organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Nitro­phen­yl)-N-phenyl­oxirane-2-carboxamide

aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: helongcwnu@yahoo.com.cn

(Received 22 July 2009; accepted 25 July 2009; online 31 July 2009)

The mol­ecule of the title compound, C15H12N2O4, adopts a syn conformation with the terminal benzene rings located on the same sides of the central epoxide ring. The epoxide ring makes dihedral angles of 71.08 (18) and 60.83 (17)° with the two benzene rings. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For epoxide-containing compounds used as building blocks in synthesis, see: Righi et al. (1996[Righi, G., Rumboldt, G. & Bonini, C. (1996). J. Org. Chem. 61, 3557-3560.]); Bhatia et al. (1999[Bhatia, B., Jain, S., De, A., Bagchi, I. & Iqbal, J. (1999). Tetrahedron Lett. 37, 7311-7314.]); Meth-Cohn et al. (1999[Meth-Cohn, O. & Chen, Y. (1999). Tetrahedron Lett. 40, 6069-6072.]); Thijs et al. (1990[Thijs, L., Porskamp, J. J. M., van Loon, A. A. W. M., Derks, M. P. W., Feenstra, R. W., Legters, J. & Zwanenburg, B. (1990). Tetrahedron, 46, 2611-2614.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2O4

  • Mr = 284.27

  • Monoclinic, P 21

  • a = 5.9800 (3) Å

  • b = 5.1960 (4) Å

  • c = 21.503 (5) Å

  • β = 96.105 (5)°

  • V = 664.35 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.36 × 0.30 × 0.10 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: none

  • 6118 measured reflections

  • 1515 independent reflections

  • 821 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.042

  • S = 1.13

  • 1515 reflections

  • 194 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.39 3.267 (4) 158
C15—H15⋯O3ii 0.93 2.53 3.353 (4) 148
Symmetry codes: (i) x-1, y, z; (ii) x+1, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Oxiranecarboxamides are the key building blocks in the synthesis of natural products such as the Taxol side chain (Righi et al. 1996). Selective ring-opening reactions of oxiranes also provide powerful and efficient routes to a variety of useful compounds including 2,3-epoxyketone (Meth-Cohn et al. 1999), aziridinecarboxylate (Thijs et al. 1990). isoserine derivatives (Bhatia et al. 1999). The crystal structure of the title compound is reported here.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The two phenyl ring is the cis conformation, the dihedral angle between the two phenyl ring is 77.34 (8)°. Epoxide ring makes dihedral angles of 71.08 (18)° and 60.83 (17)° with phenyl rings C1—C6 and C10—C15, respectively. The crystal packing is stabilized by C—H···0 hydrogen bonding (Table 1).

Related literature top

For epoxide-containing compounds used as building blocks in synthesis, see: Righi et al. (1996); Bhatia et al. (1999); Meth-Cohn et al. (1999); Thijs et al. (1990).

Experimental top

2-Chloro-N-phenylacetamide (0.17 g, 1.0 mmol) and sodium ethanolate (0.14 g, 2.0 mmol) were dissolved in acetonitrile (2 ml). To the solution was added 4-nitrophenylaldehyde (0.15 g, 1.0 mmol) at 298 K, the solution was stirred for 60 min and removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel to give compound (I). Crystals suitable for X-ray analysis were obtained by dissolving the title compound (0.01 g) in ethanol (2 ml) and evaporating the solvent slowly at room temperature for about 3 d.

Refinement top

The H4 atom was located in a difference Fourier map and refined isotropically. The carbon-bound hydrogen atoms were placed in calculated positions with C—H = 0.93–0.98 Å, and refined using a riding model with Uiso(H) =1.2Ueq(C). Friedel pairs were merged.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
3-(4-Nitrophenyl)-N-phenyloxirane-2-carboxamide top
Crystal data top
C15H12N2O4F(000) = 296
Mr = 284.27Dx = 1.421 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1633 reflections
a = 5.9800 (3) Åθ = 2.9–29.0°
b = 5.1960 (4) ŵ = 0.11 mm1
c = 21.503 (5) ÅT = 293 K
β = 96.105 (5)°Block, colorless
V = 664.35 (17) Å30.36 × 0.30 × 0.10 mm
Z = 2
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
821 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.054
Graphite monochromatorθmax = 26.4°, θmin = 2.9°
ω scansh = 77
6118 measured reflectionsk = 65
1515 independent reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.042H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0006P)2]
where P = (Fo2 + 2Fc2)/3
1515 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.12 e Å3
2 restraintsΔρmin = 0.13 e Å3
Crystal data top
C15H12N2O4V = 664.35 (17) Å3
Mr = 284.27Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.9800 (3) ŵ = 0.11 mm1
b = 5.1960 (4) ÅT = 293 K
c = 21.503 (5) Å0.36 × 0.30 × 0.10 mm
β = 96.105 (5)°
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
821 reflections with I > 2σ(I)
6118 measured reflectionsRint = 0.054
1515 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.042H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.12 e Å3
1515 reflectionsΔρmin = 0.13 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.6579 (3)0.2311 (5)0.48448 (11)0.0686 (8)
O20.7928 (4)1.2561 (5)0.25607 (9)0.0691 (7)
N10.8102 (5)0.8270 (6)0.17913 (12)0.0573 (8)
O30.3472 (3)0.2679 (5)0.42342 (10)0.0766 (8)
N20.5421 (5)0.3314 (6)0.44030 (13)0.0566 (9)
C100.8251 (5)0.9283 (6)0.34170 (14)0.0437 (9)
C140.8515 (4)0.6302 (6)0.42748 (13)0.0459 (9)
H140.93010.56060.46320.055*
C40.7716 (6)0.6203 (7)0.13644 (14)0.0511 (10)
C150.9424 (4)0.8237 (7)0.39512 (14)0.0491 (9)
H151.08480.88610.40900.059*
O11.1883 (4)0.7951 (6)0.20507 (10)0.0919 (9)
C130.6412 (5)0.5415 (7)0.40592 (15)0.0398 (9)
C110.6126 (5)0.8330 (7)0.32131 (13)0.0524 (10)
H110.53230.90080.28560.063*
C81.0022 (6)1.1420 (7)0.24713 (14)0.0596 (10)
H81.12141.26600.24100.071*
C120.5216 (5)0.6395 (7)0.35375 (14)0.0530 (10)
H120.37940.57550.34030.064*
C90.9241 (5)1.1506 (7)0.30983 (14)0.0527 (10)
H90.99991.27860.33820.063*
C50.9264 (5)0.5501 (8)0.09757 (14)0.0604 (11)
H51.06390.63480.09960.072*
C71.0093 (7)0.9023 (7)0.20860 (15)0.0618 (11)
C60.8787 (6)0.3529 (8)0.05514 (15)0.0726 (12)
H60.98470.30640.02850.087*
C30.5675 (5)0.4925 (8)0.13414 (15)0.0646 (11)
H30.46230.53820.16110.078*
C10.6773 (6)0.2246 (7)0.05169 (15)0.0703 (12)
H10.64620.09180.02310.084*
C20.5224 (5)0.2959 (9)0.09128 (17)0.0710 (11)
H20.38500.21070.08920.085*
H40.678 (3)0.890 (6)0.1938 (12)0.087 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0732 (16)0.057 (2)0.0750 (16)0.0043 (14)0.0071 (12)0.0141 (15)
O20.1047 (18)0.0473 (19)0.0558 (15)0.0221 (16)0.0106 (14)0.0014 (16)
N10.066 (2)0.061 (3)0.0451 (18)0.019 (2)0.0055 (17)0.004 (2)
O30.0612 (15)0.070 (2)0.0974 (17)0.0300 (15)0.0046 (12)0.0074 (17)
N20.062 (2)0.048 (3)0.061 (2)0.0070 (19)0.0153 (17)0.012 (2)
C100.054 (2)0.040 (3)0.038 (2)0.0007 (18)0.0097 (17)0.0077 (19)
C140.047 (2)0.045 (3)0.044 (2)0.0014 (19)0.0018 (16)0.003 (2)
C40.070 (2)0.047 (3)0.036 (2)0.022 (2)0.0045 (19)0.000 (2)
C150.0508 (19)0.055 (3)0.0412 (19)0.003 (2)0.0016 (17)0.005 (2)
O10.0763 (16)0.104 (2)0.0930 (19)0.0260 (17)0.0025 (14)0.047 (2)
C130.047 (2)0.034 (3)0.040 (2)0.0027 (17)0.0094 (17)0.0042 (17)
C110.054 (2)0.056 (3)0.046 (2)0.012 (2)0.0023 (17)0.001 (2)
C80.091 (3)0.039 (3)0.050 (2)0.005 (2)0.0143 (19)0.000 (2)
C120.046 (2)0.061 (3)0.051 (2)0.005 (2)0.0018 (18)0.009 (2)
C90.074 (2)0.040 (3)0.044 (2)0.003 (2)0.0054 (19)0.007 (2)
C50.074 (2)0.065 (3)0.044 (2)0.004 (2)0.014 (2)0.009 (2)
C70.084 (3)0.056 (3)0.046 (2)0.007 (2)0.012 (2)0.004 (2)
C60.085 (3)0.075 (4)0.058 (2)0.004 (3)0.009 (2)0.012 (3)
C30.061 (2)0.069 (3)0.064 (3)0.015 (2)0.008 (2)0.008 (2)
C10.093 (3)0.052 (3)0.062 (3)0.012 (3)0.008 (2)0.004 (2)
C20.068 (3)0.065 (3)0.077 (3)0.006 (2)0.008 (2)0.004 (3)
Geometric parameters (Å, º) top
O4—N21.230 (3)C13—C121.364 (3)
O2—C81.417 (3)C11—C121.369 (4)
O2—C91.435 (3)C11—H110.9300
N1—C71.346 (4)C8—C91.474 (4)
N1—C41.416 (4)C8—C71.499 (4)
N1—H40.940 (10)C8—H80.9800
O3—N21.229 (2)C12—H120.9300
N2—C131.477 (4)C9—H90.9800
C10—C111.391 (3)C5—C61.381 (4)
C10—C151.391 (4)C5—H50.9300
C10—C91.497 (4)C6—C11.371 (4)
C14—C151.368 (4)C6—H60.9300
C14—C131.373 (3)C3—C21.383 (5)
C14—H140.9300C3—H30.9300
C4—C51.361 (4)C1—C21.374 (4)
C4—C31.386 (4)C1—H10.9300
C15—H150.9300C2—H20.9300
O1—C71.216 (3)
C8—O2—C962.22 (18)C9—C8—H8114.1
C7—N1—C4126.9 (3)C7—C8—H8114.1
C7—N1—H4118.2 (19)C13—C12—C11119.4 (3)
C4—N1—H4113.5 (19)C13—C12—H12120.3
O3—N2—O4123.5 (3)C11—C12—H12120.3
O3—N2—C13118.0 (3)O2—C9—C858.28 (18)
O4—N2—C13118.5 (3)O2—C9—C10117.0 (3)
C11—C10—C15119.0 (3)C8—C9—C10125.1 (3)
C11—C10—C9121.5 (3)O2—C9—H9114.7
C15—C10—C9119.4 (3)C8—C9—H9114.7
C15—C14—C13118.3 (3)C10—C9—H9114.7
C15—C14—H14120.8C4—C5—C6119.9 (3)
C13—C14—H14120.8C4—C5—H5120.1
C5—C4—C3120.2 (3)C6—C5—H5120.1
C5—C4—N1121.8 (4)O1—C7—N1125.3 (4)
C3—C4—N1118.0 (3)O1—C7—C8119.5 (4)
C14—C15—C10120.9 (3)N1—C7—C8115.2 (3)
C14—C15—H15119.5C1—C6—C5121.0 (3)
C10—C15—H15119.5C1—C6—H6119.5
C12—C13—C14122.3 (3)C5—C6—H6119.5
C12—C13—N2119.0 (3)C2—C3—C4119.1 (3)
C14—C13—N2118.7 (3)C2—C3—H3120.4
C12—C11—C10120.0 (3)C4—C3—H3120.4
C12—C11—H11120.0C6—C1—C2118.8 (4)
C10—C11—H11120.0C6—C1—H1120.6
O2—C8—C959.50 (19)C2—C1—H1120.6
O2—C8—C7120.0 (3)C1—C2—C3121.0 (4)
C9—C8—C7124.1 (3)C1—C2—H2119.5
O2—C8—H8114.1C3—C2—H2119.5
C7—N1—C4—C532.3 (5)C7—C8—C9—C104.9 (6)
C7—N1—C4—C3149.1 (3)C11—C10—C9—O21.9 (4)
C13—C14—C15—C100.0 (4)C15—C10—C9—O2178.1 (3)
C11—C10—C15—C140.1 (4)C11—C10—C9—C870.6 (4)
C9—C10—C15—C14176.2 (3)C15—C10—C9—C8113.2 (4)
C15—C14—C13—C120.0 (4)C3—C4—C5—C60.8 (5)
C15—C14—C13—N2179.6 (3)N1—C4—C5—C6177.8 (3)
O3—N2—C13—C126.0 (4)C4—N1—C7—O13.5 (5)
O4—N2—C13—C12174.6 (3)C4—N1—C7—C8175.0 (3)
O3—N2—C13—C14174.4 (3)O2—C8—C7—O1174.5 (3)
O4—N2—C13—C145.1 (4)C9—C8—C7—O1103.0 (4)
C15—C10—C11—C120.1 (4)O2—C8—C7—N16.9 (4)
C9—C10—C11—C12176.1 (3)C9—C8—C7—N178.4 (4)
C9—O2—C8—C7114.3 (4)C4—C5—C6—C10.4 (5)
C14—C13—C12—C110.1 (4)C5—C4—C3—C21.0 (5)
N2—C13—C12—C11179.6 (3)N1—C4—C3—C2177.7 (3)
C10—C11—C12—C130.1 (4)C5—C6—C1—C20.1 (5)
C8—O2—C9—C10116.3 (3)C6—C1—C2—C30.3 (5)
C7—C8—C9—O2107.6 (4)C4—C3—C2—C10.7 (5)
O2—C8—C9—C10102.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.393.267 (4)158
C15—H15···O3ii0.932.533.353 (4)148
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H12N2O4
Mr284.27
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)5.9800 (3), 5.1960 (4), 21.503 (5)
β (°) 96.105 (5)
V3)664.35 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.36 × 0.30 × 0.10
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6118, 1515, 821
Rint0.054
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.042, 1.13
No. of reflections1515
No. of parameters194
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.13

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.393.267 (4)158.2
C15—H15···O3ii0.932.533.353 (4)148.0
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z.
 

Acknowledgements

The diffraction measurements were made at the Centre for Testing and Analysis, Chengdu Branch, Chinese Academy of Sciences. We acknowledge financial support from China West Normal University.

References

First citationBhatia, B., Jain, S., De, A., Bagchi, I. & Iqbal, J. (1999). Tetrahedron Lett. 37, 7311–7314.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMeth-Cohn, O. & Chen, Y. (1999). Tetrahedron Lett. 40, 6069–6072.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRighi, G., Rumboldt, G. & Bonini, C. (1996). J. Org. Chem. 61, 3557–3560.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThijs, L., Porskamp, J. J. M., van Loon, A. A. W. M., Derks, M. P. W., Feenstra, R. W., Legters, J. & Zwanenburg, B. (1990). Tetrahedron, 46, 2611–2614.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds