metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1643-m1644

Poly[[di­aqua­(μ4-1H-benzimidazole-5,6-di­carboxyl­ato)strontium] monohydrate]

aCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, bCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 12 November 2009; accepted 13 November 2009; online 21 November 2009)

Each of the carboxyl­ate –CO2 fragments of the dianion ligand in the title compound, {[Sr(C9H4N2O4)(H2O)2]·H2O}n, chelates to a SrII atom and at the same time, one of the two O atoms coordinates to a third SrII atom. The μ4-bridging mode of the dianion generates a square-grid layer motif; adjacent layers are connected by O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds, forming a three-dimensional network. The eight-coordinate Sr atom exists in a distorted square-anti­prismatic geometry. The crystal studied was a non-merohedral twin with a minor twin component of 24%.

Related literature

For the crystal structures of other metal salts of dicarboxylic acid, see: Gao et al. (2008[Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.]); Lo et al. (2007[Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657-m2658.]); Song et al. (2009a[Song, W.-D., Wang, H., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009a). Acta Cryst. E65, m702.],b[Song, W.-D., Wang, H., Qin, P.-W., Li, S.-J. & Hu, S.-W. (2009b). Acta Cryst. E65, m672.]). For the treated of diffraction data of twinned crystals, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Sr(C9H4N2O4)(H2O)2]·H2O

  • Mr = 345.81

  • Triclinic, [P \overline 1]

  • a = 6.909 (1) Å

  • b = 7.093 (1) Å

  • c = 13.037 (2) Å

  • α = 80.860 (5)°

  • β = 83.974 (5)°

  • γ = 71.795 (4)°

  • V = 598.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.54 mm−1

  • T = 293 K

  • 0.31 × 0.24 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.334, Tmax = 0.464

  • 5799 measured reflections

  • 2695 independent reflections

  • 2339 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.214

  • S = 1.05

  • 2695 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 2.69 e Å−3

  • Δρmin = −2.12 e Å−3

Table 1
Selected bond lengths (Å)

Sr1—O1 2.604 (5)
Sr1—O2 2.760 (5)
Sr1—O2i 2.516 (5)
Sr1—O3ii 2.711 (5)
Sr1—O3iii 2.528 (5)
Sr1—O4ii 2.635 (6)
Sr1—O1w 2.554 (5)
Sr1—O2w 2.579 (6)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y-1, z; (iii) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O1iii 0.84 1.98 2.81 (1) 167
O1w—H12⋯O4iv 0.84 2.00 2.83 (1) 173
O2w—H21⋯O3wv 0.84 2.28 2.95 (1) 136
O2w—H22⋯O4i 0.84 2.12 2.93 (1) 162
O3w—H3w1⋯N1 0.84 1.97 2.78 (1) 160
O3w—H3w2⋯O3wvi 0.84 2.39 3.01 (2) 132
N2—H2n⋯O3wvii 0.88 2.07 2.75 (1) 134
Symmetry codes: (i) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+2, -z+1; (v) x, y, z-1; (vi) -x+1, -y, -z+2; (vii) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX (Dolomanov et al., 2003[Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structures of other metal salts of dicarboxylic acid, see: Gao et al. (2008); Lo et al. (2007); Song et al. (2009a,b). For the treated of twinned diffraction data, see: Spek (2009).

Experimental top

Strontium dichloride hexahydrate (0.027 g, 0.1 mmol), 1H-benzimidazole-5,6-dicarboxylic acid (0.021 g, 0.1 mmol) and water (15 ml) along with a few drops of sodium hydroxide solution that adjusted the pH to about 7 were placed in a 25 ml glass vessel, which was kept at 277 K for several weeks. Colorless block-shaped crystals were obtained in 60% yield.

Refinement top

Carbon- and nitrogen bound H-atoms were generated geometrically, and were constrained to ride on their parent atoms (C–H = 0.93 Å, U = 1.5Ueq(C); N–H 0.88 Å, U = 1.2Ueq(N)).

For the two coordinated water molecules, their H-atoms rotated to fit the electron density. For the free water molecule, their H-atoms were placed in chemically sensible positions on the basis of hydrogen bonding interactions; O–H = 0.84 Å. Their temperature factors were similarly tied. The short intermolecular H3w2···H3w2 contact of < 2.0 Å may be an artifact of possible disorder in the O3w water molecule. However, it was not necessary, to split it into two components.

The structure is a non-merohedral twin; the diffraction intensities were split into two components by PLATON (Spek, 2009).

The final difference Fourier map had a large peak/deep hole in the vicinity of Sr1.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX (Dolomanov et al., 2003) and X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of the chain structure of Sr(H2O)2(C9H4N2O2).H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Detail of the geometry of Sr1.
[Figure 3] Fig. 3. OLEX (Dolomanov et al., 2003) depiction of the layer motif.
Poly[[diaqua(µ4-1H-benzimidazole-5,6-dicarboxylato)strontium] monohydrate] top
Crystal data top
[Sr(C9H4N2O4)(H2O)2]·H2OZ = 2
Mr = 345.81F(000) = 344
Triclinic, P1Dx = 1.920 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.909 (1) ÅCell parameters from 5129 reflections
b = 7.093 (1) Åθ = 3.1–27.5°
c = 13.037 (2) ŵ = 4.54 mm1
α = 80.860 (5)°T = 293 K
β = 83.974 (5)°Block, colorless
γ = 71.795 (4)°0.31 × 0.24 × 0.20 mm
V = 598.2 (2) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2695 independent reflections
Radiation source: fine-focus sealed tube2339 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ω scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.334, Tmax = 0.464k = 99
5799 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1352P)2 + 1.3937P]
where P = (Fo2 + 2Fc2)/3
2695 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 2.69 e Å3
0 restraintsΔρmin = 2.12 e Å3
Crystal data top
[Sr(C9H4N2O4)(H2O)2]·H2Oγ = 71.795 (4)°
Mr = 345.81V = 598.2 (2) Å3
Triclinic, P1Z = 2
a = 6.909 (1) ÅMo Kα radiation
b = 7.093 (1) ŵ = 4.54 mm1
c = 13.037 (2) ÅT = 293 K
α = 80.860 (5)°0.31 × 0.24 × 0.20 mm
β = 83.974 (5)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2695 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2339 reflections with I > 2σ(I)
Tmin = 0.334, Tmax = 0.464Rint = 0.075
5799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.214H-atom parameters constrained
S = 1.05Δρmax = 2.69 e Å3
2695 reflectionsΔρmin = 2.12 e Å3
173 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.25457 (8)0.25734 (8)0.46107 (4)0.0207 (3)
O10.4011 (8)0.3453 (8)0.6171 (5)0.0353 (13)
O20.1154 (7)0.5758 (7)0.5744 (4)0.0261 (10)
O30.3642 (7)0.8869 (7)0.5721 (4)0.0268 (10)
O40.0729 (8)1.0928 (8)0.6225 (5)0.0401 (14)
O1w0.2542 (8)0.5682 (8)0.3316 (4)0.0327 (12)
H110.35960.60020.33700.049*
H120.15020.66310.34430.049*
O2w0.2942 (10)0.0310 (10)0.3189 (6)0.0502 (17)
H210.30870.09530.26020.075*
H220.18960.00640.32130.075*
O3w0.3469 (12)0.0350 (11)1.0913 (6)0.0594 (19)
H3w10.31650.14851.05550.089*
H3w20.46870.02481.07400.089*
N10.2543 (11)0.4413 (11)1.0195 (5)0.0378 (16)
N20.1892 (12)0.7679 (11)1.0241 (5)0.0387 (16)
H2N0.16400.88301.04800.046*
C10.2549 (10)0.4986 (9)0.6338 (5)0.0198 (12)
C20.2500 (9)0.5836 (9)0.7336 (5)0.0192 (12)
C30.2665 (11)0.4524 (10)0.8249 (6)0.0254 (14)
H30.29160.31600.82390.031*
C40.2448 (11)0.5298 (11)0.9184 (6)0.0281 (15)
C50.2019 (11)0.7366 (11)0.9214 (6)0.0276 (14)
C60.1836 (11)0.8687 (10)0.8295 (6)0.0267 (14)
H60.15501.00550.83080.032*
C70.2086 (9)0.7926 (9)0.7361 (5)0.0190 (12)
C80.2165 (9)0.9307 (9)0.6363 (5)0.0216 (13)
C100.2225 (14)0.5909 (14)1.0781 (6)0.042 (2)
H100.22430.56921.15030.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0175 (4)0.0190 (4)0.0219 (4)0.0002 (2)0.0012 (2)0.0025 (3)
O10.027 (3)0.032 (3)0.042 (3)0.008 (2)0.010 (2)0.017 (2)
O20.022 (2)0.028 (2)0.026 (3)0.0030 (18)0.0043 (19)0.007 (2)
O30.020 (2)0.026 (2)0.029 (3)0.0029 (18)0.0065 (19)0.002 (2)
O40.030 (3)0.026 (3)0.045 (3)0.011 (2)0.010 (2)0.005 (2)
O1w0.026 (3)0.030 (3)0.039 (3)0.006 (2)0.004 (2)0.004 (2)
O2w0.047 (4)0.051 (4)0.057 (4)0.009 (3)0.012 (3)0.024 (3)
O3w0.066 (5)0.045 (4)0.066 (5)0.016 (3)0.013 (4)0.001 (4)
N10.049 (4)0.045 (4)0.020 (3)0.018 (3)0.005 (3)0.000 (3)
N20.055 (4)0.039 (4)0.024 (3)0.011 (3)0.000 (3)0.017 (3)
C10.018 (3)0.020 (3)0.022 (3)0.004 (2)0.000 (2)0.005 (2)
C20.014 (3)0.019 (3)0.022 (3)0.001 (2)0.002 (2)0.005 (2)
C30.032 (4)0.020 (3)0.027 (4)0.009 (2)0.002 (3)0.005 (3)
C40.035 (4)0.030 (4)0.021 (4)0.012 (3)0.005 (3)0.001 (3)
C50.033 (4)0.027 (3)0.025 (4)0.011 (3)0.003 (3)0.005 (3)
C60.034 (4)0.019 (3)0.026 (4)0.007 (3)0.000 (3)0.004 (3)
C70.020 (3)0.015 (3)0.021 (3)0.004 (2)0.002 (2)0.003 (2)
C80.016 (3)0.021 (3)0.025 (3)0.000 (2)0.001 (2)0.008 (3)
C100.049 (5)0.058 (5)0.018 (4)0.013 (4)0.006 (3)0.000 (3)
Geometric parameters (Å, º) top
Sr1—O12.604 (5)O2w—H220.8400
Sr1—O22.760 (5)O3w—H3w10.8400
Sr1—O2i2.516 (5)O3w—H3w20.8400
Sr1—O3ii2.711 (5)N1—C101.354 (11)
Sr1—O3iii2.528 (5)N1—C41.366 (9)
Sr1—O4ii2.635 (6)N2—C101.302 (11)
Sr1—O1w2.554 (5)N2—C51.381 (9)
Sr1—O2w2.579 (6)N2—H2N0.8800
O1—C11.262 (8)C1—C21.511 (9)
O2—C11.233 (8)C2—C31.382 (10)
O2—Sr1i2.516 (5)C2—C71.424 (8)
O3—C81.242 (8)C3—C41.390 (10)
O3—Sr1iii2.528 (5)C3—H30.9300
O3—Sr1iv2.711 (5)C4—C51.409 (9)
O4—C81.264 (8)C5—C61.390 (10)
O4—Sr1iv2.635 (6)C6—C71.383 (9)
O1w—H110.8400C6—H60.9300
O1w—H120.8400C7—C81.506 (9)
O2w—H210.8400C10—H100.9300
O2i—Sr1—O3iii159.81 (17)Sr1—O1w—H12109.5
O2i—Sr1—O1w75.51 (17)H11—O1w—H12109.5
O3iii—Sr1—O1w90.53 (16)Sr1—O2w—H21109.5
O2i—Sr1—O2w90.93 (18)Sr1—O2w—H22109.5
O3iii—Sr1—O2w75.39 (19)H21—O2w—H22109.5
O1w—Sr1—O2w94.2 (2)H3w1—O3w—H3w2107.1
O2i—Sr1—O1118.96 (15)C10—N1—C4106.1 (7)
O3iii—Sr1—O177.00 (17)C10—N2—C5105.4 (7)
O1w—Sr1—O198.63 (19)C10—N2—H2N127.3
O2w—Sr1—O1149.54 (18)C5—N2—H2N127.3
O2i—Sr1—O4ii78.71 (17)O2—C1—O1122.9 (6)
O3iii—Sr1—O4ii118.75 (16)O2—C1—C2119.6 (6)
O1w—Sr1—O4ii148.09 (16)O1—C1—C2117.4 (6)
O2w—Sr1—O4ii104.7 (2)C3—C2—C7120.5 (6)
O1—Sr1—O4ii77.8 (2)C3—C2—C1117.0 (5)
O2i—Sr1—O3ii118.90 (16)C7—C2—C1122.2 (6)
O3iii—Sr1—O3ii73.35 (17)C2—C3—C4118.1 (6)
O1w—Sr1—O3ii163.41 (16)C2—C3—H3120.9
O2w—Sr1—O3ii78.2 (2)C4—C3—H3120.9
O1—Sr1—O3ii81.86 (17)N1—C4—C3132.1 (7)
O4ii—Sr1—O3ii48.37 (14)N1—C4—C5106.2 (6)
O2i—Sr1—O272.84 (17)C3—C4—C5121.7 (7)
O3iii—Sr1—O2117.87 (16)N2—C5—C6131.4 (7)
O1w—Sr1—O274.33 (16)N2—C5—C4108.4 (6)
O2w—Sr1—O2161.91 (19)C6—C5—C4120.1 (7)
O1—Sr1—O248.13 (14)C7—C6—C5118.6 (6)
O4ii—Sr1—O280.35 (17)C7—C6—H6120.7
O3ii—Sr1—O2116.38 (15)C5—C6—H6120.7
O1—Sr1—C8ii76.73 (18)C6—C7—C2121.0 (6)
C1—O1—Sr197.5 (4)C6—C7—C8118.7 (5)
C1—O2—Sr1i152.2 (5)C2—C7—C8119.9 (6)
C1—O2—Sr190.8 (4)O3—C8—O4122.0 (7)
Sr1i—O2—Sr1107.16 (17)O3—C8—C7120.0 (5)
C8—O3—Sr1iii148.1 (5)O4—C8—C7117.9 (6)
C8—O3—Sr1iv92.8 (4)N2—C10—N1113.9 (7)
Sr1iii—O3—Sr1iv106.65 (17)N2—C10—H10123.0
C8—O4—Sr1iv95.9 (4)N1—C10—H10123.0
Sr1—O1w—H11109.5
O2i—Sr1—O1—C113.7 (5)C1—C2—C3—C4174.6 (6)
O3iii—Sr1—O1—C1153.0 (5)C10—N1—C4—C3179.6 (8)
O1w—Sr1—O1—C164.5 (5)C10—N1—C4—C51.3 (9)
O2w—Sr1—O1—C1178.4 (4)C2—C3—C4—N1179.4 (8)
O4ii—Sr1—O1—C183.2 (4)C2—C3—C4—C51.6 (10)
O3ii—Sr1—O1—C1132.3 (5)C10—N2—C5—C6178.7 (9)
O2—Sr1—O1—C14.7 (4)C10—N2—C5—C40.0 (9)
O2i—Sr1—O2—C1158.5 (5)N1—C4—C5—N20.8 (9)
O3iii—Sr1—O2—C140.1 (4)C3—C4—C5—N2180.0 (7)
O1w—Sr1—O2—C1122.2 (4)N1—C4—C5—C6179.7 (7)
O2w—Sr1—O2—C1174.5 (6)C3—C4—C5—C61.1 (11)
O1—Sr1—O2—C14.8 (4)N2—C5—C6—C7178.5 (8)
O4ii—Sr1—O2—C177.4 (4)C4—C5—C6—C70.1 (11)
O3ii—Sr1—O2—C144.2 (4)C5—C6—C7—C20.7 (10)
O2i—Sr1—O2—Sr1i0.0C5—C6—C7—C8172.0 (6)
O3iii—Sr1—O2—Sr1i161.42 (17)C3—C2—C7—C60.2 (9)
O1w—Sr1—O2—Sr1i79.3 (2)C1—C2—C7—C6173.1 (6)
O2w—Sr1—O2—Sr1i27.0 (7)C3—C2—C7—C8172.4 (6)
O1—Sr1—O2—Sr1i163.2 (3)C1—C2—C7—C814.3 (9)
O4ii—Sr1—O2—Sr1i81.1 (2)Sr1iii—O3—C8—O4138.1 (7)
O3ii—Sr1—O2—Sr1i114.29 (18)Sr1iv—O3—C8—O49.6 (7)
Sr1i—O2—C1—O1139.9 (8)Sr1iii—O3—C8—C739.6 (12)
Sr1—O2—C1—O18.8 (7)Sr1iv—O3—C8—C7168.1 (5)
Sr1i—O2—C1—C237.6 (12)Sr1iv—O4—C8—O39.9 (7)
Sr1—O2—C1—C2168.8 (5)Sr1iv—O4—C8—C7167.8 (5)
Sr1—O1—C1—O29.4 (8)C6—C7—C8—O3125.0 (7)
Sr1—O1—C1—C2168.3 (5)C2—C7—C8—O347.8 (9)
O2—C1—C2—C3125.8 (7)C6—C7—C8—O452.8 (9)
O1—C1—C2—C351.9 (9)C2—C7—C8—O4134.4 (7)
O2—C1—C2—C747.7 (9)C5—N2—C10—N10.9 (10)
O1—C1—C2—C7134.6 (7)C4—N1—C10—N21.4 (10)
C7—C2—C3—C40.9 (9)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O1iii0.841.982.81 (1)167
O1w—H12···O4v0.842.002.83 (1)173
O2w—H21···O3wvi0.842.282.95 (1)136
O2w—H22···O4i0.842.122.93 (1)162
O3w—H3w1···N10.841.972.78 (1)160
O3w—H3w2···O3wvii0.842.393.01 (2)132
N2—H2n···O3wiv0.882.072.75 (1)134
Symmetry codes: (i) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x, y+2, z+1; (vi) x, y, z1; (vii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Sr(C9H4N2O4)(H2O)2]·H2O
Mr345.81
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.909 (1), 7.093 (1), 13.037 (2)
α, β, γ (°)80.860 (5), 83.974 (5), 71.795 (4)
V3)598.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)4.54
Crystal size (mm)0.31 × 0.24 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.334, 0.464
No. of measured, independent and
observed [I > 2σ(I)] reflections
5799, 2695, 2339
Rint0.075
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.214, 1.05
No. of reflections2695
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.69, 2.12

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX (Dolomanov et al., 2003) and X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Sr1—O12.604 (5)Sr1—O3iii2.528 (5)
Sr1—O22.760 (5)Sr1—O4ii2.635 (6)
Sr1—O2i2.516 (5)Sr1—O1w2.554 (5)
Sr1—O3ii2.711 (5)Sr1—O2w2.579 (6)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O1iii0.841.982.81 (1)167
O1w—H12···O4iv0.842.002.83 (1)173
O2w—H21···O3wv0.842.282.95 (1)136
O2w—H22···O4i0.842.122.93 (1)162
O3w—H3w1···N10.841.972.78 (1)160
O3w—H3w2···O3wvi0.842.393.01 (2)132
N2—H2n···O3wvii0.882.072.75 (1)134
Symmetry codes: (i) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y+2, z+1; (v) x, y, z1; (vi) x+1, y, z+2; (vii) x, y+1, z.
 

Acknowledgements

We thank Guangdong Ocean University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Wang, H., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009a). Acta Cryst. E65, m702.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, W.-D., Wang, H., Qin, P.-W., Li, S.-J. & Hu, S.-W. (2009b). Acta Cryst. E65, m672.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1643-m1644
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds