metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m389-m390

Di­aqua­bis­(N,N-di­ethyl­nicotinamide-κN1)bis­­(4-formyl­benzoato-κO)cobalt(II)

aKafkas University, Department of Chemistry, 63100 Kars, Turkey, bKarabük University, Department of Physics, 78050 Karabük, Turkey, cAtatürk University, Department of Chemistry, 22240 Erzurum, Turkey, and dHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 25 February 2009; accepted 6 March 2009; online 11 March 2009)

In the crystal structure of the title CoII complex, [Co(C8H5O3)2(C10H14N2O)2(H2O)2], the metal centre is located on an inversion center and is coordinated by two 4-formyl­benzoate (FOB), two diethyl­nicotinamide (DENA) ligands and two water mol­ecules in a slightly distorted CoO4N2 octa­hedral geometry. In the crystal structure, O—H⋯O hydrogen bonds link the mol­ecules into infinite chains. ππ contacts between the parallel pyridine rings of neighboring DENA ligands [centroid–centroid distance = 3.652 (3) Å] further stabilize the crystal structure.

Related literature

For general background, see: Antolini et al. (1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]); Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]); Nadzhafov et al. (1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]); Shnulin et al. (1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]). For related structures, see: Hökelek et al. (1995[Hökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020-2023.], 1997[Hökelek, T., Budak, K. & Necefoğlu, H. (1997). Acta Cryst. C53, 1049-1051.], 2007[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561-m2562.], 2008[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505-m506.]); Hökelek & Necefoğlu (1996[Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.], 1997[Hökelek, T. & Necefoğlu, H. (1997). Acta Cryst. C53, 187-189.], 2007[Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821-m823.]); Sertçelik et al. (2009a[Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009a). Acta Cryst. E65, m326-m327.], 2009b[Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009b). Acta Cryst. E65, m324-m325.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H5O3)2(C10H14N2O)2(H2O)2]

  • Mr = 749.67

  • Triclinic, [P \overline 1]

  • a = 7.2962 (2) Å

  • b = 8.6863 (3) Å

  • c = 15.9453 (5) Å

  • α = 85.433 (2)°

  • β = 78.608 (3)°

  • γ = 68.022 (2)°

  • V = 918.64 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 294 K

  • 0.35 × 0.25 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.853, Tmax = 0.926

  • 19487 measured reflections

  • 3755 independent reflections

  • 3016 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.195

  • S = 1.07

  • 3755 reflections

  • 246 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.088 (3)
Co1—O5 2.121 (3)
Co1—N1 2.163 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O4i 0.94 (4) 1.86 (4) 2.787 (5) 174 (6)
O5—H52⋯O2ii 0.92 (2) 1.73 (4) 2.646 (5) 168 (6)
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Transition metal complexes with biochemically active ligands frequently show interesting physical and/or chemical properties, as a result they may find applications in biological systems (Antolini et al., 1982). The structural functions and coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981). The nicotinic acid derivative N,N-diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972).

The structure determination of the title compound, (I), a cobalt complex with two formylbenzoate (FOB), two diethylnicotinamide (DENA) ligands and two water molecules, was undertaken in order to determine the properties of the ligands and also to compare the results obtained with those reported previously.

Compound (I) is a monomeric complex, with the Co atom on a centre of symmetry. It contains two FOB, two DENA ligands and two water molecules (Fig. 1). All ligands are monodentate. The four O atoms (O1, O5, and the symmetry-related atoms, O1', O5') in the equatorial plane around the Co atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the DENA ligands (N1, N1') in the axial positions (Table 1 and Fig. 1).

The near equality of the C1—O1 [1.262 (5) Å] and C1—O2 [1.257 (5) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, and may be compared with the corresponding distances: 1.263 (4) and 1.249 (4) Å in [Ni(DENA)2(C8H5O3)2(H2O)2], (II), (Sertçelik et al., 2009a), 1.262 (3) and 1.249 (3) Å in [Mn(DENA)2 (C8H5O3)2(H2O)2], (III), (Sertçelik et al., 2009b), 1.256 (6) and 1.245 (6) Å in [Mn(DENA)2(C7H4ClO2)2(H2O)2], (IV), (Hökelek et al., 2008), 1.265 (6) and 1.275 (6) Å in [Mn(C9H10NO2)2(H2O)4]. 2(H2O), (V), Hökelek & Necefoğlu, 2007), 1.260 (4) and 1.252 (4) Å in [Zn(DENA)2(C7H4FO2)2(H2O)2], (VI), (Hökelek et al., 2007), 1.259 (9) and 1.273 (9) Å in Cu2(DENA)2(C6H5COO)4, (VII), (Hökelek et al., 1995), 1.279 (4) and 1.246 (4) Å in [Zn2(DENA)2(C7H5O3)4]. 2H2O, (VIII), (Hökelek & Necefoğlu, 1996), 1.251 (6) and 1.254 (7) Å in [Co(DENA)2(C7H5O3)2(H2O)2], (IX), (Hökelek & Necefoğlu, 1997), 1.278 (3) and 1.246 (3) Å in [Cu(DENA)2(C7H4NO4)2(H2O)2], (X), (Hökelek et al., 1997). This may be due to the intermolecular O—H···O hydrogen bonding of the carboxylate O atoms (Table 2). In (I), the average Co—O bond length is 2.105 (3) Å and the Co atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by 0.768 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring A (C2—C7) is 4.02 (35)°, while that between rings A and B (N1/C9—C13) is 79.61 (14)°.

In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into infinite chains (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contact between the DENA rings, Cg1—Cg1i [symmetry code: (i) 2 - x, 1 - y, -z, where Cg1 is centroid of the ring B (N1/C9—C13)] may further stabilize the structure, with centroid-centroid distance of 3.652 (3) Å.

Related literature top

For general background, see: Antolini et al. (1982); Bigoli et al. (1972); Nadzhafov et al. (1981); Shnulin et al. (1981). For related structures, see: Hökelek et al. (1995, 1997, 2007, 2008); Hökelek & Necefouglu (1996, 1997; Hökelek & Necefoğlu (2007);Sertçelik et al. (2009a, 2009b).

Experimental top

The title compound was prepared by the reaction of CoSO4.H2O (1.73 g, 10 mmol) in H2O (50 ml) and DENA (3.56 g, 20 mmol) in H2O (15 ml) with sodium 4-formylbenzoate (3.44 g, 20 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving red single crystals.

Refinement top

H atoms of water molecule and formyl group were located in difference Fourier maps and refined isotropically, with restrains of O5—H51 = 0.94 (4), O5—H52 = 0.92 (2) Å, H51—O5—H52 = 105 (3)° and Uiso(H) = 0.09 (2) and 0.075 (18) Å2 (for H2O); C8—H81 = 1.04 (6) Å and Uiso(H) = 0.086 (19) Å2 (for formyl group). The remaining H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms, and x = 1.2 for all other H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Primed atoms are generated by the symmetry operator (1 -x, -y, -z).
[Figure 2] Fig. 2. A partial packing diagram of (I) viewed down the a axis, showing hydrogen bonds (dotted lines) linking the molecules into chains, where b and c axes are vertical and horizontal, respectively. H atoms not involved in hydrogen bonding are omitted.
Diaquabis(N,N-diethylnicotinamide-κN1)bis(4- formylbenzoato-κO)cobalt(II) top
Crystal data top
[Co(C8H5O3)2(C10H14N2O)2(H2O)2]Z = 1
Mr = 749.67F(000) = 393
Triclinic, P1Dx = 1.355 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2962 (2) ÅCell parameters from 4172 reflections
b = 8.6863 (3) Åθ = 2.5–26.4°
c = 15.9453 (5) ŵ = 0.53 mm1
α = 85.433 (2)°T = 294 K
β = 78.608 (3)°Prism, red
γ = 68.022 (2)°0.35 × 0.25 × 0.15 mm
V = 918.64 (5) Å3
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3755 independent reflections
Radiation source: fine-focus sealed tube3016 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(Blessing, 1995)
h = 99
Tmin = 0.853, Tmax = 0.926k = 1010
19487 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0999P)2 + 0.5936P]
where P = (Fo2 + 2Fc2)/3
3755 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 1.02 e Å3
3 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Co(C8H5O3)2(C10H14N2O)2(H2O)2]γ = 68.022 (2)°
Mr = 749.67V = 918.64 (5) Å3
Triclinic, P1Z = 1
a = 7.2962 (2) ÅMo Kα radiation
b = 8.6863 (3) ŵ = 0.53 mm1
c = 15.9453 (5) ÅT = 294 K
α = 85.433 (2)°0.35 × 0.25 × 0.15 mm
β = 78.608 (3)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3755 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3016 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.926Rint = 0.074
19487 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0693 restraints
wR(F2) = 0.195H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.02 e Å3
3755 reflectionsΔρmin = 0.33 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.00000.00000.0386 (3)
O10.4778 (5)0.1144 (4)0.10591 (18)0.0473 (7)
O20.7579 (5)0.1290 (4)0.1979 (2)0.0555 (8)
O30.0578 (8)0.1907 (7)0.4559 (3)0.0958 (15)
O40.2309 (5)0.3315 (4)0.1246 (2)0.0585 (9)
O50.2256 (5)0.0208 (4)0.0630 (2)0.0506 (8)
H510.224 (10)0.126 (4)0.080 (3)0.09 (2)*
H520.214 (9)0.033 (5)0.113 (2)0.075 (18)*
N10.3188 (5)0.2363 (4)0.0485 (2)0.0419 (8)
N20.1116 (7)0.4197 (6)0.2512 (3)0.0609 (11)
C10.5813 (6)0.1268 (5)0.1802 (3)0.0422 (9)
C20.4825 (6)0.1361 (5)0.2530 (3)0.0418 (9)
C30.5824 (7)0.1374 (6)0.3370 (3)0.0496 (11)
H30.70970.13170.34800.060*
C40.4938 (8)0.1471 (7)0.4037 (3)0.0570 (12)
H40.56130.14740.45960.068*
C50.3035 (8)0.1566 (6)0.3882 (3)0.0546 (11)
C60.2016 (7)0.1530 (6)0.3045 (3)0.0510 (11)
H60.07410.15830.29340.061*
C70.2906 (7)0.1417 (6)0.2383 (3)0.0463 (10)
H70.22130.13770.18240.056*
C80.2121 (10)0.1698 (9)0.4608 (4)0.0750 (16)
H810.294 (9)0.169 (7)0.522 (4)0.086 (19)*
C90.3415 (6)0.3797 (5)0.0385 (3)0.0439 (10)
H90.43660.37840.00700.053*
C100.2310 (7)0.5285 (6)0.0724 (3)0.0494 (10)
H100.25020.62550.06360.059*
C110.0905 (7)0.5306 (5)0.1200 (3)0.0478 (10)
H110.01570.62870.14490.057*
C120.0637 (6)0.3839 (5)0.1299 (3)0.0426 (9)
C130.1798 (6)0.2402 (5)0.0936 (3)0.0419 (9)
H130.16130.14210.10050.050*
C140.1028 (7)0.3743 (6)0.1700 (3)0.0468 (10)
C150.0391 (10)0.4689 (8)0.3107 (3)0.0732 (16)
H15A0.13010.48510.27850.088*
H15B0.02880.57450.33700.088*
C160.1577 (13)0.3470 (13)0.3789 (6)0.136 (4)
H16A0.26010.38200.41230.203*
H16B0.07090.33920.41510.203*
H16C0.21930.24040.35360.203*
C170.2911 (10)0.4212 (8)0.2844 (4)0.0754 (16)
H17A0.41140.47060.24200.090*
H17B0.30490.48880.33590.090*
C180.2719 (12)0.2533 (8)0.3035 (5)0.097 (2)
H18A0.38280.25890.32900.146*
H18B0.27210.18940.25150.146*
H18C0.14830.20140.34240.146*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0376 (5)0.0409 (5)0.0385 (5)0.0145 (3)0.0104 (3)0.0022 (3)
O10.0497 (17)0.0557 (18)0.0396 (16)0.0214 (15)0.0118 (13)0.0004 (13)
O20.0445 (18)0.069 (2)0.0525 (18)0.0191 (16)0.0098 (14)0.0061 (16)
O30.100 (3)0.148 (5)0.068 (3)0.070 (3)0.032 (2)0.002 (3)
O40.0547 (19)0.070 (2)0.062 (2)0.0353 (18)0.0136 (16)0.0081 (17)
O50.0472 (18)0.059 (2)0.0508 (18)0.0255 (16)0.0102 (14)0.0031 (15)
N10.0381 (18)0.0404 (19)0.049 (2)0.0148 (15)0.0127 (15)0.0019 (15)
N20.065 (3)0.077 (3)0.054 (2)0.036 (2)0.023 (2)0.010 (2)
C10.043 (2)0.038 (2)0.044 (2)0.0119 (18)0.0106 (18)0.0002 (17)
C20.044 (2)0.039 (2)0.041 (2)0.0131 (18)0.0086 (17)0.0002 (17)
C30.044 (2)0.055 (3)0.049 (2)0.018 (2)0.0040 (19)0.001 (2)
C40.065 (3)0.071 (3)0.037 (2)0.028 (3)0.006 (2)0.001 (2)
C50.061 (3)0.062 (3)0.045 (2)0.026 (2)0.014 (2)0.000 (2)
C60.049 (3)0.061 (3)0.048 (3)0.025 (2)0.012 (2)0.001 (2)
C70.047 (2)0.050 (2)0.041 (2)0.020 (2)0.0047 (18)0.0025 (18)
C80.083 (4)0.106 (5)0.050 (3)0.046 (4)0.017 (3)0.003 (3)
C90.041 (2)0.047 (2)0.048 (2)0.0174 (19)0.0145 (18)0.0010 (18)
C100.054 (3)0.044 (2)0.056 (3)0.023 (2)0.013 (2)0.003 (2)
C110.049 (2)0.041 (2)0.051 (3)0.016 (2)0.011 (2)0.0079 (19)
C120.041 (2)0.049 (2)0.038 (2)0.0166 (19)0.0089 (17)0.0038 (18)
C130.042 (2)0.041 (2)0.044 (2)0.0156 (18)0.0107 (17)0.0020 (17)
C140.044 (2)0.049 (3)0.049 (2)0.018 (2)0.0126 (19)0.0054 (19)
C150.087 (4)0.084 (4)0.057 (3)0.040 (3)0.015 (3)0.005 (3)
C160.109 (6)0.178 (9)0.122 (7)0.066 (7)0.029 (5)0.069 (7)
C170.082 (4)0.075 (4)0.080 (4)0.032 (3)0.040 (3)0.017 (3)
C180.134 (7)0.086 (5)0.088 (5)0.046 (5)0.049 (5)0.001 (4)
Geometric parameters (Å, º) top
Co1—O12.088 (3)C7—C61.370 (6)
Co1—O1i2.088 (3)C7—H70.9300
Co1—O52.121 (3)C8—H811.04 (6)
Co1—O5i2.121 (3)C9—H90.9300
Co1—N12.163 (3)C10—C91.377 (6)
Co1—N1i2.163 (3)C10—C111.385 (6)
O1—C11.262 (5)C10—H100.9300
O2—C11.257 (5)C11—H110.9300
O3—C81.193 (7)C12—C111.385 (6)
O4—C141.219 (5)C12—C131.378 (6)
O5—H510.94 (4)C13—H130.9300
O5—H520.92 (2)C14—N21.330 (6)
N1—C91.341 (5)C14—C121.511 (6)
N1—C131.343 (5)C15—C161.476 (9)
N2—C151.473 (7)C15—H15A0.9700
N2—C171.501 (7)C15—H15B0.9700
C2—C11.504 (6)C16—H16A0.9600
C2—C31.391 (6)C16—H16B0.9600
C2—C71.392 (6)C16—H16C0.9600
C3—C41.371 (6)C17—C181.463 (8)
C3—H30.9300C17—H17A0.9700
C4—C51.394 (7)C17—H17B0.9700
C4—H40.9300C18—H18A0.9600
C5—C61.391 (6)C18—H18B0.9600
C5—C81.477 (7)C18—H18C0.9600
C6—H60.9300
O1i—Co1—O1180.00 (17)O3—C8—C5126.1 (6)
O1i—Co1—O5i88.16 (12)O3—C8—H81116 (3)
O1—Co1—O5i91.84 (12)C5—C8—H81117 (3)
O1i—Co1—O591.84 (12)N1—C9—C10123.3 (4)
O1—Co1—O588.16 (12)N1—C9—H9118.3
O1i—Co1—N191.25 (12)C10—C9—H9118.3
O1—Co1—N188.75 (12)C9—C10—C11118.5 (4)
O1i—Co1—N1i88.75 (12)C9—C10—H10120.7
O1—Co1—N1i91.25 (12)C11—C10—H10120.7
O5i—Co1—O5180.00 (18)C10—C11—H11120.6
O5i—Co1—N193.36 (12)C12—C11—C10118.8 (4)
O5—Co1—N186.64 (12)C12—C11—H11120.6
O5i—Co1—N1i86.64 (12)C11—C12—C14123.6 (4)
O5—Co1—N1i93.36 (12)C13—C12—C11119.1 (4)
N1—Co1—N1i180.0 (2)C13—C12—C14116.9 (4)
C1—O1—Co1127.5 (3)N1—C13—C12122.6 (4)
Co1—O5—H51119 (4)N1—C13—H13118.7
Co1—O5—H5297 (3)C12—C13—H13118.7
H52—O5—H51105 (3)O4—C14—N2122.1 (4)
C9—N1—Co1123.6 (3)O4—C14—C12117.9 (4)
C9—N1—C13117.7 (4)N2—C14—C12120.0 (4)
C13—N1—Co1118.6 (3)N2—C15—C16113.8 (6)
C14—N2—C15125.4 (4)N2—C15—H15A108.8
C14—N2—C17116.9 (4)N2—C15—H15B108.8
C15—N2—C17117.6 (4)C16—C15—H15A108.8
O1—C1—C2116.9 (4)C16—C15—H15B108.8
O2—C1—O1125.1 (4)H15A—C15—H15B107.7
O2—C1—C2118.0 (4)C15—C16—H16A109.5
C3—C2—C1120.0 (4)C15—C16—H16B109.5
C3—C2—C7118.7 (4)C15—C16—H16C109.5
C7—C2—C1121.3 (4)H16A—C16—H16B109.5
C2—C3—H3119.9H16A—C16—H16C109.5
C4—C3—C2120.3 (4)H16B—C16—H16C109.5
C4—C3—H3119.9N2—C17—H17A109.4
C3—C4—C5120.5 (4)N2—C17—H17B109.4
C3—C4—H4119.7C18—C17—N2111.3 (5)
C5—C4—H4119.7C18—C17—H17A109.4
C4—C5—C8119.7 (5)C18—C17—H17B109.4
C6—C5—C4119.5 (4)H17A—C17—H17B108.0
C6—C5—C8120.7 (5)C17—C18—H18A109.5
C5—C6—H6120.2C17—C18—H18B109.5
C7—C6—C5119.5 (4)C17—C18—H18C109.5
C7—C6—H6120.2H18A—C18—H18B109.5
C2—C7—H7119.3H18A—C18—H18C109.5
C6—C7—C2121.4 (4)H18B—C18—H18C109.5
C6—C7—H7119.3
O5i—Co1—O1—C111.3 (4)C1—C2—C3—C4179.5 (4)
O5—Co1—O1—C1168.7 (4)C7—C2—C3—C41.1 (7)
N1—Co1—O1—C182.0 (4)C1—C2—C7—C6178.9 (4)
N1i—Co1—O1—C198.0 (4)C3—C2—C7—C61.8 (7)
O1i—Co1—N1—C933.5 (3)C2—C3—C4—C50.3 (7)
O1—Co1—N1—C9146.5 (3)C3—C4—C5—C61.2 (8)
O1i—Co1—N1—C13148.7 (3)C3—C4—C5—C8179.0 (5)
O1—Co1—N1—C1331.3 (3)C4—C5—C6—C70.6 (8)
O5i—Co1—N1—C954.7 (3)C8—C5—C6—C7179.6 (5)
O5—Co1—N1—C9125.3 (3)C4—C5—C8—O3174.2 (7)
O5i—Co1—N1—C13123.0 (3)C6—C5—C8—O36.0 (10)
O5—Co1—N1—C1357.0 (3)C2—C7—C6—C51.0 (7)
Co1—O1—C1—O227.6 (6)C11—C10—C9—N10.6 (7)
Co1—O1—C1—C2151.1 (3)C9—C10—C11—C121.5 (7)
Co1—N1—C9—C10177.3 (3)C13—C12—C11—C101.2 (6)
C13—N1—C9—C100.5 (6)C14—C12—C11—C10171.5 (4)
Co1—N1—C13—C12177.2 (3)C11—C12—C13—N10.1 (6)
C9—N1—C13—C120.7 (6)C14—C12—C13—N1173.1 (4)
C14—N2—C15—C16109.8 (7)O4—C14—C12—C11114.3 (5)
C17—N2—C15—C1670.5 (8)O4—C14—C12—C1358.6 (6)
C14—N2—C17—C1877.7 (7)N2—C14—C12—C1162.5 (6)
C15—N2—C17—C18102.6 (6)N2—C14—C12—C13124.6 (5)
C3—C2—C1—O1175.2 (4)O4—C14—N2—C15178.4 (5)
C3—C2—C1—O23.6 (6)O4—C14—N2—C171.9 (7)
C7—C2—C1—O14.1 (6)C12—C14—N2—C155.0 (8)
C7—C2—C1—O2177.1 (4)C12—C14—N2—C17174.7 (4)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O4ii0.94 (4)1.86 (4)2.787 (5)174 (6)
O5—H52···O2i0.92 (2)1.73 (4)2.646 (5)168 (6)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.

Experimental details

Crystal data
Chemical formula[Co(C8H5O3)2(C10H14N2O)2(H2O)2]
Mr749.67
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.2962 (2), 8.6863 (3), 15.9453 (5)
α, β, γ (°)85.433 (2), 78.608 (3), 68.022 (2)
V3)918.64 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.35 × 0.25 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.853, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
19487, 3755, 3016
Rint0.074
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.195, 1.07
No. of reflections3755
No. of parameters246
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.02, 0.33

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Co1—O12.088 (3)Co1—N12.163 (3)
Co1—O52.121 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O4i0.94 (4)1.86 (4)2.787 (5)174 (6)
O5—H52···O2ii0.92 (2)1.73 (4)2.646 (5)168 (6)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.
 

Acknowledgements

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for the use of the X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

References

First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Budak, K. & Necefoğlu, H. (1997). Acta Cryst. C53, 1049–1051.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561–m2562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505–m506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1997). Acta Cryst. C53, 187–189.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009a). Acta Cryst. E65, m326–m327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009b). Acta Cryst. E65, m324–m325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m389-m390
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds