metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(2,2′-bi­pyrimidine-κ2N,N′)(succin­ato-κ2O1,O4)copper(II) dihydrate

aCollege of Mechanical and Material Engineering, Functional Materials Research Institute, China Three Gorges University, Yichang 443002, People's Republic of China
*Correspondence e-mail: lidongsheng1@126.com

(Received 6 April 2009; accepted 9 April 2009; online 18 April 2009)

In the crystal structure of the title compound, [Cu(C4H4O4)(C8H6N4)(H2O)]·2H2O, the CuII atom is chelated by a 2,2′-bipyrimidine (bpm) ligand and a succinate anion in the basal plane; a water mol­ecule in the apical position completes the slightly distorted square-pyramidal coordination geometry. Another carboxyl­ate O atom from an adjacent complex is located in the opposite apical direction, with a Cu⋯O distance of 2.706 (3) Å, and is not considered as a bridging atom. Extensive O—H⋯O and O—H⋯N hydrogen bonding is present in the crystal structure.

Related literature

For general background, see: McCann et al. (1997[McCann, M., Casey, M.-T., Devereux, M., Curran, M. & Ferguson, G. (1997). Polyhedron, 15, 2547-2552.]); Ray et al. (2004[Ray, M.-S., Ghosh, A., Das, A., Drew, M.-G. B., Ribas-Ariňo, J., Novoa, J. & Ribas, J. (2004). Chem. Commun. pp. 1102-1103.]); Zhang et al. (2004[Zhang, J., Li, Zh.-J., Wen, Y.-H., Kang, Y., Cheng, J.-K. & Yao, Y.-G. (2004). Z. Anorg. Allg. Chem. 630, 2731-2735.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C4H4O4)(C8H6N4)(H2O)]·2H2O

  • Mr = 391.83

  • Monoclinic, P 21 /c

  • a = 10.6905 (8) Å

  • b = 18.9321 (14) Å

  • c = 7.6105 (6) Å

  • β = 92.2290 (10)°

  • V = 1539.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.09 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.700, Tmax = 0.877

  • 7725 measured reflections

  • 2735 independent reflections

  • 2085 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.06

  • 2735 reflections

  • 235 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 2.386 (3)
Cu1—O2 1.918 (3)
Cu1—O5 1.940 (3)
Cu1—N1 2.017 (3)
Cu1—N2 2.012 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O1W 0.85 (4) 1.89 (4) 2.703 (5) 162 (4)
O1—H1B⋯O4i 0.85 (4) 2.05 (4) 2.903 (4) 178 (4)
O1W—H1WA⋯O2Wii 0.85 (4) 1.950 (17) 2.790 (6) 169 (5)
O1W—H1WB⋯N3iii 0.84 (4) 2.45 (5) 3.216 (5) 152 (4)
O1W—H1WB⋯N4iii 0.84 (4) 2.46 (4) 3.130 (5) 137 (5)
O2W—H2WA⋯O3iii 0.85 (4) 2.04 (4) 2.876 (6) 167 (5)
O2W—H2WB⋯O3iv 0.85 (4) 1.94 (4) 2.777 (5) 168 (4)
Symmetry codes: (i) -x+2, -y+2, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) x, y-1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, the area of metal-organic framework materials has become one of the intense research activities for their fascinating structural diversities and potential applications in catalysis, nonlinear optics and molecular sensing. As an important family of multidentate O-donor ligands, saturated aliphatic carboxylate ligands have been extensively employed in the preparation of metal-organic complexes because of their potential properties and intriguing structural topologies (McCann et al., 1997; Ray et al., 2004; Zhang et al. 2004). Herein, we report the structure of the title complex.

The title compound contains one CuII cation, one suc ligands, one bpm ligands, one coordinated water and two lattice water molecules, as illustrated in Fig. 1. The CuII atom has a slightly distored square-pyramidal geometry (Table 1), in which the CuIIatom is coordinated by two N atoms of bpm ligand, two O atoms from carboxyl groups of succinate anions and one O atom from coordinated water molecule. Each unit is connected by O—H···O hydrogen bonds between carboxyl groups and coordinated water molecules (Table 2) into one-dimensional chain along c-axis. The lattice water molecule acts as both hydrogen-bond donor and acceptor. Just through hydrogen bonds (O—H···O) involving lattice water molecules, those one-dimensional chains are further connected to generate a three-dimensional supramolecular framework.

Related literature top

For general background, see: McCann et al. (1997); Ray et al. (2004); Zhang et al. (2004).

Experimental top

A mixture of CuCl2.2H2O (0.017 g, 0.1 mmol), bpm (0.015 g, 0.1 mmol), sodium succinate (0.0139 g, 0.1 mmol) and distilled water (10 ml) was sealed in a 25 ml Teflon-lined stainless autoclave. The pH value of the mixture was adjusted to 6 by an aqueous solution of NaOH (0.1 mol/L), and then heated at 393 K for 3 days; blue crystals were obtained on cooling to room temperature at 5 K/h.

Refinement top

Water H atoms were located in a difference Fourier map and refined with distance restraints O—H = 0.85 (2) Å, Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions and treated using a riding-model approximation with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Aqua(2,2'-bipyrimidine-κ2N,N')(succinato- κ2O1,O4)copper(II) dihydrate top
Crystal data top
[Cu(C4H4O4)(C8H6N4)(H2O)]·2H2OF(000) = 804
Mr = 391.83Dx = 1.691 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3225 reflections
a = 10.6905 (8) Åθ = 1.9–25.1°
b = 18.9321 (14) ŵ = 1.46 mm1
c = 7.6105 (6) ÅT = 293 K
β = 92.229 (1)°Prism, blue
V = 1539.2 (2) Å30.30 × 0.20 × 0.09 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2735 independent reflections
Radiation source: fine-focus sealed tube2085 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.700, Tmax = 0.877k = 2222
7725 measured reflectionsl = 94
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0588P)2 + 1.4777P]
where P = (Fo2 + 2Fc2)/3
2735 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.46 e Å3
10 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Cu(C4H4O4)(C8H6N4)(H2O)]·2H2OV = 1539.2 (2) Å3
Mr = 391.83Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6905 (8) ŵ = 1.46 mm1
b = 18.9321 (14) ÅT = 293 K
c = 7.6105 (6) Å0.30 × 0.20 × 0.09 mm
β = 92.229 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2735 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2085 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 0.877Rint = 0.036
7725 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04310 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.46 e Å3
2735 reflectionsΔρmin = 0.66 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.83883 (5)0.98092 (2)0.42287 (7)0.0376 (2)
O10.7210 (3)0.94912 (16)0.1622 (4)0.0477 (8)
H1A0.673 (4)0.9136 (17)0.160 (6)0.072*
H1B0.774 (4)0.945 (2)0.082 (5)0.072*
O1W0.6018 (4)0.82533 (18)0.2132 (6)0.0724 (11)
H1WA0.5230 (12)0.819 (3)0.212 (9)0.109*
H1WB0.637 (4)0.790 (2)0.170 (9)0.109*
O20.7834 (3)1.07626 (14)0.4543 (4)0.0459 (7)
O2W0.6560 (4)0.3145 (2)0.2485 (6)0.0810 (12)
H2WB0.674 (7)0.2726 (15)0.280 (8)0.121*
H2WA0.676 (7)0.321 (3)0.143 (4)0.121*
O30.7344 (3)1.18623 (16)0.3913 (5)0.0606 (9)
O41.1035 (3)1.06421 (15)0.1176 (4)0.0490 (8)
O50.9903 (3)1.00736 (14)0.3069 (4)0.0395 (7)
N10.8883 (3)0.87826 (17)0.4388 (4)0.0362 (8)
N20.7034 (3)0.94476 (18)0.5757 (4)0.0382 (8)
N30.8133 (3)0.76731 (17)0.5315 (5)0.0468 (9)
N40.6295 (3)0.8392 (2)0.7042 (5)0.0494 (10)
C10.9872 (4)0.8470 (2)0.3680 (6)0.0435 (10)
H1C1.04660.87450.31350.052*
C21.0017 (4)0.7748 (2)0.3750 (6)0.0499 (11)
H21.07000.75250.32720.060*
C30.9102 (4)0.7374 (2)0.4561 (6)0.0491 (11)
H30.91640.68840.45840.059*
C40.8069 (4)0.8370 (2)0.5194 (5)0.0368 (9)
C50.7056 (4)0.8751 (2)0.6045 (5)0.0376 (9)
C60.5436 (4)0.8772 (3)0.7835 (7)0.0573 (13)
H60.48860.85390.85570.069*
C70.5319 (4)0.9492 (3)0.7641 (6)0.0546 (12)
H70.47040.97460.82010.066*
C80.6163 (4)0.9822 (2)0.6570 (6)0.0459 (11)
H80.61241.03090.64140.055*
C90.7701 (4)1.1270 (2)0.3460 (6)0.0413 (10)
C100.7927 (4)1.1167 (2)0.1584 (6)0.0442 (11)
H10A0.71791.09390.10970.053*
H10B0.79321.16380.10820.053*
C110.8904 (4)1.0823 (2)0.0863 (6)0.0409 (10)
H11A0.92431.11550.00360.049*
H11B0.85231.04480.01560.049*
C121.0022 (4)1.0491 (2)0.1772 (5)0.0370 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0438 (3)0.0255 (3)0.0444 (3)0.0014 (2)0.0122 (2)0.0028 (2)
O10.0475 (18)0.0452 (17)0.0511 (19)0.0081 (14)0.0088 (15)0.0032 (15)
O1W0.071 (2)0.0425 (19)0.104 (3)0.0055 (18)0.012 (2)0.008 (2)
O20.0617 (19)0.0287 (14)0.0479 (18)0.0054 (14)0.0112 (15)0.0025 (13)
O2W0.100 (3)0.063 (2)0.081 (3)0.028 (2)0.022 (3)0.024 (2)
O30.083 (2)0.0362 (17)0.063 (2)0.0214 (17)0.0051 (19)0.0003 (16)
O40.0475 (18)0.0434 (17)0.057 (2)0.0044 (14)0.0187 (16)0.0048 (15)
O50.0417 (16)0.0332 (14)0.0439 (17)0.0001 (12)0.0055 (13)0.0063 (13)
N10.0393 (18)0.0300 (17)0.0395 (19)0.0004 (15)0.0026 (16)0.0003 (15)
N20.0403 (18)0.0358 (18)0.039 (2)0.0019 (15)0.0066 (16)0.0009 (15)
N30.055 (2)0.0281 (18)0.057 (2)0.0029 (16)0.001 (2)0.0058 (17)
N40.042 (2)0.049 (2)0.058 (2)0.0074 (17)0.0105 (19)0.0130 (19)
C10.046 (2)0.041 (2)0.044 (2)0.001 (2)0.008 (2)0.002 (2)
C20.052 (3)0.041 (2)0.057 (3)0.010 (2)0.005 (2)0.003 (2)
C30.062 (3)0.030 (2)0.056 (3)0.006 (2)0.003 (2)0.001 (2)
C40.038 (2)0.033 (2)0.039 (2)0.0051 (17)0.0001 (19)0.0064 (18)
C50.038 (2)0.037 (2)0.038 (2)0.0028 (18)0.0011 (19)0.0060 (18)
C60.045 (3)0.069 (3)0.059 (3)0.003 (2)0.011 (2)0.014 (3)
C70.045 (3)0.068 (3)0.051 (3)0.005 (2)0.012 (2)0.002 (3)
C80.050 (3)0.042 (2)0.046 (3)0.010 (2)0.005 (2)0.002 (2)
C90.038 (2)0.032 (2)0.054 (3)0.0007 (18)0.006 (2)0.001 (2)
C100.044 (2)0.033 (2)0.056 (3)0.0061 (19)0.001 (2)0.010 (2)
C110.050 (2)0.031 (2)0.042 (2)0.0139 (19)0.003 (2)0.0073 (19)
C120.048 (2)0.0251 (19)0.039 (2)0.0006 (18)0.008 (2)0.0044 (18)
Geometric parameters (Å, º) top
Cu1—O12.386 (3)N4—C51.323 (5)
Cu1—O21.918 (3)N4—C61.330 (6)
Cu1—O51.940 (3)C1—C21.376 (6)
Cu1—N12.017 (3)C1—H1C0.9300
Cu1—N22.012 (3)C2—C31.374 (6)
O1—H1A0.85 (4)C2—H20.9300
O1—H1B0.85 (4)C3—H30.9300
O1W—H1WA0.85 (4)C4—C51.472 (6)
O1W—H1WB0.84 (4)C6—C71.377 (7)
O2—C91.270 (5)C6—H60.9300
O2W—H2WB0.85 (4)C7—C81.388 (6)
O2W—H2WA0.85 (4)C7—H70.9300
O3—C91.239 (5)C8—H80.9300
O4—C121.224 (5)C9—C101.469 (6)
O5—C121.275 (5)C10—C111.365 (5)
N1—C41.336 (5)C10—H10A0.9700
N1—C11.343 (5)C10—H10B0.9700
N2—C51.336 (5)C11—C121.495 (6)
N2—C81.341 (5)C11—H11A0.9700
N3—C41.324 (5)C11—H11B0.9700
N3—C31.330 (5)
O2—Cu1—O594.68 (12)N3—C4—N1125.6 (4)
O2—Cu1—N290.87 (13)N3—C4—C5119.7 (3)
O5—Cu1—N2169.41 (13)N1—C4—C5114.7 (3)
O2—Cu1—N1168.87 (13)N4—C5—N2126.5 (4)
O5—Cu1—N193.13 (13)N4—C5—C4118.6 (4)
N2—Cu1—N180.22 (13)N2—C5—C4114.9 (3)
O2—Cu1—O1100.69 (12)N4—C6—C7123.2 (4)
O5—Cu1—O196.32 (12)N4—C6—H6118.4
N2—Cu1—O191.50 (12)C7—C6—H6118.4
N1—Cu1—O186.30 (12)C6—C7—C8116.8 (4)
Cu1—O1—H1A121 (4)C6—C7—H7121.6
Cu1—O1—H1B106 (3)C8—C7—H7121.6
H1A—O1—H1B109 (4)N2—C8—C7120.8 (4)
H1WA—O1W—H1WB110 (5)N2—C8—H8119.6
C9—O2—Cu1131.1 (3)C7—C8—H8119.6
H2WB—O2W—H2WA110 (6)O3—C9—O2122.1 (4)
C12—O5—Cu1128.5 (3)O3—C9—C10117.0 (4)
C4—N1—C1117.6 (3)O2—C9—C10120.9 (4)
C4—N1—Cu1114.7 (3)C11—C10—C9127.7 (4)
C1—N1—Cu1127.5 (3)C11—C10—H10A105.4
C5—N2—C8117.0 (4)C9—C10—H10A105.4
C5—N2—Cu1115.0 (3)C11—C10—H10B105.4
C8—N2—Cu1128.0 (3)C9—C10—H10B105.4
C4—N3—C3115.7 (4)H10A—C10—H10B106.0
C5—N4—C6115.7 (4)C10—C11—C12128.7 (4)
N1—C1—C2120.7 (4)C10—C11—H11A105.1
N1—C1—H1C119.6C12—C11—H11A105.1
C2—C1—H1C119.6C10—C11—H11B105.1
C3—C2—C1116.7 (4)C12—C11—H11B105.1
C3—C2—H2121.7H11A—C11—H11B105.9
C1—C2—H2121.7O4—C12—O5123.2 (4)
N3—C3—C2123.6 (4)O4—C12—C11115.7 (4)
N3—C3—H3118.2O5—C12—C11121.1 (4)
C2—C3—H3118.2
O5—Cu1—O2—C951.3 (4)C3—N3—C4—C5177.7 (4)
N2—Cu1—O2—C9137.8 (4)C1—N1—C4—N32.0 (6)
N1—Cu1—O2—C9174.3 (6)Cu1—N1—C4—N3173.5 (4)
O1—Cu1—O2—C946.1 (4)C1—N1—C4—C5176.0 (4)
O2—Cu1—O5—C1250.4 (3)Cu1—N1—C4—C58.5 (4)
N2—Cu1—O5—C12171.8 (6)C6—N4—C5—N20.5 (7)
N1—Cu1—O5—C12137.5 (3)C6—N4—C5—C4177.1 (4)
O1—Cu1—O5—C1250.9 (3)C8—N2—C5—N40.7 (6)
O2—Cu1—N1—C443.9 (8)Cu1—N2—C5—N4177.8 (3)
O5—Cu1—N1—C4178.4 (3)C8—N2—C5—C4177.1 (4)
N2—Cu1—N1—C46.7 (3)Cu1—N2—C5—C40.0 (5)
O1—Cu1—N1—C485.5 (3)N3—C4—C5—N45.8 (6)
O2—Cu1—N1—C1141.1 (6)N1—C4—C5—N4172.3 (4)
O5—Cu1—N1—C16.6 (4)N3—C4—C5—N2176.3 (4)
N2—Cu1—N1—C1178.3 (4)N1—C4—C5—N25.6 (5)
O1—Cu1—N1—C189.5 (4)C5—N4—C6—C70.5 (7)
O2—Cu1—N2—C5176.8 (3)N4—C6—C7—C80.6 (8)
O5—Cu1—N2—C555.1 (8)C5—N2—C8—C70.8 (6)
N1—Cu1—N2—C53.5 (3)Cu1—N2—C8—C7177.4 (3)
O1—Cu1—N2—C582.5 (3)C6—C7—C8—N20.8 (7)
O2—Cu1—N2—C80.0 (4)Cu1—O2—C9—O3178.8 (3)
O5—Cu1—N2—C8121.6 (7)Cu1—O2—C9—C103.2 (6)
N1—Cu1—N2—C8173.2 (4)O3—C9—C10—C11137.1 (5)
O1—Cu1—N2—C8100.8 (4)O2—C9—C10—C1144.9 (7)
C4—N1—C1—C21.6 (6)C9—C10—C11—C123.2 (7)
Cu1—N1—C1—C2173.3 (3)Cu1—O5—C12—O4177.3 (3)
N1—C1—C2—C30.5 (7)Cu1—O5—C12—C113.5 (5)
C4—N3—C3—C22.2 (7)C10—C11—C12—O4131.7 (4)
C1—C2—C3—N32.5 (7)C10—C11—C12—O549.0 (6)
C3—N3—C4—N10.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O1W0.85 (4)1.89 (4)2.703 (5)162 (4)
O1—H1B···O4i0.85 (4)2.05 (4)2.903 (4)178 (4)
O1W—H1WA···O2Wii0.85 (4)1.95 (2)2.790 (6)169 (5)
O1W—H1WB···N3iii0.84 (4)2.45 (5)3.216 (5)152 (4)
O1W—H1WB···N4iii0.84 (4)2.46 (4)3.130 (5)137 (5)
O2W—H2WA···O3iii0.85 (4)2.04 (4)2.876 (6)167 (5)
O2W—H2WB···O3iv0.85 (4)1.94 (4)2.777 (5)168 (4)
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C4H4O4)(C8H6N4)(H2O)]·2H2O
Mr391.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.6905 (8), 18.9321 (14), 7.6105 (6)
β (°) 92.229 (1)
V3)1539.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.30 × 0.20 × 0.09
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.700, 0.877
No. of measured, independent and
observed [I > 2σ(I)] reflections
7725, 2735, 2085
Rint0.036
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.06
No. of reflections2735
No. of parameters235
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.66

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O12.386 (3)Cu1—N12.017 (3)
Cu1—O21.918 (3)Cu1—N22.012 (3)
Cu1—O51.940 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O1W0.85 (4)1.89 (4)2.703 (5)162 (4)
O1—H1B···O4i0.85 (4)2.05 (4)2.903 (4)178 (4)
O1W—H1WA···O2Wii0.85 (4)1.950 (17)2.790 (6)169 (5)
O1W—H1WB···N3iii0.84 (4)2.45 (5)3.216 (5)152 (4)
O1W—H1WB···N4iii0.84 (4)2.46 (4)3.130 (5)137 (5)
O2W—H2WA···O3iii0.85 (4)2.04 (4)2.876 (6)167 (5)
O2W—H2WB···O3iv0.85 (4)1.94 (4)2.777 (5)168 (4)
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y1, z.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (grant No. 20773104), the Program for New Century Excellent Talents in Universities (NCET-06-0891), the Natural Science Foundation of Hubei/Shaanxi Provinces of China (2008CDB030) and the Important Project of Hubei Provincial Education Office, China (Z20091301).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMcCann, M., Casey, M.-T., Devereux, M., Curran, M. & Ferguson, G. (1997). Polyhedron, 15, 2547–2552.  CSD CrossRef Web of Science Google Scholar
First citationRay, M.-S., Ghosh, A., Das, A., Drew, M.-G. B., Ribas-Ariňo, J., Novoa, J. & Ribas, J. (2004). Chem. Commun. pp. 1102–1103.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J., Li, Zh.-J., Wen, Y.-H., Kang, Y., Cheng, J.-K. & Yao, Y.-G. (2004). Z. Anorg. Allg. Chem. 630, 2731–2735.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds