081 (11)0.0745 (7)
N10.4461 (2)0.79165 (14)0.58566 (11)0.0523 (6)
N20.6911 (2)0.60986 (12)0.59204 (11)0.0477 (6)
N30.7757 (2)0.44865 (13)0.58375 (11)0.0486 (6)
C10.3737 (3)0.79553 (16)0.63918 (13)0.0526 (7)
H10.28660.80060.63460.063*
C20.4252 (2)0.79225 (14)0.70003 (12)0.0442 (6)
H20.37400.79430.73720.053*
C30.5562 (2)0.78579 (13)0.70632 (11)0.0377 (6)
C40.6297 (2)0.78230 (13)0.64949 (12)0.0406 (6)
H40.71730.77820.65240.049*
C50.5724 (3)0.78489 (14)0.58982 (12)0.0466 (7)
H50.62070.78200.55160.056*
C60.5672 (3)0.59812 (15)0.60013 (14)0.0514 (7)
H60.51660.58920.56360.062*
C70.5147 (2)0.59914 (15)0.66110 (13)0.0512 (7)
H70.42850.59120.66630.061*
C80.5901 (2)0.61199 (14)0.71564 (12)0.0434 (6)
C90.7191 (2)0.62398 (14)0.70587 (13)0.0449 (6)
H90.77180.63290.74150.054*
C100.7664 (3)0.62247 (14)0.64387 (13)0.0461 (7)
H100.85220.63030.63710.055*
C110.6988 (2)0.44270 (14)0.63582 (13)0.0466 (7)
H110.61230.43730.62930.056*
C120.7455 (2)0.44448 (13)0.69802 (12)0.0402 (6)
H120.69150.44010.73390.048*
C130.8755 (2)0.45294 (13)0.70767 (11)0.0367 (6)
C140.9534 (2)0.45910 (14)0.65243 (12)0.0447 (6)
H141.04030.46470.65740.054*
C150.9007 (3)0.45679 (15)0.59115 (13)0.0489 (7)
H150.95210.46090.55420.059*
H1N0.415 (3)0.7950 (17)0.5474 (8)0.082 (11)*
H2N0.721 (3)0.6063 (15)0.5534 (7)0.062 (9)*
H3N0.747 (3)0.4507 (18)0.5449 (8)0.088 (12)*
H1W0.789 (3)0.3988 (12)0.3951 (14)0.093 (13)*
H2W0.848 (4)0.3357 (14)0.3939 (15)0.115 (17)*
H9O0.556 (2)0.7852 (18)0.7929 (14)0.089 (13)*
H10O0.592 (2)0.6200 (17)0.8044 (12)0.076 (12)*
H11O0.869 (2)0.4553 (18)0.7952 (13)0.087 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0440 (4)0.0531 (4)0.0263 (3)0.0036 (3)0.0035 (3)0.0001 (3)
S20.0342 (3)0.0518 (4)0.0250 (3)0.0001 (3)0.0003 (2)0.0013 (3)
O10.0608 (19)0.063 (2)0.0335 (14)0.0284 (16)0.0029 (14)0.0034 (14)
O20.0640 (19)0.0522 (19)0.0440 (16)0.0061 (16)0.0156 (14)0.0115 (13)
O30.0423 (15)0.063 (2)0.0523 (17)0.0059 (15)0.0035 (13)0.0008 (15)
O40.059 (4)0.085 (4)0.028 (3)0.009 (3)0.003 (3)0.006 (2)
O1'0.086 (5)0.048 (4)0.052 (3)0.000 (3)0.018 (3)0.006 (3)
O2'0.054 (4)0.107 (5)0.045 (3)0.016 (4)0.010 (3)0.005 (3)
O3'0.043 (3)0.067 (4)0.068 (4)0.016 (3)0.017 (3)0.005 (3)
O4'0.038 (6)0.088 (7)0.023 (6)0.007 (5)0.001 (5)0.007 (5)
O50.0520 (11)0.0785 (15)0.0388 (10)0.0227 (10)0.0029 (8)0.0068 (10)
O60.0376 (10)0.0588 (13)0.0597 (12)0.0082 (9)0.0023 (9)0.0031 (10)
O70.0676 (12)0.0504 (12)0.0368 (10)0.0132 (9)0.0048 (9)0.0025 (8)
O80.0460 (10)0.0943 (16)0.0268 (9)0.0045 (10)0.0017 (8)0.0067 (9)
O90.0397 (10)0.0872 (16)0.0306 (10)0.0037 (10)0.0050 (8)0.0019 (9)
O100.0547 (13)0.0897 (17)0.0422 (11)0.0062 (12)0.0121 (10)0.0051 (11)
O110.0415 (10)0.0806 (15)0.0326 (10)0.0052 (10)0.0041 (8)0.0032 (9)
O1W0.1018 (19)0.0718 (18)0.0498 (13)0.0291 (15)0.0102 (13)0.0019 (12)
N10.0538 (14)0.0726 (18)0.0306 (12)0.0034 (13)0.0085 (10)0.0002 (11)
N20.0551 (15)0.0519 (15)0.0361 (12)0.0027 (11)0.0071 (11)0.0024 (11)
N30.0600 (15)0.0511 (15)0.0346 (12)0.0046 (12)0.0121 (11)0.0001 (10)
C10.0375 (14)0.076 (2)0.0438 (15)0.0026 (14)0.0051 (12)0.0008 (14)
C20.0378 (14)0.0608 (18)0.0339 (13)0.0014 (12)0.0016 (11)0.0008 (12)
C30.0383 (13)0.0455 (16)0.0292 (12)0.0000 (11)0.0035 (10)0.0012 (10)
C40.0366 (13)0.0484 (16)0.0369 (13)0.0025 (11)0.0035 (11)0.0019 (11)
C50.0537 (16)0.0541 (18)0.0320 (13)0.0028 (13)0.0066 (12)0.0020 (11)
C60.0482 (16)0.0606 (19)0.0453 (15)0.0073 (14)0.0031 (13)0.0012 (14)
C70.0413 (14)0.064 (2)0.0479 (16)0.0049 (14)0.0012 (12)0.0013 (14)
C80.0452 (15)0.0466 (16)0.0384 (14)0.0018 (12)0.0048 (11)0.0001 (12)
C90.0407 (14)0.0531 (18)0.0409 (14)0.0012 (12)0.0039 (11)0.0020 (12)
C100.0414 (14)0.0493 (17)0.0476 (16)0.0043 (12)0.0027 (12)0.0052 (12)
C110.0386 (14)0.0513 (18)0.0498 (16)0.0022 (12)0.0077 (12)0.0040 (13)
C120.0356 (13)0.0473 (16)0.0378 (13)0.0021 (11)0.0023 (11)0.0016 (12)
C130.0367 (13)0.0413 (15)0.0321 (12)0.0008 (11)0.0009 (10)0.0014 (10)
C140.0375 (13)0.0581 (18)0.0386 (14)0.0031 (12)0.0006 (11)0.0020 (12)
C150.0572 (18)0.0556 (18)0.0340 (13)0.0003 (14)0.0066 (12)0.0031 (12)
Geometric parameters (Å, º) top
S1—O11.416 (2)N3—C111.338 (3)
S1—O4'1.444 (5)N3—C151.339 (4)
S1—O41.452 (3)N3—H3N0.847 (11)
S1—O1'1.453 (4)C1—C21.351 (3)
S1—O3'1.473 (4)C1—H10.9300
S1—O31.485 (2)C2—C31.396 (3)
S1—O2'1.505 (4)C2—H20.9300
S1—O21.518 (3)C3—C41.392 (3)
S2—O51.4633 (18)C4—C51.355 (3)
S2—O81.4641 (17)C4—H40.9300
S2—O71.4717 (19)C5—H50.9300
S2—O61.4740 (18)C6—C71.356 (4)
O2—H2O0.8501C6—H60.9300
O6—H6O0.8501C7—C81.386 (3)
O9—C31.328 (3)C7—H70.9300
O9—H9O0.860 (11)C8—C91.397 (3)
O10—C81.323 (3)C9—C101.355 (3)
O10—H10O0.862 (11)C9—H90.9300
O11—C131.321 (3)C10—H100.9300
O11—H11O0.863 (11)C11—C121.356 (3)
O1W—H1W0.847 (11)C11—H110.9300
O1W—H2W0.844 (11)C12—C131.397 (3)
N1—C11.330 (3)C12—H120.9300
N1—C51.343 (4)C13—C141.396 (3)
N1—H1N0.846 (11)C14—C151.363 (3)
N2—C61.339 (3)C14—H140.9300
N2—C101.342 (3)C15—H150.9300
N2—H2N0.848 (11)
O4'—S1—O1'111.8 (5)O9—C3—C4117.8 (2)
O4—S1—O1'120.8 (4)O9—C3—C2123.4 (2)
O4'—S1—O3'111.4 (4)C4—C3—C2118.8 (2)
O1'—S1—O3'109.1 (3)C5—C4—C3119.3 (2)
O1—S1—O3112.58 (19)C5—C4—H4120.3
O4—S1—O3109.7 (3)C3—C4—H4120.3
O4'—S1—O2'109.1 (4)N1—C5—C4120.2 (2)
O1'—S1—O2'107.8 (3)N1—C5—H5119.9
O3'—S1—O2'107.5 (3)C4—C5—H5119.9
O1—S1—O2107.29 (17)N2—C6—C7120.6 (3)
O4—S1—O2106.8 (3)N2—C6—H6119.7
O3—S1—O2106.03 (17)C7—C6—H6119.7
O5—S2—O8110.52 (11)C6—C7—C8119.8 (2)
O5—S2—O7110.23 (12)C6—C7—H7120.1
O8—S2—O7109.31 (12)C8—C7—H7120.1
O5—S2—O6110.11 (12)O10—C8—C7118.2 (2)
O8—S2—O6109.29 (11)O10—C8—C9123.3 (2)
O7—S2—O6107.32 (11)C7—C8—C9118.5 (2)
S1—O2—H2O109.5C10—C9—C8119.2 (2)
S2—O6—H6O109.5C10—C9—H9120.4
C3—O9—H9O105 (2)C8—C9—H9120.4
C8—O10—H10O110 (2)N2—C10—C9120.9 (3)
C13—O11—H11O107 (2)N2—C10—H10119.5
H1w—O1w—H2W110.3 (18)C9—C10—H10119.5
C1—N1—C5121.7 (2)N3—C11—C12120.9 (2)
C1—N1—H1N122 (2)N3—C11—H11119.6
C5—N1—H1N117 (2)C12—C11—H11119.6
C6—N2—C10121.0 (2)C11—C12—C13119.4 (2)
C6—N2—H2N118 (2)C11—C12—H12120.3
C10—N2—H2N121 (2)C13—C12—H12120.3
C11—N3—C15121.3 (2)O11—C13—C14118.1 (2)
C11—N3—H3N121 (2)O11—C13—C12123.5 (2)
C15—N3—H3N117 (2)C14—C13—C12118.5 (2)
N1—C1—C2120.9 (2)C15—C14—C13119.3 (2)
N1—C1—H1119.6C15—C14—H14120.3
C2—C1—H1119.6C13—C14—H14120.3
C1—C2—C3119.1 (2)N3—C15—C14120.6 (2)
C1—C2—H2120.4N3—C15—H15119.7
C3—C2—H2120.4C14—C15—H15119.7
C5—N1—C1—C20.5 (5)O10—C8—C9—C10179.4 (3)
N1—C1—C2—C31.0 (4)C7—C8—C9—C100.2 (4)
C1—C2—C3—O9179.3 (3)C6—N2—C10—C90.3 (4)
C1—C2—C3—C40.6 (4)C8—C9—C10—N20.2 (4)
O9—C3—C4—C5179.8 (2)C15—N3—C11—C120.3 (4)
C2—C3—C4—C50.3 (4)N3—C11—C12—C130.3 (4)
C1—N1—C5—C40.5 (4)C11—C12—C13—O11179.6 (3)
C3—C4—C5—N10.9 (4)C11—C12—C13—C140.2 (4)
C10—N2—C6—C70.4 (4)O11—C13—C14—C15179.6 (2)
N2—C6—C7—C80.4 (5)C12—C13—C14—C150.1 (4)
C6—C7—C8—O10179.3 (3)C11—N3—C15—C140.2 (4)
C6—C7—C8—C90.4 (4)C13—C14—C15—N30.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···O60.851.682.473 (3)154
O6—H6o···O20.851.762.473 (3)139
O9—H9o···O4i0.86 (1)1.76 (1)2.612 (6)174 (4)
O9—H9o···O4i0.86 (1)1.72 (2)2.569 (9)172 (4)
O10—H10o···O1wii0.86 (1)1.70 (1)2.554 (3)172 (3)
O11—H11o···O8ii0.86 (1)1.73 (1)2.591 (3)173 (4)
O1w—H1w···O70.85 (1)1.91 (1)2.754 (3)173 (4)
O1w—H2w···O3iii0.84 (1)1.93 (2)2.749 (4)162 (4)
N1—H1n···O10.85 (1)1.99 (2)2.798 (3)159 (3)
N1—H1n···O10.85 (1)2.23 (3)2.907 (6)138 (3)
N2—H2n···O50.85 (1)1.96 (1)2.795 (3)169 (3)
N3—H3n···O70.85 (1)1.94 (1)2.768 (3)167 (3)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+3/2, y+1, z+1/2; (iii) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formula3C5H6NO+·HSO4·SO42·H2O
Mr499.47
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)10.5622 (3), 19.6760 (7), 20.2980 (7)
V3)4218.4 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.23 × 0.17 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.930, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
38906, 4816, 3031
Rint0.064
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.133, 1.08
No. of reflections4816
No. of parameters359
No. of restraints151
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.31

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···O60.851.682.473 (3)154
O6—H6o···O20.851.762.473 (3)139
O9—H9o···O4i0.86 (1)1.76 (1)2.612 (6)174 (4)
O9—H9o···O4'i0.86 (1)1.72 (2)2.569 (9)172 (4)
O10—H10o···O1wii0.86 (1)1.70 (1)2.554 (3)172 (3)
O11—H11o···O8ii0.86 (1)1.73 (1)2.591 (3)173 (4)
O1w—H1w···O70.85 (1)1.91 (1)2.754 (3)173 (4)
O1w—H2w···O3iii0.84 (1)1.93 (2)2.749 (4)162 (4)
N1—H1n···O10.85 (1)1.99 (2)2.798 (3)159 (3)
N1—H1n···O1'0.85 (1)2.23 (3)2.907 (6)138 (3)
N2—H2n···O50.85 (1)1.96 (1)2.795 (3)169 (3)
N3—H3n···O70.85 (1)1.94 (1)2.768 (3)167 (3)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+3/2, y+1, z+1/2; (iii) x+3/2, y1/2, z.
 

Acknowledgements

We thank the Key Project of Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (No. 1054 G036), Heilongjiang University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationXu, Y.-M., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, o3146.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds